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Abstract

Multirotor unmanned aerial vehicles (UAVs) are mechanically simple and highly

maneuverable robots that are suitable to a wide range of applications such as infras-

tructure inspection, transportation, search-and-rescue missions, and mapping oper-

ations. Reliable autonomous multirotor flight needs to expand beyond lab demon-

strations to real-world environments. To enable this, in the first part of this thesis,

we present computationally efficient control algorithms, by exploiting a property of

the dynamics known as differential flatness. We exploit this property to enable ef-

ficient prediction and safe learning from online data. As a result, we develop safe

high-performance control by accounting for nonlinear and unknown dynamics in a

computationally tractable way. In the second part of this thesis, we explore some

of the challenges to high-speed autonomous vision-based flight. Real-world environ-

ments may be GPS-denied and vision-based navigation, relying predominantly on an

onboard camera, is a lightweight and cost-effective alternative. Most standard con-

trollers are perception-agnostic and tend to assume (i) the action computed by the

controller has no effect on the ability of vision-based navigation to determine location

and (ii) perfect state estimation is obtained. These assumptions often limit the relia-

bility and performance of perception-agnostic controllers for autonomous vision-based

flight. In contrast, we present perception-aware control algorithms that account for

partial visual knowledge of the environment and plan despite imperfect state estima-

tion. These approaches are validated through outdoor experiments on a DJI M600
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multirotor where we demonstrate autonomous vision-based flight at speeds up to 10

m/s.
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Chapter 1

Introduction

In recent years, there has been a push toward developing robust and reliable au-

tonomous robot navigation to facilitate more efficient transportation, exploration of

dangerous environments, and assist people in performing difficult tasks. This requires

expanding the limited operating regime of current robot navigation to enable auton-

omy in less structured and changing environments and in safety-critical interactions.

Multirotor unmanned aerial vehicles (UAVs) are mechanically simple and highly

maneuverable robots that are suitable to a wide range of applications such as in-

frastructure inspection, see [Bircher et al., 2016] or [Thakur et al., 2019], transporta-

tion, search-and-rescue missions, see [Rudol et al., 2008], and mapping operations,

see [Han et al., 2013]. To support these applications, reliable autonomous multirotor

navigation needs to expand beyond lab demonstrations to real-world environments.

Even in lab demonstrations, exploiting the ability of multirotor UAVs to achieve

fast, agile flight requires accounting for their nonlinear dynamics in controllers that

can operate in real-time. Moreover, real-world environments have the additional chal-

lenges of achieving this despite unknown disturbances and changing dynamics. For

example, during outdoor flight, multirotor UAVs experience unknown disturbances

as a result of wind coming from varying directions and at varying speeds. Chang-

ing multirotor dynamics may also be a result of changing intrinsic properties, such

as varying payload (e.g., different onboard sensors or packages for ‘drone’ delivery).

Furthermore, to avoid communication delays with a ground station and/or relying

on additional infrastructure it is beneficial for computation to take place onboard the

UAV on a lightweight computer.

The first challenge that we seek to address in this thesis is that safe high-

performance fast multirotor flight in real-world environments requires planning and

accounting for nonlinear and unknown dynamics with computationally tractable con-

1



CHAPTER 1. INTRODUCTION 2

trol algorithms that can be used in real-time operation, on-board, in a high-frequency

feedback loop.

In this thesis, we address this challenge by exploiting a structural property

of many nonlinear models known as differential flatness, see [Fliess et al., 1995].

Many physical systems, including cranes, cars with trailers and multirotors, see

[Mellinger et al., 2011], can be described by nonlinear models exhibiting the differ-

ential flatness property. Intuitively, differential flatness allows us to separate the

nonlinear model into a linear dynamics component and a nonlinear transformation.

A common control approach for differentially flat systems is to try to cancel the non-

linear term and design a controller using the remaining linear dynamics. This can

be computationally efficient to design. However, in reality, performance and safety

are limited by the mismatch between the nominal model (for example, used to cancel

the nonlinear term) and the actual system dynamics (which may include unknown

disturbances and changing dynamics). In Part I: Exploiting Flatness Structure

of this thesis, see Fig. 1.1, we explore control design that exploits differential flatness

but is able to achieve high performance and safety despite the mismatch between

the nominal model and actual system. In the first part of this thesis, we develop

controllers and theory for systems that are differentially flat and use multirotor flight

as an example.

The second challenge is that real-world environments may be GPS-denied (i.e., we

cannot rely on GPS for accurate global positioning). Using GPS is limited to environ-

ments with sufficient satellite coverage and is susceptible to multipath propagation

and intentional jamming. For safety, government regulations have often restricted

UAVs to Visual Line of Sight (VLOS) to allow manual piloting of the UAV in the

event of GPS loss. To facilitate safe beyond VLOS UAV operations, alternative au-

tonomous navigation solutions are required. These solutions should be able to act as

a backup during GPS loss or facilitate standalone use. This has motivated develop-

ing vision-based navigation that relies primarily on lightweight, inexpensive onboard

camera sensors.

In recent years, significant advancements have been made in enabling high-

performance autonomous flight using vision-based sensing as a lightweight and

versatile alternative, see, for example, [Warren et al., 2019], [Foehn et al., 2020] or

[Gao et al., 2020]. Inspired in part by the DARPA Fast Lightweight Autonomy

(FLA) challenge, see [DARPA], and the potential for autonomous drone racing, see

[Kaufmann et al., 2019], there has been a significant push toward faster vision-based

multirotor flight, see, for example, [Mohta et al., 2018] or [Beul et al., 2018]. One
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Figure 1.1: In this thesis we focus on controller design and algorithms useful to (i)
multirotor UAVs and for (ii) autonomous vision-based flight. In Part I: Exploiting
Flatness Structure we explore the role of differential flatness to achieve safety
and high-performance despite unknown dynamics in a computationally tractable
way. In Part II: Autonomous Vision-Based Flight, we address specific chal-
lenges to high-performance vision-based flight that are often neglected by traditional
perception-agnostic control design.

such vision-based approach uses a Visual Teach and Repeat (VT&R) framework, see

[Furgale et al., 2010], that allows the UAV to repeat a previously taught path by

matching current visual features to those in a locally metric map created during a

teach phase, see [Gao et al., 2020] or [Warren et al., 2019].

The work in this thesis relies on a classical autonomy pipeline, including subtasks

for sensing, localization, estimation, planning, and control. There have been promis-

ing results in an end-to-end approach that can achieve high-speed vision-based flight,

see [Loquercio et al., 2021]. Such an end-to-end approach does not have the same

processing latency that can compound through the classical pipeline. However, there

are still open questions on the quantity and diversity of environment data required

to ensure generalization across various outdoor environments. Furthermore, current
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state-of-the-art end-to-end approaches do not have the interpretability of the classical

autonomy pipeline, which makes it challenging to debug or diagnose when the system

does not perform well. Within this classical autonomy pipeline, in this thesis we

explore tighter integration between localization and estimation modules and control.

The interpretability and modularity of our control methods allow them to be easily

adapted to new UAV systems (for example, when using a new camera or changing

the UAV payload).

This thesis considers the Visual Teach and Repeat (VT&R) framework and focuses

on the controller required to autonomously repeat a previously taught path. The

controller’s role is to compute a commanded action to achieve desired objectives (for

example, to repeat the previously taught path at some desired speed) using feedback

from vision-based navigation. The feedback is often in the form of a state estimate

that can include the UAV’s location relative to the path, orientation, velocity and

acceleration information. Many state-of-the-art controllers tend to make two flawed

assumptions for vision-based navigation:

• Assumption 1: The commanded action computed by the controller has no

effect on the ability of vision-based navigation to determine the UAV’s location

(or localization).

• Assumption 2: The commanded action computed by the controller relies on

perfect state estimation from vision-based navigation.

Assumption 1: Relying on vision may require operating despite partial knowledge

of the environment. For example, in many vision-based navigation systems knowledge

of the world may be limited to a visual-map. The onboard controller relies on feedback

from the vision-based navigation system to determine the actions of the multirotor.

If the controller is agnostic to the vision-based navigation system, it can determine

a commanded action that prioritizes an objective (e.g., flying at some desired speed)

but leads the UAV to a location where the vision system may not be able to localize

itself with respect to the map or may only be able to obtain a poor estimate of

the UAV location. Moreover, poor performance of either subsystem (controller or

vision-navigation) is reinforced through this feedback loop.

Assumption 2: Controllers for multirotor UAVs tend to rely on high-rate state

estimates (generally 50-200 Hz for position control to compensate for their fast, agile

dynamics). In contrast, due to computational requirements, visual perception often
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estimates lower-rate relative position information (currently 10-35 Hz). The mis-

match between the control requirements and visual measurement is addressed with

an additional state estimator that uses a prediction motion model and/or integrates

IMU measurements, to determine high-rate state estimates. An accurate full state

estimate is often challenging to obtain due to typically noisy IMU measurements, an

infrequent position update from the vision system and an imperfect motion model

used to obtain high-rate state estimates required by the controller. Assuming perfect

state estimation may, in practice, significantly limit the performance and robustness

of the controller.

Therefore, the second challenge that we seek to address is that reliable high-

performance flight in real-world environments using vision-based navigation requires

developing control algorithms that can account for partial knowledge of the envi-

ronment and plan despite imperfect state estimation. We present methods toward

addressing this challenge in a VT&R framework in Part II: Autonomous Vision-

Based Flight, see Fig. 1.1.
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Contributions

Fig. 1.2 highlights the structure and conceptual relationship between the contents of

this thesis. For more detail, we provide an overview of the chapters of this thesis

below. The work in these chapters have resulted in the following publications:

• M. Greeff and A. P. Schoellig, “Flatness-based model predictive control for

quadrotor trajectory tracking,” in Proc. IEEE International Conference on

Intelligent Robots and Systems (IROS), pp. 6740-6745, 2018.

• M. Greeff and A. P. Schoellig, “Exploiting differential flatness for robust

learning-based tracking control using Gaussian Processes,” IEEE Control Sys-

tems Letters, vol. 5, no. 4, pp. 1121-1126, 2020.

• M. Greeff, A. W. Hall, and A. P. Schoellig, “Learning a stability filter for un-

certain differentially flat systems using Gaussian Processes,” in Proc. IEEE

Conference on Decision and Control (CDC), pp. 789-794, 2021.

• M. Greeff, T. D. Barfoot, and A. P. Schoellig, “A perception-aware flatness-

based model predictive control for fast vision-based multirotor flight,” in Proc.

IFAC World Congress, vol. 53, no. 2, pp. 9412-9419, 2020.

• M. Greeff, S. Zhou, and A. P. Schoellig, “Fly out the window: Exploiting

discrete-time flatness for fast vision-based multirotor flight,” IEEE Robotics

and Automation Letters, vol. 7, no. 2, pp. 5023-5030, 2022.

Additional contributions include:

• M. Warren, M. Greeff, B. Patel, J. Collier, A. P. Schoellig, and T. D. Barfoot,

“There’s no place like home: Visual teach and repeat for emergency return of

multirotor UAVs during GPS failure,” IEEE Robotics and Automation Letters,

vol. 4, no. 1, pp. 161-168, 2019.

• L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P.

Schoellig, “Safe learning in robotics: From learning-based control to safe re-

inforcement learning,” Annual Review of Control, Robotics, and Autonomous

Systems, 2021, Accepted.

• M. Greeff, B. Patel, M. Warren, M. Bianchi, J. Wong, J. Collier, T. D. Barfoot,

and A. P. Schoellig, “Work in the CLOUD: Canadian Longterm Outdoor UAV

Dataset,” In Progress.
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Overview of Part I: Exploiting Flatness Structure

As illustrated in Fig. 1.2, Part I of this thesis contains four chapters.

Chapter 2 – Background on Differential Flatness and Gaussian Processes:

In this chapter, we provide the formal mathematical definition of differential flatness

and key theorems that are required for our work in Chapters 3 - 5. Many physical

system models exhibit a structural property known as differential flatness. Intuitively,

differential flatness allows us to separate the system’s nonlinear dynamics into a linear

dynamics component and a nonlinear term. A Gaussian Process (GP) is a nonpara-

metric learning approach that uses data to provide both a most likely prediction and

an uncertainty estimate. In this chapter, we provide background on GPs for our work

in Chapters 4 - 5.

Chapter 3 – Flatness-Based Model Predictive Control: The use of model

predictive control for multirotor applications requires balancing trajectory tracking

performance and constraint satisfaction with fast computation. This chapter presents

a model-based technique, Flatness-based Model Predictive Control (FMPC), that can

be applied to multirotors, and more generally, differentially flat nonlinear systems.

Our proposed FMPC couples feedback model predictive control with feedforward

(FF) linearization. The proposed approach has the computational advantage that,

similar to linear model predictive control, it only requires solving a convex quadratic

program instead of a nonlinear program. However, unlike linear model predictive

control, we still account for the nonlinearity in the model through the use of an

inverse nonlinear term. In simulation, we demonstrate improved robustness over

approaches that couple model predictive control with the more common feedback

(FB) linearization. In experiments using multirotors, we also demonstrate improved

trajectory tracking compared to classical linear and nonlinear model predictive control

approaches. The work in this chapter is model-based and closed-loop performance is

limited to the accuracy of the prior model and does not improve with online-data.

We investigate learning-based approaches, that can improve performance using online

system data, in Chapters 4 - 5.

Chapter 4 – Flatness-Based Robust Learning Control: Learning-based con-

trol has shown to outperform conventional model-based techniques in the presence

of model uncertainties and systematic disturbances. However, most state-of-the-art
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learning-based nonlinear trajectory tracking controllers still lack any formal guaran-

tees. In this chapter, we exploit the property of differential flatness to design an

online, robust learning-based controller to achieve both high tracking performance

and safety, through probabilistically guaranteeing a uniform ultimate bound on the

tracking error. A common control approach for differentially flat systems is to try

to linearize the system by using a feedback (FB) linearization controller designed

based on a nominal system model. Performance and safety are limited by the mis-

match between the nominal model and the actual system. Our proposed approach

uses a nonparametric Gaussian process (GP) to both improve FB linearization and

quantify, probabilistically, the uncertainty in our FB linearization. We use this prob-

abilistic bound in a robust linear quadratic regulator (LQR) framework. Through

simulation, we highlight that our proposed approach significantly outperforms alter-

native learning-based strategies that use differential flatness. Our method can safely

improve performance with online data but is limited to a linear quadratic regulator

(LQR) framework, and can not easily integrate with Flatness-based Model Predictive

Control in Chapter 3. Moreover, the computation of the bound for the robust linear

controller is a nonlinear program that is not efficient to compute at a rate of 50-100

Hz commonly used by multirotor position control.

Chapter 5 – Flatness-Based Learned Stability Filter: In this chapter, we

learn a filter that can augment any controller for differentially flat systems to effi-

ciently certify robot tracking stability and input constraints in the presence of model

uncertainty. More specifically, we exploit the differential flatness structure and pro-

pose using a nonparametric Gaussian process (GP) to learn the unknown nonlinear

term. We use this GP in an optimization problem to optimize for an input that is

most likely to feedback (FB) or feedforward (FF) linearize the system (i.e., cancel

the nonlinear term). This optimization is subject to input constraints and a stability

filter, described by an uncertain Control Lyapunov Function (CLF), which proba-

bilistically guarantees exponential trajectory tracking when possible. Furthermore,

for systems that are control-affine, we choose to express this structure in the selection

of the kernel for the GP. By exploiting this selection, we show that the optimization

problem is not only convex but can be efficiently solved as a second-order cone pro-

gram. We compare our approach to related works in simulation and show that we

can achieve similar performance at much lower computational cost.
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Overview of Part II: Autonomous Vision-Based

Flight

As illustrated in Fig. 1.2, Part II of this thesis contains four chapters.

Chapter 6 – Background on Multirotor Visual Teach and Repeat: This

chapter provides background on our vision-based route-following system for the au-

tonomous, safe return of UAVs. Redundant navigation systems are critical for safe

operation of UAVs in high-risk environments. We provide detail on our DJI Matrice

600 hardware set-up, the VT&R software, preliminary field testing and critical chal-

lenges to high-speed autonomous vision-based flight that are addressed in Chapter 7

and Chapter 8.

Chapter 7 – Perception-Aware Control: Despite the push toward fast, reli-

able vision-based multirotor flight, most vision-based navigation systems still rely on

controllers that are perception-agnostic. Given that these controllers ignore their ef-

fect on the system’s localization capabilities, they can produce an action that allows

vision-based localization (and consequently navigation) to fail. In this chapter, we

present a perception-aware flatness-based model predictive controller (MPC) that ac-

counts for its effect on visual localization in VT&R. To achieve perception awareness,

we first develop a simple geometric model that uses over 12 km of flight data from

two different environments (urban and rural) to associate visual landmarks with a

probability of being successfully matched. In order to ensure localization, we inte-

grate this model as a chance constraint in our MPC such that we are probabilistically

guaranteed that the number of successfully matched visual landmarks exceeds a min-

imum threshold. We show how to simplify the chance constraint to a nonlinear,

deterministic constraint on the position of the multirotor. With desired speeds of 10

m/s, we demonstrate in simulation (based on real-world perception data) how our

proposed perception-aware MPC is able to achieve faster flight while guaranteeing

localization compared to similar perception-agnostic controllers. We illustrate how

our perception-aware MPC adapts the path constraint along the path based on the

perception model by accounting for camera orientation, path error and location of

the visual landmarks. The result is that repeating the same geometric path but with

the camera facing in opposite directions can lead to different optimal paths.
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Chapter 8 – Discrete-Time Flatness Control: In this chapter, we present an

alternative control design that bypasses the need for a full-state estimate by exploit-

ing discrete-time flatness, a structural property of the underlying vehicle dynamics.

Recent work has demonstrated fast, agile flight using only vision as a position sensor

and no GPS. Current feedback controllers for fast vision-based flight typically rely

on a full-state estimate, including position, velocity and acceleration. An accurate

full-state estimate is often challenging to obtain due to noisy IMU measurements,

infrequent position updates from the vision system, and an imperfect motion model

used to obtain high-rate state estimates required by the controller. First, we show

that the Euler discretization of the multirotor dynamics is discrete-time flat. This

allows us to design a predictive controller using only a window of inputs and outputs,

the latter consisting of position and yaw estimates. We highlight in simulation that

our approach outperforms controllers that rely on an incorrect full-state estimate.

We perform extensive outdoor multirotor flight experiments and demonstrate reliable

vision-based navigation. In these experiments, our discrete-time flatness-based con-

troller achieves speeds up to 10 m/s and significantly outperforms similar controllers

that hinge on full-state estimation, achieving up to 80% path error reduction.

Chapter 9 – Canadian Longterm Outdoor UAV Dataset: In this chapter,

we present the Canadian Longterm Outdoor UAV Dataset (CLOUD) with over 30

km of visual-inertial flight data across three different locations across Canada. To

our knowledge, this dataset is currently the largest UAV visual outdoor dataset. Our

dataset is collected with our DJI Matrice 600 with a gimballed camera. We also

include satellite images, rendered using Google Earth, for the various paths flown.

Our dataset is well-suited for future research in UAV visual localization including

testing robustness to perspective, lighting and seasonal changes. Other potential use

cases include UAV navigation using satellite images, experience-based localization

and simultaneous localization and mapping.
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Chapter 2

Background on Differential

Flatness and Gaussian Processes

2.1 Differential Flatness

The property of differential flatness has been demonstrated for a variety of robotic

dynamic models, including quadrotors, see [Mellinger et al., 2011], differential drive

robots, see [G. Campion et al., 1996], car-like robots, see [R. M. Murray et al., 1996],

omni-directional robots, see [S. Jiang et al., 2013], protocentric aerial manipulators,

see [B. Yüksel et al., 2016] (where the first joint of the manipulator is attached at

the center of mass of the aerial vehicle), etc. For this reason, differential flatness is

an important concept for both fully-actuated and under-actuated robotics systems.

However, some physical nonlinear models of systems are not differentially flat, for

example, the “ball and beam”, “double inverted pendulum”, and certain chemical

reactors, see Chapter 12 in [Sira-Ramirez et al., 2018] for further examples.

We recall the formal definition of differential flatness.

Definition 1 (Differential Flatness) Consider a system with a continuous-time,

nonlinear model of the form:

ẋ(t) = f(x(t),u(t)), x(0) = x0, (2.1)

with t ∈ R+, x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm and f being a smooth function. This

nonlinear system model (2.1) is differentially flat if there exists y(t) ∈ Rm, whose com-

ponents are differentially independent (the components are not related to each other

13
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through a differential equation), such that the following holds [Fliess et al., 1995]:

y = Λ(x,u, u̇, . . . ,u(δ)), (2.2)

x = Φ(y, ẏ, . . . ,y(r−1)), (2.3)

u = Ψ−1(y, ẏ, . . . ,y(r)), (2.4)

where Λ, Φ and Ψ−1 are smooth functions, δ and r are the maximum orders of the

derivatives of u and y needed to describe the system and y = [y1, . . . , ym]T is called

the flat output.

More intuitively, the system (2.1) is flat if there exists a one-to-one correspondence

(or mapping) between its solutions (x(t),u(t)) and solutions y(t) of a trivial system

(with the same number of inputs, i.e., y(r) = v where v(t) ∈ Rm is a new fictitious

input). This means that both the state x(t) and the input u(t) at time t can be

determined from the (flat) output y(t) and a finite number of its derivatives.

As explained in [Hagenmeyer et al., 2003 (a)], every differentially flat system (2.1)

can be represented using a Brunovský state (or flat state):

z :=
[
y1, ẏ1, . . . , y

(ρ1−1)
1 , . . . , ym, ẏm, . . . , y

(ρm−1)
m

]T
. (2.5)

Note that ρi is the maximum derivative of yi found in (2.4). Using the state transfor-

mation between the flat state z and state x, obtained by differentiation of (2.2) and

using (2.3) from Definition 1, we can transform (2.1) into the normal form:

y
(ρi)
i = γi(y, ẏ, . . . ,y

(ρ−1),u, u̇, . . . ,u(σi)) := vi, (2.6)

where γi, i = 1 . . .m, is a smooth function obtained as a result of the transformation.

Note σi is the maximum derivative of u after ρi times differentiating yi in (2.2). We

define the flat input v as:

v :=
[
v1, v2, . . . , vm

]T
. (2.7)

Using the definitions in (2.5) and (2.7), we rewrite (2.6) as:

ż = Az + Bv, (2.8a)

v = Ψ(z,u, u̇, . . . ,u(σ)), (2.8b)

where σ = maxσi. We name (2.8a) the linear flat model. By substituting the defini-
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tions in (2.5) and (2.7), we can rewrite (2.4) as

u = Ψ−1(z,v). (2.9)

The property of differential flatness (with position and yaw as output) is well-

established for multirotors and has been exploited for efficient trajectory generation

using (2.8a) in [Mellinger et al., 2011].

Differential Flatness for SISO Control-Affine Models In the following Defini-

tion 2 and Lemma 1, we consider a special case of differential flatness for single-input

single-output (SISO) control-affine system models.

Remark: The assumption of control-affine is often true for robotic nonlinear dy-

namic models which are often affine in the commanded thrust and torque.

Definition 2 (Differential Flatness SISO Models) Consider a single-input,

single-output (SISO) system with state x ∈ Rn, t ∈ R+ and input u ∈ R:

ẋ(t) = f(x(t), u(t)). (2.10)

A SISO nonlinear system (2.10) is differentially flat in output y(t) ∈ R if there

exist smooth, invertible functions such that: x = φ(z), u = ψ−1(z, v), where z =

[y, ẏ, ..., y(n−1)]T , v = y(n). Furthermore, if (2.10) is control-affine, see (2.11) below:

ẋ(t) = f1(x(t)) + f2(x(t))u(t), (2.11)

then ψ−1(z, v) is also control-affine, i.e., we can write ψ−1(z, v) = α(z) + β(z)v

[Fliess et al., 1995].

Lemma 1 If system (2.10) is differentially flat in output y(t) ∈ R, then it is equiv-

alent to:

v = ψ(z, u), (2.12)

ż = Az + Bv, (2.13)

where the linear dynamics (2.13) are an integrator chain of degree n and the nonlinear

term is given by (2.12). Moreover, if (2.10) is control-affine, see (2.11), the nonlinear

term (2.12) is also control-affine, that is, (2.12) can be written as:

v =
u− α(z)

β(z)
= a(z) + b(z)u, (2.14)
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where a(z) = −α(z)
β(z)

and b(z) = 1
β(z)

.

2.2 Gaussian Processes (GPs)

GP regression is a nonparametric approach that is used to approximate a nonlinear

map, ψ(a) : Rdim(a) → R, from the input a to the function value ψ(a). It does this by

assuming that the function values ψ(a), associated with different inputs a, are random

variables and that any finite number of these random variables have a joint Gaussian

distribution. This nonparametric approach still requires us to define two priors: a

prior mean function of ψ(a), generally set to zero, and a covariance or kernel function

k(·, ·) which encodes, for two input points, how similar their respective function values

are. For example, a common kernel function is the squared-exponential (SE) function:

k(ai, aj) = σ2
fexp

(
−1

2
(ai − aj)

TL−2(ai − aj)

)
+ δijσ

2
η,

which is characterized by three types of hyperparameters: the prior variance σ2
f ,

observation noise σ2
η, where δij = 1 if i = j and 0 otherwise, and the length scales,

or the diagonal elements of the diagonal matrix L, which encode a measure of how

quickly the function ψ(a) changes with respect to a. These hyperparameters can be

optimized by solving a maximum log-likelihood problem, see [Rasmussen et al., 2006].

This GP framework can be used to predict the function value at any query

point a based on Nd noisy observations, D = {ai, ψ̂(ai)}Ndi=1. The predicted mean

and variance at the query point a conditioned on the observed data D are, see

[Rasmussen et al., 2006]:

µ(a) = k(a)K−1Ψ̂, (2.15)

σ2(a) = k(a, a)− k(a)K−1kT (a), (2.16)

where Ψ̂ = [ψ̂(a1), ..., ψ̂(aNd)]
T is the vector of observed function values, the

covariance matrix has entries Kij = k(ai, aj), i, j ∈ 1, ..., N , and k(a) =

[k(a, a1), ..., k(a, aNd)] is the vector of the covariances between the query point a

and the observed data points in D.



Chapter 3

Flatness-Based

Model Predictive Control

Exploiting Flatness Structure for Efficient Prediction

3.1 Overview and Related Work

The growing interest in unmanned aerial vehicles (UAVs) for applications such as

infrastructure inspection, see [Bircher et al., 2016], search-and-rescue missions, see

[Rudol et al., 2008], and mapping operations, see [Han et al., 2013], has challenged

researchers to develop controllers that can move beyond lab demonstrations to real-

world scenarios. Successful controllers therefore must meet the following three crite-

ria:

• exhibit high-trajectory tracking performance;

• explicitly account for input and state constraints;

• demonstrate robustness to unmodelled dynamics, disturbances and time delays.

Furthermore, the inherently fast dynamics of UAVs require real-time operation, on-

board, in a high-frequency feedback loop.

3.1.1 Model Predictive Control

Model predictive control (MPC) is a popular approach to meet the first two criteria

by optimizing over a prediction horizon while still explicitly adhering to constraints

on the states and inputs of the system, see, for example, [Bangura et al., 2014] and

17
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[Kamel et al., 2017]. However, the practical challenge is to balance this with the

real-time computation requirement.

The most common real-time MPC approach is a direct method, which trans-

forms the open-loop optimal control problem into a finite-dimensional problem by

first discretizing the model, see [Diehl et al., 2009]. This model-based controller then

generally considers one of three model classes.

Nonlinear Model Predictive Control (NMPC) uses a nonlinear system model

which, coupled with direct methods, results in solving a non-convex nonlinear pro-

gram (NLP) at each time step. Current real-time NMPC tends to find a subop-

timal solution of the NLP by performing often only one iteration of a sequential

quadratic program (SQP) with Gauss-Newton approximation, see [Wang et al., 2010]

or [Houska et al., 2011]. This is often combined with warm-starting, i.e., initializing

using the estimate from the previous time step, see [Diehl et al., 2009]. For longer

time horizons, efficiency can be improved by using a multiple shooting method, which

considers both the system state and input as optimization variables and adds the

system dynamics as equality constraints. When solving the NLP, the SQP solver can

then exploit the resulting sparse structure of the problem, see [Wang et al., 2010].

Alternatively, Linear Model Predictive Control (LMPC) uses a linearized model

(often about hover for multirotors, see, for example, [Bangura et al., 2014]), which,

coupled with direct methods, results in a convex quadratic program (QP) that can

be efficiently solved at each time step.

3.1.2 Exploiting Differential Flatness in Model Predictive

Control

The final approach, model predictive control combined with feedback (FB) lineariza-

tion (shortened to MPC + FB linearization), combines feedback linearization to cancel

nonlinear terms with MPC that considers a linear model, see [Primbs et al., 1997] or

[Nevistic et al., 1997]. This idea was first presented in the mid 1990s. It was shown

that using a representative, but modified cost function, can result in a convex QP as

in LMPC. MPC in our proposed approach in Fig. 3.1 similarly solves such a convex

QP. Initial work looked promising as simulations showed comparable performance to

NMPC but with decreased computational cost, see [Primbs et al., 1997]. However,

the practical implementation of MPC + FB linearization appears to be stunted by

both robustness issues, see [Khotare et al., 1995], and the required input constraint

conversion.
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This chapter tackles the following question: Can we make the idea of MPC + FB

linearization, where a linearization term is coupled with linear MPC, practical and

implementable?

To answer this question, we first consider when and how feedback linearization

can be applied. Many physical systems, including cranes, cars with trailers and

multirotors, can be described by nonlinear models exhibiting a property known as

differential flatness, see [Fliess et al., 1995] and [Mellinger et al., 2011]. Intuitively,

differential flatness allows us to separate the nonlinear model into a linear dynamics

component and a nonlinear transformation. This property can be utilized in both

feedback and feedforward linearization, see [Hagenmeyer et al., 2003 (a)].

Our proposed approach founds itself on an intuitive idea presented in early

work using MPC and feedback linearization (MPC + FB linearization). In

[Primbs et al., 1997], the coupling of MPC and inner loop feedback linearization,

u = Ψ−1(z,vd), is proposed. The idea is simply to cancel the nonlinear terms in

(2.8b) and be left with linear prediction dynamics (2.8a), where v = vd. The re-

sulting MPC considers (2.8a) instead of the nonlinear model (3.1) with flat output

y(t). Despite this computational advantage, there are a few factors that must be

considered:

Factor 1 – Development of a new cost: The required convexity of the resulting

optimal control problem may force us to develop a new cost function. Consider that

even if the original cost function used for the nonlinear system is convex, the nonlinear

transformation of the state x and input u into flat state z and flat input v can result

in a nonlinear, non-convex cost for the new flat variables, see [Primbs et al., 1997].

Factor 2 – Conversion of input constraints: Another critical consideration is

that due to the nonlinear parametrization in (2.4) convex constraints on the system

input u may not map to convex constraints on the flat input v. In general, there

are two approaches in the literature to obtain linear input constraints on v. The

first approach calculates the exact input constraint on v at the current time step

and then applies this as a constant constraint for the entire prediction horizon, see

[Deng et al., 2009]. The second approach uses the previously predicted solution se-

quence for the flat state to construct a linear approximation of the constraints on

v, see [Margellos et al., 2010] or [Kurtz et al., 2010]. Our proposed FMPC also suf-

fers from this limitation. In practice, we apply conservative box constraints on the

multirotor flat states and flat inputs as is done in [Mueller et al., 2013] for trajectory



CHAPTER 3. FLATNESS-BASED MODEL PREDICTIVE CONTROL 20

generation. Determining less conservative constraints in a comparably efficient way

is left for future work.

Factor 3 – Robustness: In [Khotare et al., 1995], the authors conclude that cou-

pling linear MPC and feedback linearization relies on cancellation of nonlinear terms,

which makes its robustness to noise, parameter uncertainty and disturbances difficult

to quantify. They suggest trying to incorporate plant uncertainty into MPC + FB

linearization. Another robustness issue that has not been addressed for MPC + FB

linearization is how to account for known input time delays. Our proposed FMPC

instead combines linear MPC with feedforward linearization. Furthermore, we extend

their initial results beyond single-input single-output (SISO) simulations.

3.1.3 Contributions

Feedforward linearization aims to overcome the robustness issues of feedback lineariza-

tion, which may be the result of parametric model uncertainty leading to inexact pole-

zero cancellation, see [Hagenmeyer et al., 2003 (a)]. In [Hagenmeyer et al, 2004],

feedforward linearization achieved improved tracking performance over feedback lin-

earization for a ball-plate experiment. Given its robustness advantages, our proposed

approach, shown in Fig. 3.1, couples feedforward linearization with MPC. The con-

tributions of this chapter are three-fold.

• Firstly, we propose a novel Flatness-based Model Predictive Control (FMPC)

architecture that couples feedback MPC with feedforward linearization. Prac-

tical advantages (in particular, an ability to account for known input delays

and improved robustness to model parameter uncertainty) over MPC + FB

linearization are demonstrated in simulation in Section 3.4.

• Secondly, we implement our FMPC architecture on a multirotor UAV, account-

ing for inner-loop dynamics and known input time delays.

• Finally, in Section 3.5.3 we demonstrate promising results for FMPC as an

outer-loop controller of a multirotor UAV with improved trajectory tracking

performance over NMPC and LMPC.
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3.2 Problem Statement

Consider a system with a continuous-time, nonlinear model of the form:

ẋ(t) = f(x(t),u(t)), x(0) = x0,

y(t) = h(x(t))
(3.1)

with t ∈ R+, x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm, y(t) ∈ Rm, and f, h being smooth

functions.

Given a reference trajectory yref(t), determine an optimal control problem (OCP)

for real-time MPC that can be used to compute an input u(t) such that high-

performance tracking is achieved, i.e. ||y(t)− yref(t)|| remains small.

To achieve this, we assume that (3.1) is differentially flat in output y(t), see

Definition 1 in Section 2.1, and propose a Flatness-based Model Predictive Control

(FMPC) that utilizes this property.

3.3 Methodology

Our proposed FMPC in Fig. 3.1 still requires careful consideration of Factor 1 and

Factor 2 of MPC + FB linearization. However, it attempts to address some of the

issues related to Factor 3. We select output y(t) to be a flat output. Similarly, the

reference trajectory yref(t) is defined in the flat output space. The implementation

steps of our proposed FMPC are:

3.3.1 Feedforward Linearization

The proposed coupling of feedforward linearization and MPC, as seen in Fig. 3.1,

allows us to use the linear flat model (2.8a) in a feedback MPC.

We briefly highlight a key result in feedforward linearization that demonstrates

how we can rewrite the nonlinear model (3.1) as an equivalent linear one.

Theorem 1 (obtained from [Hagenmeyer et al., 2003 (a)]) Consider a desired tra-

jectory in the flat output yd, including a corresponding desired flat state zd (obtained

by substituting yd for y in (2.5)) and desired flat input vd (obtained by substituting

yd for y in (2.6) and (2.7)). Given yd, if we apply the nominal control,

u = Ψ−1(zd,vd), (3.2)
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Figure 3.1: Overall architecture diagram of the proposed Flatness-based Model Pre-
dictive Control (FMPC) approach.

to a differentially flat system (3.1), provided that z(0) = zd(0), this results in an

equivalent, by change of coordinates, linear system as given in (2.8a).

Theorem 1 allows trajectory generators or controllers, as in our proposed approach

in Fig. 3.1, to only consider the equivalent linear flat model. The output of the trajec-

tory generator or controller, i.e., the desired flat state and flat input, can then be fed

through the inverse transformation (3.2) to correct for the nonlinear part (2.8b) in the

system. Feedforward linearization differs fundamentally from feedback linearization

in that the desired flat state, see (3.2), as opposed to the measured flat state is used

in the inverse term. Feedforward linearization has been shown to be more robust

towards modelling errors than feedback linearization, see [Hagenmeyer et al, 2004].

Feedback linearization relies on cancelling the respective nonlinearities, which can

result in robustness issues. A robustness analysis for feedforward linearization under

parametric uncertainty was done in [Hagenmeyer et al., 2003 (b)].

In our approach, the MPC outputs zd and vd, which are then fed through the

inverse term (3.2). We take advantage of the robustness of feedforward linearization

to parameter uncertainties, where unlike feedback linearization the inverse term does

not try to explicitly cancel nonlinear terms. Further, unlike feedback linearization,

we can only use feedforward linearization to reduce the nonlinear model (3.1) to an

equivalent linear flat model (2.8a) because we satisfy the initial condition requirement

in Theorem 1. We continuously ensure adherence to the initial condition requirement

by feeding back our measured flat state z into the MPC where we re-optimize for our

updated desired trajectory, zd and vd.

This means that feedback MPC and feedforward linearization have a symbiotic

relationship: feedforward linearization allows us to use a simplified model in MPC,

while using MPC as our feedback controller allows us to satisfy the conditions for
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feedforward linearization.

3.3.2 Model Predictive Control

A standard direct method MPC strategy is considered. At each sampling time, we

solve an open-loop OCP by minimizing a convex quadratic cost function J(·), which is

dependent on the sequence of predicted flat states ẑ and flat inputs v̂. This is subject

to both the discretized linear flat model of the system (2.8a) and linear constraints

on the flat state and input, which approximate state x(t) ∈ X and input u(t) ∈ U
constraints. The resulting OCP is a convex QP which can be efficiently solved for a

global minimum.

Time Delays: Our proposed FMPC, which couples MPC and feedforward lineariza-

tion, can easily be extended to systems with known input time delays. Consider the

nonlinear system model (2.1) but now the input has a known time delay td, i.e.

ẋ(t) = f(x(t),u(t − td)). In our differential flatness definition, (2.4) now becomes

u(t − td) = Ψ−1(y(t), ẏ(t), . . . ,y(ρ)(t)) or more compactly, using (2.5) and (2.7),

u(t− td) = Ψ−1(z(t),v(t)). This gives an inverse term:

u(t) = Ψ−1(z(t+ td),v(t+ td)).

Notice that this relies on forward predicted states and so feedback linearization using

the current flat state z(t) would not cancel the nonlinear terms. Our proposed FMPC

instead feeds forward zd(t+ td) and vd(t+ td).

3.4 Simulations

We compare our proposed FMPC, coupling MPC with feedforward lineariza-

tion, with MPC + FB linearization in simulation for a SISO system. We con-

sider a nonlinear system with the following nominal SISO model (taken from

[Hagenmeyer et al., 2003 (a)]):

ẋ = −x− x3 + u, (3.3)

where, utilizing its differential flatness property, we can define flat state and flat

output z = y = x and flat input v = ẋ. Equivalently, we rewrite the nonlinear model

as a linear flat model ż = v and a nonlinear term v = −z− z3 +u. In the simulation,



CHAPTER 3. FLATNESS-BASED MODEL PREDICTIVE CONTROL 24

0 1 2 3 4 5
Time (s)

10

5

0

5

10
Ou

tp
ut

 y
Reference
FMPC (Proposed)
MPC + FBL

(a) Model Parameter Sensitivity

0 1 2 3 4 5
Time (s)

5

0

5

Ou
tp

ut
 y

Reference
FMPC (Proposed)
MPC + FBL

(b) Input Time Delay

Figure 3.2: Tracking of reference yref(t) = 2 sin(3t) + 6 sin(10t) using FMPC and
MPC + FB linearization for: (a) Model Parameter Sensitivity : with model parameter
mismatch; (b) Input Time Delay : with known input time delay of 5 time steps.

we consider the following MPC formulation:

min
y1...N ,v0...N−1

1

2

N∑
k=1

Q̃(yk − yref,k)
2 +

1

2

N−1∑
k=0

R̃v2
k,

subject to the discretized linear flat model, zk+1 = zk + δtvk. We use a discretization

of 70 Hz, prediction horizon N = 70 and weight matrices Q̃ = 100 and R̃ = 0.1. We

consider a reference trajectory, in the flat output space, yref(t) = 2 sin(3t)+6 sin(10t).

The difference between our proposed FMPC and MPC + FB linearization is that the

desired state (output from MPC) zd, instead of the current flat state z, is used in the

inverse term, Ψ−1(·), i.e., u = zd + z3
d + vd in FMPC versus u = z + z3 + vd in MPC

+ FB linearization. We compare results for three cases:

Nominal Case: We consider a nonlinear system with the same dynamics as our

nominal model (3.3). FMPC and MPC + FB linearization exhibit comparable per-

formance with root mean square (RMS) error of 0.5547 and 0.3854, respectively. In

this case, MPC + FB linearization is slightly better as exact cancellation of the

nonlinearity is possible.

Model Parameter Sensitivity Case: To test robustness to parametric uncer-

tainty, we use model (3.3) but consider a nonlinear system with dynamics ẋ =

−0.9x − 0.9x3 + u (taken from [Hagenmeyer et al., 2003 (a)]). FMPC, with RMS

error 0.4826, has improved performance over MPC + FB linearization, with RMS

error 1.0969. This is observed in Fig. 3.2(a) where inexact cancellation in MPC +
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FB linearization (grey) results in the addition of unstable terms leading to poorer

tracking performance.

Input Time Delay Case: We consider a nonlinear system with dynamics ẋ =

−x−x3 +u(t−td) where td is a known time delay. We simulate the case td = 5/70. To

compensate for this delay, our FMPC feeds forward zd(t+td) and vd(t+td) (computed

by the MPC) as the desired flat state and flat input. In MPC + FB linearization, we

similarly attempt to compensate by sending vd(t+ td). FMPC achieves an RMS error

of 0.6956 while MPC + FB linearization achieves 2.3150. Fig. 3.2 shows the success

of such time delay compensation in FMPC (red), while the same approach cannot

be used for MPC + FB linearization (grey). Alternative approaches for time delay

compensation in MPC + FB linearization may require an additional state predictor.

3.5 Experiments

3.5.1 Multirotor Application

We consider a cascaded control structure with a low-level onboard controller and an

MPC outer-loop controller that can send commands (żcmd, φcmd, θcmd, ψ̇cmd), where

żcmd is commanded velocity in the z-direction, φcmd is the commanded roll angle, θcmd

is the commanded pitch angle and ψ̇cmd is the commanded yaw rate. We compare

LMPC, NMPC, and FMPC.

To enhance trajectory tracking, we first perform a simple system identification,

as in [Kamel et al., 2017], to approximate the inner-loop attitude dynamics by:

φ̇ =
1

τ
(k̃φcmd − φ), (3.4a)

θ̇ =
1

τ
(k̃θcmd − θ), (3.4b)

ψ̇ = ψ̇cmd, (3.4c)

where τ is an identified time constant, k̃ is an identified gain and φ, θ, ψ are the

roll, pitch and yaw angles of the vehicle. Unlike in [Kamel et al., 2017], we do not

directly send a thrust command Tcmd. Consequently, we perform a similar system

identification to approximate the z-velocity dynamics by a second-order response
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with a time delay of td = 0.1 s:

...
z (t) = − 1

τz
ż(t)− 1

τIz
z̈(t) +

1

τCz
żcmd(t− td), (3.5)

where τz, τIz, τCz are identified time constants. Ignoring drag and other exter-

nal forces, we can describe the lateral motion using the standard model, see

[Alexis et al., 2015]:

ẍ =
R13

R33

(z̈ + g), (3.6a)

ÿ =
R23

R33

(z̈ + g), (3.6b)

where x, y, z represent the linear position, R the rotation of the multirotor body

frame with respect to an inertial frame and g the gravitational constant. We use the

notation Rij to refer to the (i, j) entry of R.

Nonlinear Model: In our NMPC model formulation, we consider the nonlinear

model ẋ = f(x,u) described by (3.4a)-(3.4c), (3.5) and (3.6a)-(3.6b) with state and

input:

x = [x, y, z, ẋ, ẏ, ż, z̈, φ, θ, ψ]T ,

u = [żcmd, φcmd, θcmd, ψ̇cmd]T .

Linearized Model: The only nonlinearity in our model formulation for NMPC

comes from (3.6a)-(3.6b). In LMPC we consider the linearization of (3.6a)-(3.6b)

about hover (φ = 0, θ = 0, z̈ = 0) where at each time step we assume that our

current yaw angle remains constant.

Linear Flat Model: The differential flatness of the standard multirotor model for

flat outputs y = (x, y, z, ψ) is found in [Mellinger et al., 2011]. In a similar proce-

dure, we can show the differential flatness, with the same flat outputs, of our nonlinear

model governed by (3.4a)-(3.4c), (3.5) and (3.6a)-(3.6b). Our FMPC model formula-

tion considers the linear flat model (2.8a) with flat state and flat input:

z = [x, ẋ, ẍ, y, ẏ, ÿ, z, ż, z̈, ψ]T ,

v = [
...
x ,

...
y ,

...
z , ψ̇]T .
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Figure 3.3: Comparison of RMS computation per time step. Our proposed FMPC
required more computation than LMPC but less computation than NMPC (both
NMPC E1 and NMPC RK4).

Optimal Control Problem: In the cost function in (3.7), yk = [xk, yk, zk, ψk]
T is

our flat output at time step k, the positive semi-definite matrix Q̃ � 0 weights the

error with our reference trajectory and the positive-definite R̃ � 0 regulates both the

size and change in inputs u = [żcmd, φcmd, θcmd, ψ̇cmd]T . In the LMPC OCP in (3.7), we

optimize for uk subject to the discretized Linearized Model. In NMPC, we similarly

optimize for uk using the cost in (3.7) but instead subject to the discretized Nonlinear

Model. In LMPC, we use a direct method to set up an OCP that is repeatedly solved

at each time step:

min
u0...N−1

1

2

N∑
k=1

(yk − yref,k)
T Q̃(yk − yref,k) +

1

2

N−1∑
k=0

uTk R̃uk

subject to xk+1 = Axk + Buk, yk = Cxk,

xk ∈ Ωx.

(3.7)

For both LMPC and NMPC, we consider the constraint set in (3.7) to be:

Ωx = {x ∈ R10 | |z̈| < 0.5; |θ| ≤ 0.4; |φ| ≤ 0.4;ψ ∈ [0, π]}.

In the FMPC OCP, our cost is subject to the Linear Flat Model. To apply FMPC

with a similar quadratic cost that is convex in vk (discrete flat inputs) we use the

Linearized Model to obtain a linear relationship between input u and our flat state

z and flat input v: u = Mz + Nv. We then use this linear relationship to obtain a

similar representative convex cost function for FMPC by replacing u with its linear
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Figure 3.4: Comparison of RMS error for Trajectory 1, Trajectory 2 and Trajectory
3 (averaged over three trials per trajectory). For more aggressive trajectories (Tra-
jectory 2 and Trajectory 3 ) FMPC outperforms LMPC.

relationship in z and v. Consequently, in FMPC we solve the following OCP at each

time step:

min
v0...N−1

1

2

N∑
k=1

(yk − yref,k)
T Q̃(yk − yref,k) +

1

2

N−1∑
k=0

uTk R̃uk

subject to zk+1 = Azk + Bvk, yk = Czk,

uk = Mzk + Nvk,

zk ∈ Ωz,

(3.8)

where, similar to [Mueller et al., 2013], we approximate the state constraint set Ωx

with the constraint set:

Ωz = {z ∈ R10 | |z̈| < 0.5; |ẍ| ≤ 7; |ÿ| ≤ 7;ψ ∈ [0, π]}.

Time Delay Compensation: To compensate for the time delay in the z-direction

in (3.5), both LMPC and NMPC output żcmd(t + td). As described in Section 3.3,

FMPC feeds forward zd(t + td), żd(t + td), z̈d(t + td),
...
z d(t + td) through the inverse

term (3.2).

3.5.2 Experimental Setup

The experiments are conducted on a Parrot AR.Drone multirotor with an overhead

motion capture system estimating the state of the multirotor. We interface with
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the multirotor using the open-source Robot Operating System (ROS), see [ROS].

Outer-loop MPC approaches are run off-board on a ThinkPad P50 with Intel Core

i7-6700HQ Processor. We use the formulations described in Section 3.5.1, to compare

four different off-board outer-loop model predictive controllers running at 70 Hz,

namely: nonlinear model predictive control using a first-order Euler discretization for

forward simulation (NMPC E1); nonlinear model predictive control using a fourth-

order explicit Runge-Kutta discretization for forward simulation (NMPC RK4); linear

model predictive control (LMPC); and our proposed flatness-based model predictive

control (FMPC). All controllers consider a prediction at 10 Hz and a look-ahead time

of 1 s, where the prediction horizon is N = 10 in (3.7) and (3.8). For NMPC, a

single iteration of an SQP, with Gauss-Newton Hessian approximation, is performed

at each iteration. It is initialized using warm-starting. Furthermore, all optimization

problems are solved using a single-shooting method whereupon the resulting QP is

solved using CVXOPT in Python.

For each controller we perform three trials of three different trajectories: Tra-

jectory 1: The multirotor follows a circular reference with radius 1 m and angular

frequency 0.4π rad/s in the x-y plane. There is no yawing and the vehicle remains

at a constant altitude. Trajectory 2: The multirotor performs a 2 s step in x and

z. There is no motion in the y-direction and no yawing. Trajectory 3: The mul-

tirotor follows the circular reference from trajectory 1, but now also simultaneously

yaws to π/2 while performing a step in z. We do this for a parameter estimation

(τ = 0.25, k̃ = 1.4) of the time constants and gains in the inner-loop dynamics model

in (3.4a)-(3.4b).

3.5.3 Results

While all model predictive controllers solve one QP at each time step, as seen in Fig.

3.3, our proposed FMPC (red) has an average computation between that for LMPC

(dark grey) and NMPC (light and medium grey). The additional computation used

in our proposed FMPC over LMPC leads to reduced RMS error for Trajectory 2 and

Trajectory 3 in Fig. 3.4. This reduced error is attributed to FMPC accounting for

the nonlinear effects of yawing and vertical acceleration on lateral motion in (3.6a)-

(3.6b). In Trajectory 1, this effect is negligible since the trajectory requires no yawing

or vertical motion. Comparable performance is observed for LMPC and our proposed

FMPC.

As seen in Fig. 3.5, FMPC (red) accounts for the nonlinear effect of vertical accel-
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Figure 3.5: Comparison of tracking Trajectory 2. Improved performance in x-direction
tracking by FMPC is a result of a modified pitch command. Unlike LMPC, FMPC
considers the effect of z-acceleration on lateral tracking. FMPC determines a larger
pitch command for a longer period of time in the first 1 s allowing increased x-
acceleration before making a more substantial negative change than the other con-
trollers.

eration on lateral motion in Trajectory 2 by modifying the pitch command such that

greater lateral acceleration is achieved in the first 1 s before allowing for a more dra-

matic change in pitch command to slow the vehicle down as it reaches x = 1 m. This

tends to provide a tracking improvement of 5-15% over LMPC (dark grey). NMPC

RK4 (light grey) achieves similar performance to LMPC potentially suggesting that

for Trajectory 2 linearization along the simulated trajectory (as is done for NMPC)

provides little overall performance advantage over linearization about hover (as is

done for LMPC). The spikes in the żcmd in (b) can be attributed to the approxima-

tion of the z-acceleration. The prevalence of these spikes is not consistent among

trials. We believe this can be prevented with better filtering.
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3.6 Summary

Results show that our proposed Flatness-based Model Predictive Control (FMPC)

applied to multirotor trajectory tracking is promising. Its advantages include:

• unlike LMPC, it is able to account for nonlinearities while still solving a convex

QP;

• unlike NMPC, it is not sensitive to initial trajectory choice or susceptible to

converging to local minima;

• using feedforward linearization instead of feedback linearization improves ro-

bustness to modelling errors and can account for known input time delays.

The approach in this chapter has three novel contributions:

• Firstly, we propose a novel Flatness-based Model Predictive Control (FMPC)

architecture that couples feedback MPC with feedforward linearization.

• Secondly, we implement our FMPC architecture on a multirotor UAV, account-

ing for inner-loop dynamics and known input time delays.

• Finally, in Section 3.5.3 we demonstrate promising results for FMPC as an

outer-loop controller of a multirotor UAV with improved trajectory tracking

performance over NMPC and LMPC.

The key insight in this chapter, is that feedforward linearization allows us to use

a simplified model in MPC, while using MPC as our feedback controller allows us to

satisfy the initial conditions for feedforward linearization.



Chapter 4

Flatness-Based

Robust Learning Control

Exploiting Flatness Structure for Safe Learning

4.1 Overview and Related Work

The heightened interest in using learning-based control to achieve high-accuracy

tracking has, in part, been driven by advanced robotic applications where accurate

models are required but difficult to derive. In practice, many current learning-based

control techniques achieve good tracking performance by learning a fairly accurate

nonlinear dynamics model. However, the adoption of these techniques has been lim-

ited to applications that are not safety-critical as these techniques fail to provide any

rigorous analysis of safety such as constraint satisfaction or stability and convergence.

The need to provide guarantees while using a data-driven learned model is still a key

challenge for robotics.

4.1.1 Learning-Based Control

The limitation of many learning-based approaches, for example, standard neu-

ral networks (NNs), is that they are ill-suited to quantify any mismatch between

the learned model and the real dynamics. For this reason, nonparametric ap-

proaches, such as Gaussian processes (GPs), have gained popularity within the con-

trol community as they can provide uncertainty estimates for their predictions, see

[Berkenkamp et al., 2016] or [Umlauft et al., 2018]. The question then is: how can

we efficiently use this uncertainty measure in the control loop? This depends on the

32
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assumed dynamic structure of the actual system and the selected part of the dynamics

to be learned.

GPs can be used to learn the forward nonlinear system dynamics. For example,

one common approach is to use this learned GP model in a nonlinear model predictive

control framework where the uncertainty estimate from the GP is used to tighten

constraints, see [Ostafew et al., 2016]. However, this approach provides no stability

analysis of the controlled system. Another approach linearizes the learned nonlinear

model about an operating point, which, combined with the uncertainty estimate from

the GP is used in a linear robust control framework, see [Berkenkamp et al., 2015].

However, this robust learning-based controller is limited to stabilization tasks.

In this chapter, we impose two structural properties on the system dynamics.

Firstly, we assume the system is control-affine. Secondly, we assume the system

dynamics exhibit differential flatness [Fliess et al., 1995]. This property is commonly

used in feedback (FB) linearization controllers which attempt to cancel the nonlinear

term such that outer-loop linear controllers, for example, linear quadratic regulators

(LQR), can be designed based on the linear dynamics.

4.1.2 Exploiting Differential Flatness in Learning-Based

Control

Related work on FB linearization has used learning-based strategies in one of two

ways.

Strategy 1: The first strategy is to simply update a nominal FB linearization con-

troller with a data-driven learned model. In [Westenbroek et al., 2019], reinforcement

learning was used for FB linearization by learning the inverse model of the nonlinear

term of the differentially flat system. In [Umlauft et al., 2017], a GP was used to

learn the forward model of the nonlinear term, such that, by transferring knowledge

of the control-affine structure into the kernel function, it could be used to update a

FB linearization controller. Approaches in this category have not provided guaran-

tees of stability or tracking convergence as they do not quantify how well the learned

FB linearization controller cancels the nonlinear term and, consequently, how well it

linearizes the system.

Strategy 2: The second strategy is to use a data-driven model to quantify

how well a nominal FB linearization controller linearizes the system. We call the
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model error between the nominal FB linearization controller and nonlinear term

the Nonlinear Mismatch. In [Helwa et al., 2019], a GP is used to learn a forward

model of the Nonlinear Mismatch for Lagrangian systems. The learned prediction

and uncertainty model is used to generate a bound on how well the nominal FB

linearization controller linearizes the system. The bound is then used in a linear,

robust outer-loop controller. While this strategy provides tracking guarantees, it is

conservative as it does not update or improve the FB linearization.

4.1.3 Contributions

Our proposed approach combines ideas from both strategies. We use a GP to learn

an inverse model of the Nonlinear Mismatch. As demonstrated in Fig. 4.1, we

use our learned model to update the Inverse Nonlinear Mismatch which attempts

to cancel the Nonlinear Mismatch. Considering the key idea from Strategy 2, we

quantify how well we linearize the system. To do this we generate a probabilistic

upper bound on the difference between the designed desired input and the actual

input seen by the linear system dynamics. Finding this bound requires exploiting the

control-affine flatness structure and several key properties of GPs. We use this bound

in an additional robust term which, coupled with a nominal LQR, probabilistically

guarantees stability, or more specifically, an ultimate bound on the tracking error.

This chapter has three key contributions:

• We present a novel approach that uses a GP to both improve the FB lineariza-

tion and quantify how well we are able to linearize the system.

• We demonstrate how our quantified uncertainty can be combined with a stan-

dard robust LQR to probabilistically guarantee an ultimate bound on the track-

ing error.

• We show through simulations how our proposed approach results in improved

tracking performance over both Strategy 1 (only improving the FB linearization)

and Strategy 2 (only quantifying how well a nominal controller linearizes the

system).

To the best of our knowledge, this is the first approach that achieves robust,

online learning-based control with formal guarantees on the tracking error for generic

control-affine differentially flat systems.
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4.2 Problem Statement

Consider a single-input single-output (SISO), control-affine system, with state x ∈ Rn,

and input u ∈ R:

ẋ = f1(x) + f2(x)u, (4.1)

where f1(x) and f2(x) are unknown functions.

Assumption 1 The system (4.1) is differentially flat in the known output y = h(x) ∈
R.

Assumption 2 We have a SISO, control-affine nominal system model:

ẋ = f̂1(x) + f̂2(x)u (4.2)

that is also differentially flat in the output y = h(x) ∈ R where f̂1(x) and f̂2(x) are

known functions.

Under Assumptions 1-2, our goal is to design a control law u such that:

• we achieve high-accuracy output tracking;

• we guarantee that the overall, closed-loop system satisfies robust stability (in

the sense that the tracking error is probabilistically bounded despite model

uncertainties).

To address this problem, we propose a learning-based control law that, by exploiting

the differential flatness structure, both updates an inner-loop feedback (FB) lineariza-

tion controller (red box with Inverse Nonlinear Mismatch in Fig. 4.1) and a robust

linear controller. Our approach uses a GP as it allows us to quantify uncertainty.

We present the proposed approach for the above SISO problem, however, a similar

methodology could be applied to the multi-input, multi-output (MIMO) problem.

4.3 Methodology

We exploit the differential flatness of both our system (4.1) and our nominal sys-

tem model (4.2), and apply Lemma 1 from Section 2.1. Following (2.13)-(2.14), our

nominal system model is equivalent to (see Fig. 4.1):

vcmd =
u− α̂(z)

β̂(z)
, (4.3)
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Figure 4.1: Our proposed architecture exploiting differential flatness for robust
learning-based tracking control has three key components: 1) Updating the Inverse
Nonlinear Mismatch: a GP learns the model error resulting from using a nominal
feedback (FB) linearization; 2) Bound Computation: the properties of GPs are ex-
ploited to estimate a probabilistic bound on how well we linearize the system; 3)
Robust LQR: this bound is combined with a nominal LQR to guarantee (probabilis-
tically) an ultimate bound on the tracking error.

ż = Az + Bvcmd. (4.4)

We exploit this structure of our nominal system model to design a nominal FB lin-

earization controller:

u = α̂(z) + β̂(z)vcmd, (4.5)

where the commanded input vcmd can be designed based on the linear model (4.4).

Exploiting Lemma 1 and differential flatness leads to both our system (4.1) and

nominal model (4.2) having an identical linear dynamics component. However, their

nonlinear terms, see Fig. 4.1, will differ, i.e., the nonlinear term for our system (4.1)

is given by:

v =
u− α(z)

β(z)
. (4.6)

Since functions f1(x) and f2(x) are unknown for our system (4.1), the functions

α(z) and β(z) in our nonlinear term (4.6) are also unknown.

We exploit this structure in the learning controller design. As seen in Fig. 4.1,

we term the mapping from commanded input vcmd to the actual input v (seen by the

linear system) the Nonlinear Mismatch. If our nominal model was identical to our

system, i.e., α(·) = α̂(·) and β(·) = β̂(·), this would be a unity mapping. However,

given the mismatch between the nominal model and the actual system, this will not be

the case. In our proposed scheme we attempt to correct for this Nonlinear Mismatch
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in two phases:

Learning Phase: We propose learning the Inverse Nonlinear Mismatch, that is,

the mapping from actual input v to commanded input vcmd.

Running Phase: We use the learned Inverse Nonlinear Mismatch to correct the

nominal FB linearization controller as shown in Fig. 4.1. The learned Inverse Non-

linear Mismatch takes in a desired input vd and outputs a commanded input vcmd. In

a similar vein to FB linearization, if our Inverse Nonlinear Mismatch exactly cancels

our Nonlinear Mismatch, then v = vd. Of course, in practice our Inverse Nonlinear

Mismatch will not exactly correct for our Nonlinear Mismatch, however, in Section

4.3.2 we use the GP uncertainty to estimate a probabilistic bound on the quality of

this correction. In Section 4.3.3, we show how this bound can be used in a robust

LQR controller to guarantee (probabilistically) an ultimate bound on the trajectory

tracking error (see Section 4.4).

4.3.1 Update to Inverse Nonlinear Mismatch

Learning Phase: To find the Inverse Nonlinear Mismatch we write the com-

manded input vcmd in terms of state z and input v by plugging (4.5) into (4.6),

vcmd = α(z)−α̂(z)

β̂(z)
+ β(z)

β̂(z)
v, or equivalently vcmd = v+ve(z, v) where the difference vcmd−v

is given by the function:

ve(z, v) =
α(z)− α̂(z)

β̂(z)
+
β(z)− β̂(z)

β̂(z)
v. (4.7)

If our model is identical to the system, then the Inverse Nonlinear Mismatch is unity,

i.e. vcmd = v. We propose using a GP framework to approximate (4.7) by considering

a set of Nd past observations, D = {ai, v̂e(ai)}Ndi=1 where inputs to the model are given

by ai = {zi, vi}, and we assume we have noisy measurements of the true function

v̂e(ai) = (vcmd − v) + η with η = N (0, σ2
η).

This GP framework can be used to predict the function value at any query point

a∗ based on Nd noisy observations, D = {ai, v̂e(ai)}Ndi=1. It does this by using the

key underlying principle that the observed data, or function values, and the function

value at a query point ve(a
∗) are all jointly normal:[

v̂e

ve(a
∗)

]
∼ N

(
0,

[
K kT (a∗)

k(a∗) k(a∗, a∗)

])
,
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where v̂e = [v̂e(a1), ..., v̂e(aNd)]
T is the vector of observed function values, the

covariance matrix has entries Kij = k(ai, aj), i, j ∈ 1, ..., N , and k(a∗) =

[k(a∗, a1), ..., k(a∗, aNd)] is the row vector of the covariances between the query point

a∗ and the observed data points in D. By the conditioning property of Gaussian dis-

tributions, the mean and variance at our query point a∗ conditioned on the observed

data D are given by:

µ(a∗) = k(a∗)K−1v̂e, (4.8)

σ2(a∗) = k(a∗, a∗)− k(a∗)K−1kT (a∗). (4.9)

Running Phase: During the run phase, we consider a query input a∗ = {z, vd}
where vd is some desired input computed by an outer-loop linear controller. By using

the properties of joint Gaussian distributions we predict ve(a
∗) conditioned on the

data set D by: ve(a
∗)|D = N (µ(a∗), σ2(a∗)) where µ(a∗) and σ2(a∗) are obtained

using (4.8) and (4.9), respectively.

We update the Inverse Nonlinear Mismatch using the mean from our prediction,

i.e.,

vcmd = vd + µ(a∗) + vrob, (4.10)

where vrob is an additional robustness input as described in Section 4.3.3. To find

the input u, we feed (4.10) through the nominal FB linearization controller (4.5).

As seen in Fig. 4.1, ideally we learn an updated vcmd (4.10) to achieve a unity

mapping, i.e., v = vd. However, in practice there is a model uncertainty in this ideally

unity mapping that we need to quantify in order to provide tracking guarantees.

To do this, we can find the actual input v (sent to the system), from (4.5), (4.6)

and (4.10): v = vd +
(
α̂(z)−α(z)

β(z)
+ β̂(z)−β(z)

β(z)
vd

)
+ β̂(z)

β(z)
(µ (a∗) +vrob). By noticing that

α̂(z)−α(z)
β(z)

+ β̂(z)−β(z)
β(z)

vd = − β̂(z)
β(z)

ve(a
∗), this reduces to:

v = vd +
β̂(z)

β(z)
(µ(a∗)− ve(a∗)) +

β̂(z)

β(z)
vrob. (4.11)

It is clear that if our mean µ(a∗) perfectly characterizes ve(a
∗), we have exactly

learned the Inverse Nonlinear Mismatch and v = vd without a robustness term vrob.

However, in practice this is not the case. We, therefore, require an estimate of a bound

on β̂(z)
β(z)

(µ(a∗)−ve(a∗)) such that we can use it in a robust control framework to design

vrob such that we can probabilistically guarantee robust stability by establishing an

ultimate bound on the tracking error.
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4.3.2 Bound Computation

We propose finding a probabilistic bound c such that:

Pr

{∣∣∣∣ β̂(z)

β(z)
(µ(a∗)− ve(a∗))

∣∣∣∣ < β̂(z)

β(z)
c

}
≥ 1− δ, (4.12)

where δ ∈ (0, 1) is some user-selected small value. We can rewrite (4.12), arbitrarily

dividing the probability 1− δ, by introducing an intermediate bound ĉ such that:

Pr

{∣∣∣∣ β̂(z)

β(z)
(µ(a∗)− ve(a∗))

∣∣∣∣ < ĉ

}
≥
√

1− δ, (4.13)

and

Pr

{
ĉ <

β̂(z)

β(z)
c

}
≥
√

1− δ. (4.14)

Consequently, to compute bound c we first find the intermediate bound ĉ in (4.13).

To compute such a bound, we exploit the derivative properties of GPs. From (4.3),

we see that β̂(z) = ∂u
∂vcmd

, and from (4.6), β(z) = ∂u
∂v

. Consequently, the ratio is given

by the partial derivative relationship β̂(z)
β(z)

= ∂v
∂vcmd

. Using vcmd = v + ve(z, v), this

ratio becomes:
β̂(z)

β(z)
=

1

1 + ∂ve(z,v)
∂v

.

We utilize a key characteristic of the GP framework, which is that the derivative

of a GP is a GP as well. By using the fact that the derivative is a linear operator,

it can be shown that the derivative of a GP with respect to v, where v represents an

element of input a, is a GP as well, see [Rasmussen et al., 2006]. Consequently, the

observed data and the function derivative with respect to input v at the query point

a∗ are also jointly Gaussian:

 v̂e

∂ve(a)
∂v

∣∣∣∣
a∗

 ∼ N
0,

 K ∂kT (a)
∂v

∣∣∣∣
a∗

∂k(a)
∂v

∣∣∣∣
a∗

∂2k(a,a)
∂v∂v

∣∣∣∣
a∗


 .

Similarly, by the conditioning property of joint Gaussian distributions, the mean and

variance of the derivative at our query point a∗ with respect to input v conditioned
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on the data D is given by:

µ′(a∗) =
∂k(a)

∂v

∣∣∣∣
a∗

K−1v̂e, (4.15)

σ′2(a∗) =
∂2k(a, a)

∂v∂v

∣∣∣∣
a∗
− ∂k(a)

∂v

∣∣∣∣
a∗

K−1

(
∂k(a)

∂v

∣∣∣∣
a∗

)T
. (4.16)

We can also use this property of a derivative of a GP to infer the coefficient of

correlation ρ(a∗) between the function value at a query point, ve(a
∗), and its derivative

with respect to input v at a query point, ∂ve(a)
∂v

∣∣
a∗ . Using the kernel function, we first

find the covariance COV(·, ·) between the function value ve(a
∗) and its derivative

∂ve(a)
∂v

∣∣
a∗ using COV

(
ve(a

∗), ∂ve(a)
∂v

∣∣∣∣
a∗

)
= ∂k(a∗,a)

∂v

∣∣∣∣
a∗

, see [Rasmussen et al., 2006].

Then by the definition of the coefficient of correlation:

ρ(a∗) =

COV

(
ve(a

∗), ∂ve(a)
∂v

∣∣∣∣
a∗

)
σ(a∗)σ′(a∗)

, (4.17)

where σ(a∗) is found from (4.9) and σ′(a∗) is found from (4.16).

In other words, given that we have learned the function ve(z, v) as a GP, the

partial derivative ∂ve(z,v)
∂v

is also a GP and we can predict its value at a query point

a∗ = {z, vd} conditioned on the data D as ∂ve(a∗)
∂v
|D = N (µ′(a∗), σ′2(a∗)) where µ′(a∗)

and σ′2(a∗) can be found from (4.15) and (4.16), respectively.

Our analysis requires sufficient training data D and a GP kernel that can

model our model mismatch to make the following two simplifying assumptions (see

[Berkenkamp et al., 2015] where the derivative properties of GPs are used for stabi-

lization):

Assumption 3 The actual error µ(a∗)−ve(a∗) is normally distributed and described

by the random variable: Y := µ(a∗)− ve(a∗) ∼ N (0, σ2(a∗)).

Assumption 4 The partial derivative ∂ve(a∗)
∂v

is also normally distributed such that

we can define the random variable: X := 1 + ∂ve(a∗)
∂v
∼ N (1 + µ′(a∗), σ′2(a∗)).

Furthermore, X and Y are jointly correlated with some coefficient of correlation

ρ(a∗) given by (4.17). We write this as a bivariate correlated normal random variable:

(Y,X) ∼ N (0, 1 + µ′(a∗), σ2(a∗), σ′2(a∗), ρ(a∗)) = N (µY , µX , σ
2
Y , σ

2
X , ρ).

We rewrite our probability bound (4.13) as: Pr{| Y
X
| < ĉ} ≥ 1− δ, where the left-

hand side or cumulative density function is found from Pr{| Y
X
| < ĉ} = F (ĉ)− F (−ĉ)
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where F (ĉ) = Pr{ Y
X
< ĉ} has an analytical form, see [Pollastri et al., 2015]:

F (ĉ) = L

(
ta − tbtĉ√

1 + t2ĉ
,−tb,

tĉ√
1 + t2ĉ

)
+ L

(
tbtĉ − ta√

1 + t2ĉ
, tb,

tĉ√
1 + t2ĉ

)
,

where L(·, ·, ·) is the bivariate normal integral and ta =
√

1
1−ρ2 (µY

σY
− ρµX

σX
), tb = µX

σX
,

tĉ =
√

1
1−ρ2 (σX

σY
ĉ− ρ).

Therefore, to find the intermediate probabilistic bound ĉ, at each query point a∗,

we solve the nonlinear optimization problem:

min ĉ

s.t. ĉ ≥ 0

F (ĉ)− F (−ĉ) ≥
√

1− δ.
(4.18)

To find bound c in (4.12) we use the intermediate bound ĉ found from (4.18).

To do this, we rewrite (4.14) as Pr
{
β̂(z)
β(z)

c < ĉ
}
≤
√

1− δ. By introducing random

variables W ∼ N (c, 0) and X ∼ N (1 + µ′(a∗), σ′2(a∗)), by Assumption 4 above, we

can rewrite the inequality as a special case of the ratio of uncorrelated normal random

variables Pr
{
W
X
< ĉ
}

= F (ĉ) where (W,X) ∼ N (c, 1 + µ′(a∗), 0, σ′2(a∗), 0). In this

case, we can then find bound c (mean of the numerator) such that F (ĉ) =
√

1− δ.

4.3.3 Robust Linear Quadratic Regulator

Our aim is to track a reference trajectory with reference state zref =

[yref , ẏref , ..., y
(n−1)
ref ]T and reference input vref = y

(n)
ref where yref is the reference out-

put. We design the desired input vd in (4.10) using a nominal LQR:

vd = −K̃(z− zref) + vref . (4.19)

The gain K̃ = R−1BTP is found by solving the algebraic Riccati equation ATP +

PA − PBR−1BTP + Q̃ = 0, Q̃, R̃ > 0 where matrices A and B are obtained from

the linear dynamics (4.4). The robustness term in (4.10) is designed as:

vrob =

−c BTPe
||BTPe|| , if ||BTPe|| > ε

−cBTPe
ε
, otherwise

(4.20)
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where e = z−zref is the tracking error, c is the probabilistic bound found from (4.12)

and ε > 0 is some small user-selected parameter and || · || denotes the Euclidean norm

(see [Helwa et al., 2019]).

4.4 Theoretical Guarantees

In this section, we show that under our proposed learning-based controller, the tra-

jectory tracking error is uniformly ultimately bounded.

4.4.1 Uniform Ultimate Boundedness

We use Lyapunov theory to prove that using our proposed controller can probabilis-

tically guarantee an ultimate bound on the tracking error. To do this, we make use

of the following definition and Theorem 2 below (from [Spong et al., 2006]).

Definition 3 (Uniform Ultimate Boundedness) A solution e(t) : [t0,∞) → Rn

to ė = ζ(e) with initial condition e(t0) = e0 is uniformly ultimately bounded (u.u.b.)

with respect to a set S if there is a non-negative constant T (e0, S) such that e(t) ∈
S ∀t > t0 + T (e0, S).

Theorem 2 Let V (e(t)) be a Lyapunov function and let S be any level set of V (e(t)).

Then e(t) is u.u.b. with respect to S if V̇ < 0 for e(t) outside of S.

Theorem 3 Consider the differentially flat system (2.12)-(2.13) and a smooth

bounded reference state zref(t) and input vref(t) trajectory. Suppose that Assumptions

1-4 hold and that bound c satisfies (4.12). Then the tracking error e(t) = z(t)− zref(t)

is uniformly ultimately bounded (u.u.b.) with probability greater than 1− δ using the

proposed robust learning-based control governed by (4.5), (4.10), (4.19) and (4.20).

Proof: Under the proposed robust learning-based control, the closed-loop dy-

namics are given by (2.13) and (4.11), where vd = −K̃(z−zref)+vref . By exploiting the

integrator chain structure of matrices A and B, we write the closed-loop error dynam-

ics as: ė = (A−BK̃)e+B( β̂(z)
β(z)

vrob + β̂(z)
β(z)

(µ(a∗)− ve(a∗))). We propose the following

Lyapunov function V = eTPe where P is the positive definite matrix that solves the

algebraic Riccati equation, i.e., ATP + PA − PBR̃−1BTP + Q̃ = 0, Q̃, R̃ > 0, or

equivalently, (A−BK̃)TP + P(A−BK̃) + S̃ = 0, where S̃ = Q̃ + K̃T R̃K̃ > 0 since

Q̃, R̃ > 0. The time derivative of our Lyapunov function is V̇ = 2eTP(A−BK̃)e +
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2eTPB( β̂(z)
β(z)

vrob + β̂(z)
β(z)

(µ(a∗)− ve(a∗))), or equivalently, by using the algebraic Ricatti

relationship and defining w := BTPe,

V̇ = −eT S̃e + 2wT (
β̂(z)

β(z)
vrob +

β̂(z)

β(z)
(µ(a∗)− ve(a∗))).

Since the first term V1 := −eT S̃e < 0 is strictly negative, we consider only the sec-

ond term V2 := 2wT ( β̂(z)
β(z)

vrob + β̂(z)
β(z)

(µ(a∗)− ve(a∗))). There are two cases. Case 1:

In this case, ||w|| > ε and vrob = −c w
||w|| in (4.20). The second term of V̇ becomes

V2 = 2
(
− β̂(z)
β(z)

c||w||+ wT
(
β̂(z)
β(z)

(µ(a∗)− ve(a∗))
))

. We can use the Cauchy-Schwartz

inequality to show V2 ≤ 2

(
− β̂(z)
β(z)

c||w||+ ||w||
∣∣∣∣ β̂(z)
β(z)

(µ(a∗)− ve(a∗))
∣∣∣∣). Since c is

an upper bound that satisfies (4.12), V2 is less than zero with probability greater

than 1 − δ. Case 2: In this case ||w|| ≤ ε and vrob = −cw
ε

in (4.20). The sec-

ond term of V̇ becomes V2 ≤ 2wT
(
β̂(z)
β(z)

vrob + ĉ w
||w||

)
= 2wT

(
− β̂(z)
β(z)

cw
ε

+ ĉ w
||w||

)
. Since

max
(

2wT
(
−ĉw

ε
+ ĉ w

||w||

))
= ĉε

2
, and using (4.14), the second term V2 ≤ ĉε

2
. Then

V̇ = V1 + V2 ≤ −eTS̃e + ĉε
2
< 0 provided that:

||e|| >
√

ĉε

2λmin(S̃)
:= BS̃.

Let S be a level set of V such that it contains BS̃. Since V̇ < 0 for e(t) outside of S,

by Theorem 2, e(t) is u.u.b. with respect to S. Note that ε can be chosen to be very

small and therefore the ball BS̃ can be made arbitrarily small.

�

4.5 Simulations

The proposed approach is verified via simulations on A) a SISO 1-D multirotor moving

in the horizontal direction and B) the pole dynamics of an inverted pendulum on a cart

(see [Rigatos et al., 2015]). For both simulations, δ = 0.01 and ε = 0.1. We compare

performance under Nominal control (no learning), FB Correction Only (a learning-

based control that only improves the FB linearization), Robust Only (a learning-based

control that only uses a bound to design a robust LQR) and our Proposed learning-

based control (as in Fig. 4.1).
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(a) 1-D Quadrotor: Offline Learned Model

(b) 1-D Quadrotor: Online Learned Model

Figure 4.2: Average output tracking error for a 1-D multirotor simulation when using
an (a) Offline Learned Model and an (b) Online Learned Model.

4.5.1 1-D Multirotor

Our simulation uses the following dynamics ẍ = T sin(θ)− γẋ, θ̇ = 1
τ
(u− θ), where

x is the horizontal position, θ is the pitch angle and input u is the commanded pitch

angle. The system dynamics (5.1) have a time constant τ = 0.2, thrust T = 10

and drag γ = 3. Our nominal model (4.2) has a time constant τ = 0.15, thrust

T = 10 and γ = 0. Both our system and model are differentially flat in the output

y = x. We use a GP to learn ve(·) in (4.7). The GP uses a squared-exponential

(SE) kernel parametrized with σ2
f = 225, σ2

η = 0.1,L = diag{57, 2, 2, 66}, where these

hyperparameters maximize the log-likehood of the data collected during the Offline

Case. We consider two cases.
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Figure 4.3: Average output tracking error for an inverted pendulum simulation.

Offline Learned Model: We consider 500 data points collected from 10s of track-

ing yref = 2 sin(t) under nominal control (i.e., no learning). This GP model is fixed

as we use it to follow different trajectories.

Online Learned Model: We update our GP model online based on the last 100

data points collected during the current trajectory tracking. The previously-tuned

hyperparameters stay fixed.

In both cases, we compare our proposed approach with three other approaches.

All controllers use LQR parameters Q̃ = diag(100.0, 0.1, 0.1), R̃ = 0.1. We use a sim-

ulation time of 10s for each trajectory. We consider the following reference trajectory

to track yref = At sin(ωt). We fix A = 0.4 and vary ω between 1 and 1.4 to obtain

progressively more aggressive trajectories. We compare average output tracking error

in Fig. 4.2(a)-(b). In the Offline Learned Model simulation, we demonstrate that for

some trajectories (ω ≥ 1.3) the FB Linearization Only case can cause instability. In

this case, our Proposed approach still outperforms the Robust Only approach with

an average tracking error reduction of 40-75%. Relying on an Online Learned Model

improves the performance of all learning-based controllers. However, our Proposed

approach achieves an average tracking error reduction of 50-65% over Robust Only

and 27-37% over FB Linearization Only.
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Figure 4.4: Computed tracking error bound (Theorem 3) and actual tracking error
for the inverted pendulum when tracking yref = 0.3t sin(ωt), ω = 4.0, for Proposed
and Robust Only approaches.

4.5.2 Inverted Pendulum

Our simulation uses the dynamics given in Chapter 3 (p. 112) in [Rigatos et al., 2015].

Our nominal model considers the mass of cart M , the mass of pendulum m, and the

length of pendulum pole l to be 1.5 kg, 0.05 kg and 0.8 m, respectively, while the

actual systems parameters are 1.0 kg, 0.1 kg, and 0.5 m. All controllers use LQR

parameters Q̃ = diag(10.0, 10.0), R̃ = 0.1. We use a simulation time of 4.5s for each

trajectory. We consider the following reference trajectory to track yref = At sin(ωt).

We fix A = 0.3 and vary ω between 2 and 10. We compare average output tracking

error in Fig. 4.3. In Fig. 4.4, we highlight the computed tracking error bound

(based on Theorem 3). In this simulation, our Proposed approach achieves an average

tracking error reduction of 50-70% over FB Linearization Only.

4.6 Summary

By exploiting differential flatness and the ability of GPs to predict derivatives and

quantify uncertainty, we develop a learning-based controller that achieves high-

accuracy tracking while guaranteeing safety.

The approach in this chapter has three novel contributions:

• We present a novel approach that uses a GP to both improve the FB lineariza-

tion and quantify how well we are able to linearize the system.

• We demonstrate how our quantified uncertainty can be combined with a stan-
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dard robust LQR to probabilistically guarantee an ultimate bound on the track-

ing error.

• We show through simulations how our proposed approach results in improved

tracking performance over both Strategy 1 (only improving the FB linearization)

and Strategy 2 (only quantifying how well a nominal controller linearizes the

system).

The key insight in this chapter is that we can use the derivative properties of

Gaussian processes to quantify a probabilistic bound on how well we linearize (using

feedback linearization) the system.



Chapter 5

Flatness-Based

Learned Stability Filter

Exploiting Flatness Structure for Safe Learning

5.1 Overview and Related Work

There is a growing interest in increased autonomy of safety-critical but uncertain and

nonlinear systems, such as self-driving vehicles, unmanned aerial vehicles (UAVs),

and mobile manipulators. This has motivated bridging formal safety analysis with

the flexibility of machine learning to cope with large prior uncertainties.

5.1.1 Gaussian Processes

Gaussian processes (GPs) have gained popularity within the control community as

a nonparametric machine learning approach that quantifies the uncertainty in its

prediction. This uncertainty can be used to generate a probabilistic upper bound for

the difference between the true and learned function value based on distance to the

training data, see [Srinivas et al., 2012].

GPs are often used to learn the dynamics model which is then included in a

model predictive control (MPC) framework. The GP uncertainty quantification

can be used to tighten state and input constraints, see [Ostafew et al., 2016] or

[McKinnon et al., 2019]. A major limitation is that the resulting optimization prob-

lem is generally non-convex, and slow and expensive to solve. Furthermore, this

approach provides no stability guarantees for the controlled system.

48
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Figure 5.1: Overview of the proposed learning-based control architecture. Our pro-
posed approach learns the nonlinear term as a Gaussian Process (GP). We combine
feedback linearization with a stability filter by using the learned GP model to 1) op-
timize for an input u that is most likely to feedback linearize the system (i.e., cancel
the nonlinear term) 2) guarantee stability with high probability through a stability
filter. For systems that are control-affine, we show that the resulting optimization is
a convex second-order cone program (SOCP).

5.1.2 Exploiting Differential Flatness using Gaussian Pro-

cesses

Stability guarantees, for example, asymptotic stability or tracking, have been

combined with GPs by exploiting two structural assumptions about the dy-

namics: 1) the system is control-affine and 2) the system is either fully ac-

tuated, see [Umlauft et al., 2018], or underactuated but differentially flat, see

[Greeff et al., 2020(a)]. Intuitively, differential flatness allows us to separate the

nonlinear model into a linear dynamics component and a nonlinear term, see Fig.

5.1. Given that these assumptions (control-affine and differential flatness) are true

for many first-principle models of physical systems, for example, multirotors, see

[Mellinger et al., 2011], cranes, and manipulators, they are not limiting in practice.

However, previous work typically includes one of two additional limiting as-

sumptions: 1) the actuation function is fully known, see [Umlauft et al., 2018] or

[Zheng et al., 2020] (i.e., the unknown disturbance is only a function of the state)

or 2) there are no actuation or input constraints, see [Greeff et al., 2020(a)], or

[Umlauft et al., 2017]. Practically, there is often uncertainty in the actuation function

as a result of delays, error in the system parameters (e.g., mass or inertia), or unac-

counted dynamics of low-level controllers. Input constraints can represent physical

limitations or may be added for user safety.

Differential flatness is commonly used in feedback (FB) linearization controllers,

which attempt to cancel the nonlinear term such that outer-loop linear controllers
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can be designed based on the linear dynamics alone. In [Greeff et al., 2020(a)] and

[Umlauft et al., 2017], the nonlinear term (or inverse nonlinear term) is learnt as a

GP. The predicted GP mean is used to update the inverse nonlinear term (or FB

linearization) while the uncertainty is used in a robust outer-loop linear controller.

In [Greeff et al., 2020(a)], the control-affine structure is leveraged when taking the

derivative of the learnt GP. In [Umlauft et al., 2017], similar to the approach we

propose here, the control-affine structure is exploited in the selection of the GP kernel

structure. Both approaches can guarantee asymptotic trajectory tracking. However,

because the robustness is accounted for in the outer-loop controller, it is difficult to

account for actuation or input constraints and, therefore, they are often neglected.

Using the strong assumption that the actuation function is known, in

[Umlauft et al., 2018], a Lyapunov function is proposed that maximizes the probabil-

ity of asymptotic stability of a known equilibrium accounting for input constraints.

The approach is limited to fully actuated systems and can only be applied to sta-

bilizing a known equilibrium. Another approach that makes this assumption, see

[Umlauft et al., 2017], combines a known Control Lyapunov Function (CLF), to en-

courage stability, with input constraints in an optimization framework that can be

solved as a quadratic program (QP). Control Lyapunov Functions (CLFs) have tra-

ditionally been used in minimum input-norm controllers to stabilize an equilibrium,

see [Sontag et al., 1989].

Motivated by the work in [Taylor et al., 2019], our proposed approach uses the

idea that, for systems that are FB linearizable, we can exploit their linear tracking

error dynamics to construct a Lyapunov function to ensure exponential tracking con-

vergence. Similar to [Taylor et al., 2019], we propose using such a Lyapunov function

as a CLF. However, unlike [Taylor et al., 2019], we do not need to learn in an episodic

fashion. Instead, we propose using a GP, with carefully selected kernel structure, to

learn the nonlinear term and then leverage its quantified uncertainty in our controller.

5.1.3 Contributions

In this chapter, we develop a method to efficiently handle robust tracking guarantees

and input constraints in the presence of model uncertainty. As illustrated in Fig.

5.1, our proposed approach uses the GP to learn the uncertain nonlinear term and

combines feedback linearization, commonly applied to differentially flat systems, with

a stability filter, described by a CLF, in an optimization framework. The three key

contributions of this work are:
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• We provide a novel approach that uses a GP to learn the uncertain nonlinear

term and then use the GP in an optimization problem to optimize for a control

input u that is 1) most likely to cancel the nonlinear term while 2) guarantee-

ing a stability filter condition with high probability and 3) adhering to input

constraints.

• We show that for control-affine systems, by exploiting this structure in the GP

kernel selection, the resulting optimization is not only convex but can be solved

efficiently as a second-order cone program (SOCP).

• We demonstrate, in simulation, a significant reduction in average computation

over previous robustness methods using GPs, while still achieving high tracking

performance. This makes our proposed approach suitable for online and onboard

implementation in high-rate feedback loops, for example, on autonomous UAVs.

5.2 Problem Statement

Consider a single-input, single-output (SISO), control-affine system with state x ∈ Rn,

input u ∈ R and output y = h(x) ∈ R:

ẋ = f(x, u), (5.1)

where f(x, u) is an unknown function and the dimension of the state n is known. The

input is subject to bound constraints, that is, umin ≤ u ≤ umax where umin and umax

are known minimum and maximum input constraints.

Assumption 5 The system (5.1) is differentially flat in the known output y = h(x) ∈
R.

Under Assumption 5, our goal is to design a control law u that:

• Achieves high trajectory tracking performance;

• Can be efficiently computed online;

• Guarantees that the closed-loop system satisfies robust stability (in the sense

that tracking errors are bounded);

• Accounts for actuation/input constraints.
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5.3 Methodology

We use Lemma 1 to rewrite the dynamics (5.1) as:

v = ψ(z, u), (5.2)

ż = Az + Bv, (5.3)

where z = [y, ẏ, ..., y(n−1)]T and v = y(n). Moreover, if (5.1) is control-affine, we can

use (2.14) in Lemma 1, to write (5.2) as a control-affine function:

v = a(z) + b(z)u. (5.4)

In the proposed approach, we exploit the differential flatness structure and learn

(5.2) using a GP as described in Section 2.2. We combine feedback linearization with

a stability filter by using the learned GP model to 1) optimize for an input u that

most likely feedback linearizes the system (5.2)-(5.3) while 2) guaranteeing that the

stability filter, described by the CLF (5.12) is decreasing with high probability. We

combine feedback linearization with a stability filter in an optimization framework,

which can also account for input constraints. Further, we show that for control-affine

systems, by carefully selecting the kernel (5.5), the resulting optimization can be

described by a second-order cone program that can be solved in polynomial time by

standard interior point methods.

Kernel selection for control-affine systems: For control-affine systems, the

nonlinear map ψ(a) = ψ(z, u) is affine in the control input, i.e., we can write ψ(z, u) =

a(z) + b(z)u. We can encode this structure in the selection of the kernel of the GP

as:

k(ai, aj) = ka(zi, zj) + uikb(zi, zj)uj + δijσ
2
η, (5.5)

where σ2
η is the observation noise and ka(·, ·) and kb(·, ·) are often selected to be

common kernel functions (e.g., squared-exponential (SE) functions). The intuition

for this kernel selection is that the predicted mean – that is, the mostly likely function

(conditioned on the data) – will also be control-affine like our underlying function

ψ(z, u). Further, since there is no parametric structure assumed for functions a(z)

and b(z), this prior is still very flexible and can represent a rich class of nonlinear

functions depending on the selection of kernels ka(·, ·) and kb(·, ·).

Assumption 6 ka and kb are positive definite kernels.

Assumption 7 ka and kb are bounded kernels.
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Lemma 2 Given Assumption 6, then the kernel (5.5) is also positive definite. More-

over, if Assumption 7 holds, then the kernel (5.5) is also a bounded kernel.

Proof: It follows from [Castaneda et al., 2020] that the affine dot product

compound kernel, i.e., uikb(zi, zj)uj, is positive definite and bounded provided that

kb(zi, zj) is positive definite and bounded. Consequently, the kernel (5.5) is also pos-

itive definite and bounded as it is the addition of two positive definite and bounded

kernels.

�

Using this kernel structure (5.5), the predicted mean µ(a) and variance σ2(a) at any

query point a = (z, u), conditioned on Nd noisy observations D = {ai, ψ̂(ai)}Ndi=1, are

linear and quadratic in u, respectively, or more explicitly:

µ(a) = γ1(z) + γ2(z)u, (5.6)

σ2(a) = γ3(z) + γ4(z)u+ γ5(z)u2, (5.7)

where:
γ1(z) = ka(z)K−1Ψ̂, γ2(z) = kb(z)K−1Ψ̂,

γ3(z) =
(
ka(z, z)− ka(z)K−1kTa (z)

)
,

γ4(z) = −
(
kb(z)K−1kTa (z) + ka(z)K−1kTb (z)

)
,

γ5(z) =
(
kb(z, z)− kb(z)K−1kTb (z)

)
.

The vectors ka(z) = [ka(z, z1), ..., ka(z, zNd)] and kb(z) =

[kb(z, z1)u1, ..., kb(z, zNd)uNd ].

Our proposed approach has three key components:

Probabilistic Feedback Linearization - see Section 5.3-A Based on our

learned GP model for (5.2), we optimize for an input u such that the predicted

output of the GP is likely to match the designed input to the linear dynamics vd,

typically computed by a linear optimal controller based on the linear dynamics (5.3).

Probabilistic Stability Filter - see Section 5.3-B Using the learned GP model

for (5.2), we include a stability filter that guarantees that (5.12) is decreasing with

high probability.
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Linearization & Stability Filter Optimization - see Section 5.3-C We com-

bine the probabilistic feedback linearization with the probabilistic stability filter. At

each time step, we propose to solve an optimization problem that finds the input u

that is mostly likely to result in a unity mapping between vd and the input seen by the

linear dynamics (5.3) while ensuring robust tracking stability and input constraint

satisfaction. For control-affine systems, we exploit the encoded structure and show

that the resulting optimization is a second-order cone program.

5.3.1 Probabilistic Feedback Linearization

The objective of feedback linearization is to create a unity mapping between the

desired input vd, determined by some outer-loop linear controller, and the input v =

ψ(z, u) seen by the linear dynamics. While ψ(z, u) is unknown, we have approximated

this mapping from data using a GP. We propose finding an input u that is most likely

to result in such a feedback linearization. More precisely, we compute an input u that

minimizes the expected squared distance between ψ(z, u) and vd:

min
u

E(||ψ(z, u)− vd||2).

Given that we have learnt the function ψ(z, u) using a GP, we can infer its value

at any given query point a∗ = (z, u) conditioned on the data D as a Gaussian, i.e.,

ψ(a∗)|D = N (µ(a∗), σ2(a∗)) where the mean and covariance are given by (2.15) and

(2.16). Using this, we can rewrite the optimization problem as:

min
u

(µ(z, u)− vd)2 + σ2(z, u). (5.8)

Probabilistic feedback linearization for control-affine systems: For control-

affine systems, we can exploit the kernel structure in (5.5). This allows us to rewrite

the mean µ(z, u) as a linear function of input u, using (5.6), and the covariance σ2(z, u)

as a quadratic function of input u, using (5.7). Plugging in (5.6) and (5.7) into (5.8),

we rewrite the optimization problem, neglecting constant terms with respect to the

optimization variable u, as a convex quadratic program in u:

min
u

(γ2
2(z) + γ5(z))u2 + (2γ1(z)γ2(z)− 2γ2(z)vd + γ4)u. (5.9)

Remark: The optimization (5.9) is convex because γ2
2(z) + γ5(z) ≥ 0 since the

function γ5(z) ≥ 0 is the predicted covariance of b(z) in (5.4) conditioned on the data

D.
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Theorem 4 The functions γi(z) are real-valued and Lipschitz continuous on the com-

pact set z ∈ Z. The functions γ2(z) and γ5(z) are never both zero. The desired input

vd(z) is also real-valued and Lipschitz continuous on the compact set z ∈ Z. Under

these assumptions, the input u(z) computed using (5.9) is also Lipschitz continuous

on the compact set z ∈ Z.

Proof: The solution of (5.9) has a closed-form solution:

u =
−γ1(z)γ2(z) + γ2(z)vd(z)− 1

2
γ4(z)

γ2
2(z) + γ5(z)

.

The numerator is Lipschitz continuous on Z since it is a linear combination of the

products of Lipschitz continuous functions that are bounded on Z. Similarly, the

denominator is also Lipschitz continuous on Z. Since, γ2
2(z) + γ5(z) > 0, it follows

that the resulting quotient is also Lipschitz continuous on Z.

�

While the resulting control law (5.9) is Lipschitz continuous, it cannot guarantee

robust stability and tracking convergence. We propose extending the probabilistic

feedback linearization formulation (5.9) by also including a stability filter that guar-

antees tracking convergence with high probability.

5.3.2 Probabilistic Stability Filter

When the nonlinear term (5.2) is known, we can exploit the structure of differentially

flat systems (5.2)-(5.3) to construct a Control Lyapunov Function (CLF). We will use

this CLF as a stability filter when the nonlinear term is uncertain.

Using standard feedback linearization, we can design the controller u to cancel the

nonlinear term (5.2) and then select the input to the linear dynamics v such that the

resulting linear error dynamics are Hurwitz. Consider a smooth reference state zref(t)

and reference input vref(t), we can write the tracking error dynamics of (5.2)-(5.3) as:

ė = Az + Bψ(z, u)− żref , (5.10)

where the tracking error is e = z− zref and żref = [ẏref , ..., y
(n−1)
ref , vref ]

T .

Consider a standard feedback linearization controller u = ψ−1(z, vd) where

vd = −K̃e + vref (5.11)
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is designed such that the closed-loop error dynamics are stable. Under this control

law, it follows that the error dynamics in (5.10) simplifies to:

ė = (A−BK̃)e,

where K̃ is selected such that (A−BK̃) is Hurwitz.

Given the Hurwitz stability of the closed-loop system it follows from converse

stability theorems that we can construct a Lyapunov function that guarantees ex-

ponential tracking convergence, see [Taylor et al., 2019]. Specifically, we can select

the Lyapunov function V (e) = eTPe where P > 0 is a positive definite matrix that

satisfies the algebraic Riccati equation:

ATP + PA−PBR̃−1BTP + Q̃ = 0,

for selected positive definite matrices Q̃ > 0, R̃ > 0.

Definition 4 A function V : Rn → R+ is a Control Lyapunov Function (CLF) for

(5.10) certifying exponential stability if there exists positive constants c1, c2, c3 > 0

such that:

c1||e||2 ≤ V (e) ≤ c2||e||2,
V̇ (e) ≤ −c3V (e).

We can use the previously constructed Lyapunov function V (e) = eTPe as a CLF

with positive constants c1 = λmin(P), c2 = λmax(P) and c3 = λmin(S)
λmax(P)

where S =

Q̃ + K̃T R̃K̃. In the absence of a chosen controller u, the decreasing time derivative

condition V̇ (e) ≤ −c3V (e) in Definition 4 becomes:

eTP(Az + Bψ(z, u)− żref) ≤ −c3e
TPe. (5.12)

We probabilistically bound the error between the true nonlinear function value

(5.2) and the learnt mean value (2.15).

Assumption 8 The function ψ(a) has a bounded reproducing kernel Hilbert space

(RKHS) norm ||ψ(a)||k with respect to the kernel k(ai, aj) of the GP, and the obser-

vation noise η is uniformly bounded by ση.
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Theorem 5 [Srinivas et al., 2012] Given Assumption 8. Let δ ∈ (0, 1), then:

Pr{∀a ∈ A, |µ(a)− ψ(a)| ≤ ξ1/2σ(a)} ≥ 1− δ,

where Pr{·} is the probability, A is compact, µ(a) is the GP mean, σ2(a) is the GP

covariance and

ξ = 2||ψ(a)||k + 300γ ln3((N + 1)/δ),

where γ ∈ R is the maximum information gain.

We now exploit Theorem 5 to rewrite the decreasing CLF condition in (5.12) using

the learnt GP mean (2.15) and variance (2.16) such that this condition holds with

high probability.

We can rewrite the decreasing CLF condition in (5.12) using eTP(Az+Bψ(z, u)+

Bvd−Bvd−żref) ≤ −c3e
TPe, where vd comes from (5.11). Using the algebraic Riccati

equation, this simplifies to −eTSe + 2eTPB(ψ(z, u)− vd) ≤ −c3e
TPe.

We have learnt ψ(z, u) as a GP. Defining w := eTPB and recalling that the query

a comprises of the state and input, i.e., {z, u}, we use Theorem 5 to obtain:

Pr
{
w (ψ(z, u)− vd) ≤ w (µ(z, u)− vd) + |w|ξ1/2σ(z, u)

}
≥ 1− δ.

We use this probabilistic condition to rewrite (5.12):

− eTSe + 2w(µ(z, u)− vd) + 2|w|ξ1/2σ(z, u) ≤ −c3e
TPe, (5.13)

where c3 = λmin(S)
λmax(P)

. While the constraint (5.13) is not necessarily convex, for systems

that are control-affine, we propose exploiting this structure in the kernel selection of

the GP (5.5).

Probabilistic stability filter for control-affine systems: For control-affine

systems, we choose to exploit the kernel structure in (5.5). By Lemma 2, the kernel

(5.5) is bounded and positive definite and, therefore, we can construct a corresponding

RKHS. We make a similar assumption to Assumption 8 for control-affine systems and

kernel (5.5) such that we can similarly apply Theorem 5.

Assumption 9 The control-affine nonlinear function (5.4) has a bounded RKHS

norm with respect to kernel (5.5) used in the GP, and the observation noise η is

uniformly bounded by ση.

Under Assumption 9, we apply Theorem 5 and can rewrite the probabilistic de-

creasing CLF condition (5.13) using the mean (5.6), which is linear in control input
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Figure 5.2: Comparison of average computation times where the error bars correspond
to one standard deviation. On average Robust LQR requires around 0.3s to compute
an input while our proposed SOCP requires 0.005s.

u, and covariance (5.7), which is quadratic in control input u. Plugging (5.6) and

(5.7) into (5.13), the filter condition becomes:

2w(γ1(z) + γ2(z)u− vd) + 2|w|ξ1/2
√
γ3(z) + γ4(z)u+ γ5(z)u2 ≤ −c3e

TPe + eTSe.

(5.14)

5.3.3 Linearization and Stability Filter Optimization

We combine feedback linearization with the safety filter by optimizing (5.8) subject

to the probabilistically robust decreasing CLF condition (5.13). We can write this as

an optimization problem including input constraints:

min
u,d

(µ(z, u)− vd)2 + σ2(z, u) + ρd2

s.t. 2w (µ(z, u)− vd) + 2|w|ξ1/2σ(z, u) ≤ eT (−c3P + S)e + d,

umin ≤ u ≤ umax,

(5.15)

where d is a slack variable added to ensure feasibility of the above optimization

problem and ρ is a large weight. This optimization problem is not necessarily convex.

Optimization for control-affine systems: For control-affine systems (5.4), we

use the simplications made in Section 5.3 such that we can rewrite the optimization

(5.15) as a second-order cone program (SOCP) as stated below in Theorem 6.

Theorem 6 Given Assumptions 5, 6, 7 and 9, the optimization problem (5.15) can
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be written as a convex optimization problem. Moreover, it is a SOCP.

Proof: We can rewrite both the CLF constraint (5.14), including the slack

variable d, and the convex quadratic optimization problem (5.9) as second-order cone

(SOC) constraints.

In (5.14), we can rewrite:√
γ3(z) + γ4(z)u+ γ5(z)u2 =

∣∣∣∣∣∣
∣∣∣∣∣∣
√γ5(z)u+ γ4(z)

2
√
γ5(z)√

γ3(z)− γ2
4(z)

4γ5(z)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

where || · ||2 denotes the L2-norm. This is possible because γ3(z)− γ2
4(z)

4γ5(z)
≥ 0 since the

covariance in (5.7) is positive. We can, therefore, rewrite the first SOC constraint in

the standard form:

||Ā1ū + b̄1||2 ≤ c̄1ū + d̄1, (5.16)

where the optimization variables ū = [u, d, f ]T include the input u, the slack vari-

able d and a dummy variable f . The matrix Ā1 = diag(|w|
√
γ5(z), 0, 0) and the

vector b̄1 = [|w| γ4(z)

2
√
γ5(z)

, |w|
√
γ3(z)− γ2

4(z)

4γ5(z)
, 0]T . By rewriting (5.14), the vectors

c̄1 = [−wγ2(z)

ξ1/2 , 1
2ξ1/2 , 0], and d̄1 = w

ξ1/2 (vd − γ1(z)) + 1
2ξ1/2 eT (S− c3P)e.

We rewrite the optimization (5.9) including a dummy variable f ≥ (γ2
2(z) +

γ5(z))u2 + ρd2 where ρ is a large weight and d is the slack variable. It follows

that 0 ≥ 4((γ2
2(z) + γ5(z))u2 + ρd2) − 4f which can be rewritten as (1 + f)2 ≥

4((γ2
2(z) + γ5(z))u2 + ρd2) + (1− f)2. Since both sides of the inequality are positive,

we can rewrite this condition as:∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2
√
γ2(z) + γ5(z)u

2ρ1/2d

1− f


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

≤ 1− f,

which allows us to write the second SOC constraint in the standard form as:

||Ā2ū + b̄2||2 ≤ c̄2ū + d̄2, (5.17)

where Ā2 = diag(2
√
γ2(z) + γ5(z), 2ρ1/2,−1), b̄2 = [0, 0, 1]T , c̄2 = [0, 0, 1]T and
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d̄2 = 1. We rewrite the optimization problem in standard SOCP form:

min
ū

[
2γ1(z)γ2(z)− 2γ2(z)vd + γ4 0 1

]
ū

s.t. SOC constraints (5.16) & (5.17),

umin ≤ u ≤ umax,

(5.18)

where we recall that ū = [u, d, f ]T includes the input u, the slack variable d and the

dummy variable f .

�

Remark: SOCPs can be solved in polynomial time by interior point methods, see

[Nesterov et al., 1994].

At each time step, we solve the SOCP (5.18), which efficiently solves for an input

u that balances feedback linearization objectives with robust stability requirements

and input constraints.

5.4 Simulations

We compare our proposed SOCP (5.18) method, with similar GP learning-based

methods on a SISO 1-D quadcoptor moving in the horizontal direction. The dynamics

follow [Greeff et al., 2020(a)], with ẍ = T sin(θ) − γẋ and θ̇ = 1
τ
(u − θ), where x is

the horizontal position, θ is the pitch angle, and the input u is the commanded pitch

angle.

To compare the algorithms in the unconstrained case, input constraints are ne-

glected, and our proposed SOCP method is compared against the closed-form so-

lution of (5.9), a nominal LQR that uses an inaccurate prior model, and a learned

robust LQR from [Greeff et al., 2020(a)]. To compare the algorithms in the input-

constrained case, input constraints are included, our proposed SOCP method is com-

pared against a constrained QP that optimizes (5.9) subject to input constraints,

nominal LQR that uses an inaccurate prior model and saturates the inputs at the

constraints, and a learned robust LQR from prior work with saturated inputs.

For all simulations, we use ξ1/2 = 2 and ρ = 625. The true dynamics have a

time constant τ = 0.2, thrust T = 10, and drag γ = 0.3. The nominal model

has estimated parameters τ̂ = 0.15, T̂ = 7, and γ̂ = 0. Both these models are

differentially flat in the output y = x. A GP, using the kernel function (5.5), is used
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to learn the unknown nonlinear term ψ(z, u). All GP parameters are optimized to

minimize the GP’s log-likelihood over the training data. The training trajectory is

generated using the nominal LQR, with gains Q̃ = diag(20, 15, 5) and R̃ = 0.1, and

feedback linearization, based on the nominal model, to track yref = At sin(ωt) with

A = 1, ω = 1 for 5 seconds.

To compare closed-loop performance, each controller’s tracking performance is

assessed along 4 different trajectories with ω = 0.3, 0.5, 0.7, 0.9 and A = 0.2. The

average output tracking error and computation times are compared in Fig.5.3.

In the unconstrained case, our proposed SOCP method provides up to an 90%

decrease in average tracking error as compared with robust LQR, with larger decreases

in error occurring when the trajectory is further away from the training data. In the

constrained case, using input constraints −15 ≤ u ≤ 15, the average tracking error of

our proposed SOCP approach is nearly as good as the robust LQR, and up to 85% less

for trajectories further away from the training trajectory. We note that the tracking

errors of all the compared approaches increase significantly and are comparable in

the constrained cases when ω = 0.7 and ω = 0.9. This is due to the input constraints

being reached for a significant portion of the trajectory, dominating the tracking

error. Additionally, our SOCP approach has an average computational time nearly

two orders of magnitude smaller than the robust LQR case and is comparable to a

standard QP, significantly reducing the required computational power.

Our proposed approach (SOCP) has significantly better performance than the

constrained QP approach at a similar computational cost. While a Robust LQR can

outperfom us in rare cases (i.e., when the trajectory is infeasible for the given input

constraints) it comes at a significantly higher computational cost. Our proposed ap-

proach efficiently handles robust tracking stability and input-based constraints in the

presence of model uncertainty by exploiting the structure of control-affine differen-

tially flat systems. As future work, we will investigate a data-driven CLF selection

and extend our approach to include Control Barrier Functions [Fan et al., 2020].

5.5 Summary

The approach in this chapter has three novel contributions:

• We provide a novel approach that uses a GP to learn the uncertain nonlinear

term and then use the GP in an optimization problem to optimize for a control

input u that is 1) most likely to cancel the nonlinear term while 2) guarantee-
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ing a stability filter condition with high probability and 3) adhering to input

constraints.

• We show that for control-affine systems, by exploiting this structure in the GP

kernel selection, the resulting optimization is not only convex but can be solved

efficiently as a second-order cone program (SOCP).

• We demonstrate, in simulation, a significant reduction in average computation

over previous robustness methods using GPs, while still achieving high tracking

performance. This makes our proposed approach suitable for online and onboard

implementation in high-rate feedback loops, for example, on autonomous UAVs.

The key insight in this chapter is that for control-affine systems we can exploit

this structure in the GP kernel selection to ensure that safe probabilistic feedback

linearization is a convex optimization that can be solved efficiently as a second-order

cone program (SOCP).
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Figure 5.3: Average tracking error (a) without input constraints and (b) with input
constraints for nominal LQR (no learning), robust LQR, constrained QP (or closed
form without input constraints) optimizing (5.9), and our proposed SOCP approach
(red).

63



Part II

Autonomous Vision-Based Flight
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Chapter 6

Background on Multirotor Visual

Teach and Repeat

6.1 Overview

UAVs are required to operate safely in beyond visual line of sight (VLOS) operations.

Most outdoor operations rely predominantly on GPS. However, GPS can be suscep-

tible to jamming or interference and may have limited accuracy to reliably support

close-proximity, safety-critical or high-value autonomous flight operations.

In this chapter, we present a vision-based route-following system for autonomous

navigation of UAVs, see [Warren et al., 2019]. Furthermore, we demonstrate its use

as a backup system in the event of GPS loss in field experiments in Section 6.4. In

these experiments, we show how our system can be used to autonomously return the

UAV home by relying predominantly on an onboard camera and without reliance on

any external infrastructure.

Sections 6.1, 6.2, 6.3 and 6.4.1 are taken from [Warren et al., 2019]. Additional

figures not included in [Warren et al., 2019] are Fig. 6.3, Fig. 6.4, Fig. 6.8, Fig. 6.9,

Fig. 6.10, Fig. 6.11, Fig. 6.12 and Fig. 6.13. This chapter includes an additional

unpublished Section 6.5 on the Challenges to Autonomous Visual Navigation.

We use a vision-based navigation framework known as Visual Teach and Re-

peat (VT&R). Traditionally, VT&R has been used on wheeled ground vehicles as

a path-following approach to autonomously drive a previously traversed route, see

[Furgale et al., 2010] or [Paton et al., 2016]. It does this by estimating path offset,

through matching visual features from a live view to those in a locally metric map,

which is then corrected by a path-following controller, see [Ostafew et al., 2016].
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VT&R on ground vehicles can be used for a variety of applications without ex-

ternal infrastructure, for example, navigating factory floors, orchards, mines, ur-

ban road networks, and exploratory search-and-return missions. As described in

[Warren et al., 2019], using VT&R on UAVs has a number of unique use cases: just-

in-time deliveries between warehouses, where flight paths are generally restricted to

a few, high-frequency routes; monitoring of sensitive assets such as property borders

or high-value infrastructure; and autonomous patrol in close-proximity environments,

where poor sky view and jamming are notable concerns.

Our visual system is designed for flight approximately 10 - 20 m above ground.

This is to avoid significant motion blur prevalent in low-altitude flight as well as signif-

icant depth uncertainty prevalent for small-baseline stereo cameras at high altitude.

6.2 Hardware System

As shown in Fig. 6.1, we use a DJI Matrice 600 Pro with attached Ronin-MX gimbal.

All processing, including visual navigation, planning and control happens onboard

the UAV on the primary computer, NVIDIA Tegra TX2 module (6 ARM cores + 256

core Pascal GPU). The primary computer uses a serial Transistor-Transistor Logic

(TTL) connection to connect with the on-board M600 autopilot which provides vehicle

data (e.g., the gimbal state) and the interface for sending control commands to the

vehicle. There is a StereoLabs ZED stereo camera mounted to the Ronin-MX gimbal

to provide greyscale imagery with resolution 672 x 376 at 15 Hz. The Tegra TX2

runs NVIDIA L4T v28.2 and an XBee 900 Mhz wireless link is used to communicate

with a ground station where we can monitor any status changes and send high-level

commands (i.e., changing autonomy states, e.g. a change from teach phase to repeat

phase).

6.3 Visual Teach and Repeat Navigation

This section summarizes the visual teach and repeat (VT&R), see

[Furgale et al., 2010], navigation system used in the experiments in

[Warren et al., 2019]. In VT&R, we consider two phases.

Teach: During the teach phase, the UAV flies using autonomous GPS waypoint

following while the VT&R algorithm performs passive visual odometry (VO). The

purpose of the teach path is to create a map of visual landmarks along the path.
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DJI M600 Pro

Ronin Gimbal

Nvidia TX2

StereoLabs Camera

Figure 6.1: Multirotor system used for autonomous vision-based flight experiments.
We use a DJI M600 Pro with Ronin-MX gimbal and a StereoLabs camera. All
computation is performed onboard on the Nvidia TX2.

Figure 6.2: The architecture of the VT&R system for multirotor UAVs.
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This taught path is stored as a set of vertices and edges which include the landmarks

observed at each vertex.

Repeat: During the repeat phase, GPS is disabled and the vehicle needs to perform

autonomous navigation (of the teach path) using vision-based navigation. During

the repeat phase, in addition to performing the same VO as in teach, the VT&R

algorithm performs visual localization using a local segment from the taught path.

The vehicle repeats the taught path by sending high-frequency estimate to a path-

following controller.

The VT&R software system consists of several interacting components - see Fig.

6.2. We mention 4 key components: 1) visual odometry (VO), 2) visual localization,

3) gimbal control and 4) path-following control.

6.3.1 Visual Odometry

During both the teach and repeat phases, grayscale image pairs are captured

by the calibrated stereo camera (in Fig. 6.1) at a frame rate of ∼ 15Hz, see

[Warren et al., 2019]. Speeded Up Robust Features (SURF) feature matching is used

with respect to the last dropped keyframe vertex. The raw matches are then passed

through a Maximum Likelihood Estimation SAmple Consensus (MLESAC) robust

estimator to find the relative transform to the last keyframe. If the motion exceeds a

threshold, the frame is set as a keyframe. The features (including the 3-D landmark

position associated with each feature) and vehicle-to-sensor transform are stored in a

vertex in the pose graph. The relative transform is stored as an edge to the previous

vertex. This set of dead-reckoned linked poses represents the taught privileged path

to be repeated.

6.3.2 Visual Localization

During the repeat phase an additional thread performs visual matching to the local

map of 3-D landmarks in the privileged path. As seen in Fig. 6.3, to enable this

process, a localization chain is used to keep track of important vertices in the graph

and their respective transforms. We use a ‘tree’ model to name vertices in the chain:

• twig w - closest vertex on current path with successfully estimated transform

relative to the privileged path.

• branch b - corresponding vertex on privileged path.
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Figure 6.3: Overview of VT&R localization chain: As the vehicle moves, at every step
of VO, the localization chain is updated with the estimated transform from trunk to
leaf: Ťlt = TlwTwbTbt.

• leaf l - current keyframe.

• trunk t - spatially closest vertex from current position on privileged path.

At every step of VO, the localization chain is updated with the estimated trans-

form from trunk to leaf Ťlt. Upon insertion of a new vertex (from VO) at the current

keyframe (leaf l) in the graph, SURF feature matching is performed with respect to

the trunk t. The raw feature matches are passed through RANSAC to obtain a set

of localization inliers (or inliers). This is used in a MLESAC robust estimator to

estimate the relative transform from trunk to leaf Tlt. If the number of localization

inliers drops below some threshold, a localization failure occurs as a poor estimate

of the relative transform will be obtained. After the transform is optimized, the

localization chain is updated and the branch and twig are re-set: Twb ← Tlt.

6.3.3 Gimbal Control

Use of a gimbal decouples the camera orientation from the roll/pitch-to-move actua-

tion of the multirotor UAV. This improves the robustness of VT&R on a multirotor,

see [Patel et al., 2019]. During repeat trials the gimbal control is designed to reduce

the orientation mismatch between trunk and leaf.
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6.3.4 Path-following Control

In this thesis, we consider the controller implemented during repeat. The high-rate

real-time pose (or higher-dimensional state), at the current time a, used by the con-

troller is determined by extrapolating from the last VO keyframe, i.e., the leaf l,

forward using Simultaneous Trajectory Estimation And Mapping (STEAM). From

STEAM, we obtain the transform from the trunk t to the current frame a: Ťat.

STEAM was first introduced in [Anderson et al., 2015] and details on the

implementation used in this thesis can be found in [Wong et al., 2020(a)] and

[Wong et al., 2020(b)]. STEAM uses low-rate position estimates from vision to es-

timate a continuous-time state-trajectory, that can be queried by the controller at

the current time, but relies on an accurate motion model or prior. We obtain our

controller state at the current time, associated with frame a, with respect to a gravity-

aligned inertial o frame with origin placed at the trunk t (see Fig. 6.3). From the

onboard IMU, we can obtain the orientation Cot from the trunk to the inertial frame

and consequently Tot. We can then estimate the transform from the current frame a

to the inertial frame o as Ťoa = TotŤ
−1
at .

From this we extract our current position pao
o = (x, y, z)1 and yaw ψ in the inertial

frame. Similarly, we transform our speed in the trunk vat
t obtained from STEAM

into the inertial frame vao
o = (ẋ, ẏ, ż). From the IMU, we obtain our acceleration

aao
o = (ẍ, ÿ, z̈) in the inertial frame. We use the following notation for state z and

output y:

z = (pao
o ,v

ao
o , a

ao
o , ψ), (6.1)

y = (pao
o , ψ). (6.2)

Baseline PD Control: We present a baseline PD Control that runs at 50 Hz. We

generate a path by connecting a straight-line through successive privileged vertices

in the teach path. We use the localization chain to obtain a transform Ttn from the

next privileged vertex n to the trunk t. From this we obtain the position pnt
o of the

next privileged vertex n with respect to the inertial frame o using:

Ttn =

[
Ctn pnt

t

0T 1

]
.

1Notation: pab
c denotes a vector from b to a expressed in frame c. The transformation Tab

represents the pose of b with respect to frame a.
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and pnt
o = Cotp

nt
t . At each time step, we determine the reference position pref =

(xref , yref , zref) by projecting our current multirotor position pao
o onto the straight-line

segment connecting the trunk and the next privileged vertex using:

pref = pao
o · pnt

o

pnt
o

|pnt
o |
.

We obtain a reference velocity vref = (ẋref , ẏref , żref), where the magnitude is a user-

selected parameter sdes, in the direction of the next privileged vertex using:

vref = sdes
pnt
o

|pnt
o |
.

Our path-following control is designed to send commands (żcmd, ψ̇cmd, θcmd, φcmd)

where żcmd is a commanded z-velocity, ψ̇cmd is a command yaw rate, and θcmd and

φcmd are commanded pitch and roll, respectively. The z-velocity command is designed

using a PD controller:

żcmd =
2ζz
τz

(zref − z) +
1

τ 2
z

(żref − ż), (6.3)

where ζz is the damping ratio parameter and τz is the time constant parameter. A

P controller (with tuned time constant τψ) is used to correct for any yaw-mismatch

between the current frame and the trunk:

ψ̇cmd =
1

τψ
(ψref − ψ), (6.4)

where ψref is the yaw of the trunk t relative to the inertial frame o obtained from

Cot. Lateral-motion control commands are determined by first designing translational

acceleration commands using PD controllers:

ax =
2ζθ
τθ

(xref − x) +
1

τ 2
θ

(ẋref − ẋ), (6.5a)

ay =
2ζθ
τθ

(yref − y) +
1

τ 2
θ

(ẏref − ẏ), (6.5b)

where ζθ and τθ are tuned damping ratio and time constant parameters. Assuming

small lateral acceleration (ẍ ≈ ÿ ≈ 0) and using standard feedback linearization,
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Figure 6.4: Suffield field testing location.

these linear acceleration commands are transformed into pitch and roll commands:

θcmd = arcsin(
ax
g

cosψ +
ay
g

sinψ), (6.6a)

φcmd = − arcsin(−ax
g

sinψ +
ay
g

cosψ), (6.6b)

where g is the gravitational constant.

6.4 Field Testing

6.4.1 Suffield Field Testing

The multirotor VT&R field tests performed in this section took place at a simulated

village at the Defense Research and Development Canada (DRDC) Suffield Research

Centre in southern Alberta, Canada. The Suffield location, see Fig. 6.4, consists of a

number of shipping containers placed to emulate buildings and narrow alleys in flat

grassland.

In these field test experiments, we evaluate the performance of the full closed-loop

VT&R system. GPS navigation is used during the teach phase and the baseline PD

Control in Section 6.3.4 is used in VT&R to repeat the path. We teach the path shown

in Fig. 6.5 in a clockwise direction at an altitude of 12 m AGL, before returning using

vision in an anticlockwise direction at the same altitude at a target speed of 3 m/s.

In Fig. 6.5, we show three trials where VT&R was able to complete the return

phase of flight under path-following control over an approximately 2.5 minute period.

The outbound path under GPS control is shown in dashed blue, while the return path

under path-following control is shown in light blue, green and red for trials T1, T2
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Figure 6.5: Visualization of the outbound path flown under GPS (dashed blue) and
returned path using autonomous vision-based navigation for three separate trials
(light blue, green, red). Some offset is seen on sharp turns. Velocity profile for trial
T3 overlaid.

and T3, respectively.

Fig. 6.6 shows the number of localization inliers along the path for each repeat

trial. For comparison, we also show the number of localization inliers when repeating

the path under GPS control. In Fig. 6.7 we show the path error (estimated using

vision) for the three vision-based autonomous trials T1, T2 and T3, and a return

flight under GPS (in blue). Specific segments of the path are highlighted in Fig. 6.5

and annotated with numbers that correlate to those in Fig. 6.6 and Fig. 6.7.

For all three vision-based autonomous trials the positional error in Fig. 6.7 is less

than 1.5 m over most of the path and is comparable to a return trajectory under GPS

control. However, at the corners, the path error increases to a maximum of 4.5 m.

Correspondingly, as observed in Fig. 6.6, the number of localization inliers obtained

during visual localization drops dramatically at these corners.

6.4.2 Montreal Field Testing

The multirotor VT&R field tests performed in this section took place at a silo in

downtown Montreal, see Fig. 6.8. This environment is used to demonstrate the

application of autonomous vision-based navigation for inspection and patrol tasks.
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using autonomous vision-based navigation. The number of localization inliers while
using our baseline PD Control is of a similar order to that for GPS-based control
(blue) over the majority of the path.
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Figure 6.7: Path error (estimated from vision) for three trials (light blue, green, red)
using autonomous vision-based navigation. The path error (determined from the
localization transform estimated by VT&R) is of a similar order to that for GPS-
based control (blue) over the majority of the path using our baseline PD Control.

Over three separate trials (each consisting of a single teach and then repeat flight),

we traverse the path shown in Fig. 6.9 at 2 m/s. Unlike at Suffield, we test variations

in altitude up to 30 m above our initial height of 10 m above ground level (AGL). We

demonstrate that our baseline PD Control is able to operate with elevation changes

but large path errors are similarly experienced when sharp turns are needed.

6.5 Challenges to Autonomous Visual Navigation

In this section, we highlight two distinct challenges to high speed autonomous vision-

based navigation. In the field tests in Section 6.4, we demonstrated the viability of

the VT&R system in two different environments at lower speed autonomous flight
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Figure 6.8: Montreal field testing location.
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Figure 6.9: Montreal Field Testing : The outbound teach (GPS, magenta) and repeat
(with baseline PD Control, blue) paths during a single trial. At low speeds (2 m/s)
control-in-the-loop performs for an elevation change of 30 m.

(less that 3 m/s). We showed that our baseline PD Control performed well at these

speeds and on straight paths. However, at sharp turns it produced a large error as it

did not predict for the change in the curvature of the path. Consequently, this lead

to a drop in localization performance (i.e., the number of localization inliers) at these

sharp turns.

Model predictive control (MPC), like that presented in Chapter 3, is used to

combine predictive planning and control to achieve high performance around sharp

turns while accounting for constraints. Standard MPC is often perception-agnostic,

i.e., it is agnostic to the perception module and limitations. There are two important

requirements to consider in the implementation of MPC in vision-based navigation:
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Figure 6.10: Visualization of a circular teach path (red) at altitude 20 m AGL and
repeat trials with increasing desired speeds sdes (blues) using the baseline PD Control
for autonomous vision-based navigation.

• MPC requires specifying constraints. These constraints often represent physical

barriers for safety. However, constraints that represent the limitations of the

perception module are often neglected.

• MPC often relies on accurate state estimation to make optimal predictions.

These requirements underpin two limitations to the use of perception-agnostic con-

trollers in vision-based navigation:

• Limitation 1 - Partial Environment Knowledge: They assume that the com-

manded action computed by the controller has no effect on the ability of vision-

based navigation to determine the UAV’s location (or localization).

• Limitation 2 - Imperfect State Estimation: They rely on perfect state estimation

from vision-based navigation.
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Figure 6.11: Localization inliers (# of Inliers) for various speeds of repeat trials of
the circular teach path. At 6 m/s, localization is lost as the cross-track error gets too
large.
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Figure 6.12: Path error (estimated from vision) for various speeds of repeat trials of
the circular teach path. At 6 m/s, localization is lost as the cross-track error gets too
large.

6.5.1 Partial Environment Knowledge

Most controllers, including our baseline PD Control, are perception-agnostic and ne-

glect the effect of their actions on the visual localization capabilities of the system.

This becomes especially relevant around sharp turns where there is often a trade-off

between high speed and allowable path error. An incorrect trade-off highly prioritiz-

ing low path error leads to suboptimal slower flight while an incorrect trade-off highly

prioritizing fast flight can lead to a path error that results in localization failure by

the visual system. Therefore, the controller can produce an action (e.g., to prioritize

speed) that leads to a location where we cannot localize well with respect to the

map (i.e., poor location estimate from vision). Poor performance of either control or



CHAPTER 6. BACKGROUND ON MULTIROTOR VISUAL TEACH AND REPEAT 78

0 5 10 15
x [m]

20

15

10

5

0

y 
[m

]

Real-time Position
Position w/ Visual Odometry
Position w/ Visual Localization

Figure 6.13: Comparison of the estimated noisy real-time position at 50 Hz (red),
the estimated position from VO and bundle adjustment (blue) and including visual
localization (green) for a path flown at 9 m/s.

perception is reinforced through the feedback loop between these subsystems.

We perform a simple speed test of the baseline PD Control at UTIAS of a circular

teach path (red) shown in Fig. 6.10. This test was done at low wind speeds at a

constant altitude of 20 m AGL. As expected, as we increase the speed during the

repeat trials, the path error increases in Fig. 6.12 and, consequently, the number of

localization inliers decreases in Fig. 6.11. At a desired speed of sdes = 6 m/s, the

number of localization inliers is too low and we are no longer able to relocalize.

The challenge is that VT&R relies on partial knowledge of the environment. In

VT&R, prior knowledge of the environment is limited to a visual-map created during

the teach phase. Therefore, a sufficient path error with the teach visual-map may

cause visual localization to fail. When visual localization fails, we may not be able

to obtain a good position estimate.

In Chapter 7, we address this challenge of partial environment knowledge and

present a perception-aware model predictive controller that accounts for its effect on

visual localization in a VT&R framework.

6.5.2 Imperfect State Estimation

The challenge is that controllers often have to rely on noisy high-rate state estimation

as an accurate full-state estimate is often challenging due to typically noisy IMU
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measurements, an infrequent position update from the vision system and an imperfect

motion model in STEAM used to obtain high-rate state estimates required by control.

In Fig. 6.13 we show the position estimate (red) queried by the controller from

STEAM at each control time step for a 9 m/s trajectory. Associated with each

of these position estimates is also a velocity and acceleration estimate for example.

As demonstrated in Fig. 6.13 for sharp turns at higher speeds STEAM does not

accurately estimate the trajectory.

In Chapter 8, we address this challenge of requiring accurate full-state estimation

by presenting an alternative approach that exploits discrete-time flatness to avoid

inaccurate velocity and acceleration estimates and instead relies on only a window of

outputs, specifically position and yaw, and previously sent inputs.



Chapter 7

Perception-Aware Control

Planning for Partial Environment Knowledge

using a Perception Model in Control

7.1 Overview and Related Work

In recent years, inspired in part by the DARPA FLA challenge, see [DARPA], and the

potential for autonomous drone racing, see [Kaufmann et al., 2019], there has been a

significant push toward fast vision-based multirotor unmanned aerial vehicle (UAV)

flight, see, for example, [Beul et al., 2018] or [Mohta et al., 2018]. One such vision-

based approach uses a Visual Teach and Repeat (VT&R) framework that allows

the UAV to repeat a previously taught path by matching current visual features to

those in the locally metric map created during teach, see [Warren et al., 2019] or

[Gao et al., 2019].

Most of these vision-based navigation systems still rely on perception-agnostic

control techniques. For example, a conventional model predictive control (MPC)

computes a control input by optimizing a cost function over a prediction horizon but

ignores the effect of its planning on the visual localization capabilities of the system.

This becomes especially relevant around sharp turns where there is often a trade-off

between high speed and allowable path error. An incorrect trade-off highly prioritising

low path error leads to suboptimal slower flight while an incorrect trade-off highly

prioritising fast flight can lead to a path error that results in a localization failure by

the visual system.

This trade-off between fast and reliable flight is often addressed by careful tuning

or by adding a fixed allowable path error constraint, see [Ostafew et al., 2016]. How-

80
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(a) Example images from Suffield dataset (b) Example images from Montreal dataset

Figure 7.1: Localization inliers (green) associated with successfully matched land-
marks between teach and repeat.

ever, because this trade-off is visual-environment dependent, these approaches do not

capture variability of this trade-off along a path and they have to be retuned in every

new visual environment. Consequently, they tend to lead to suboptimal speeds or

unreliable vision-based navigation.

Our aim is to implement a perception-aware controller, that accounts for its effect

on visual localization in a VT&R framework and to demonstrate its ability to achieve

reliable but fast vision-based flight compared to conventional perception-agnostic con-

trollers in outdoor experiments.

7.1.1 Perception-Aware Control Design

Similar to [Falanga et al., 2018], we adopt a perception-aware MPC strategy. In

[Falanga et al., 2018], by using additional perception error terms in the MPC cost

function, a multirotor UAV with static camera was able to follow a trajectory while

tracking a single visual target. Unlike this approach, we are not limited by a mul-

tirotor with static camera combination as we decouple the camera orientation from

the multirotor UAV using a gimbal, see [Warren et al., 2019]. However, instead of a

single target, there are features associated with many potential landmarks (observed

during teach) that we could match and use to localise. A simple strategy of pointing

the camera toward the centroid of these landmarks, see [Patel et al., 2019], cannot

overcome viewpoint changes as a result of UAV path error.

Another key difference, that avoids additional cost function tuning, is that in this

chapter we choose to treat the limitations of our visual perception as a constraint in

the MPC formulation. The problem then becomes: How do we successfully integrate

our visual perception limits as a constraint online into a real-time MPC?
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7.1.2 Modelling Perception Limits

Similar to [Churchill et al., 2015] and [Gurau et al., 2017], we aim to model the lim-

its of perception performance in a VT&R framework by generating an area around

the teach path where localization is probabilistically guaranteed (coined localiza-

tion envelope in [Churchill et al., 2015]). Unlike these approaches, we close the con-

trol loop around vision by developing a perception model that is used in a con-

straint in real-time MPC. Unlike early work in [Furgale et al., 2010], the authors in

[Churchill et al., 2015] developed a localization envelope that can vary at different

points along the teach path. They did this by modelling the likely number of feature

matches around the teach path, where some low number of feature matches embod-

ies the boundary of the localization envelope. This is modelled using a Gaussian

Process (GP), which takes as input the position relative to the path, the associ-

ated closest point on the teach path and the localiser’s performance during multiple

repeat runs. The authors propose repeat trials that deviate from the path until fail-

ure. This is both time consuming and potentially unsafe. In [Gurau et al., 2016]

and [Gurau et al., 2017], the work in [Gurau et al., 2016] is extended to similar (but

not necessarily the same) teach paths by also utilizing curvature and an appearance

model in the GP. Both approaches are limited by a place-dependent model to assess

localization performance. Both approaches are limited by a place-dependent model

to assess localization performance. To overcome this limitation, our proposed ap-

proach instead creates a simple but conservative global localization envelope model

that does not have to be retrained for every new path. We do this by incorporating

scene structure through associating landmarks seen in teach with a probability of

being matched.

7.1.3 Contributions

There are three points of novelty to the proposed perception-aware MPC presented

in this chapter:

• We develop and validate a simple geometric perception model (for nominal

lighting conditions - i.e., little difference in lighting conditions between teach

and repeat) using over 12 km of data for our visual localization system in

[Warren et al., 2019].

• We show how to integrate this perception model in a chance constraint, such

that localization is guaranteed, in our MPC and how to convert it to a deter-
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Figure 7.2: Geometric angles used to model of the probability pi that a landmark i
becomes a localization inlier. Parallax angle αi captures the perspective change as a
result of path error between teach and repeat while view angle θi captures whether
the landmark is still visible.

ministic nonlinear constraint.

• Using real-world perception data, we provide experimental simulation results

demonstrating the value of our perception-aware MPC in terms of reliably but

optimally self-regulating speed along a path compared to a similar perception-

agnostic control.

7.2 Problem Statement

Consider a multirotor with a continuous-time, nonlinear model of the form:

ẋ(t) = f(x(t),u(t)), x(0) = x0, t ∈ R+,

described by (3.4a)-(3.4c), (3.5) and (3.6a)-(3.6b) with state x =

(x, y, z, ẋ, ẏ, ż, z̈, φ, θ, ψ) and input u = (żcmd, φcmd, θcmd, ψ̇cmd). Given a teach

path and some user-defined desired speed sdes by which to repeat the path, determine

an optimal control problem (OCP) for real-time MPC that can be used to compute

an input u(t) such that the following is achieved:

• We achieve high-speed flight, i.e., we track our desired speed such that |s−sdes|
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remains small where s = ||[ẋ, ẏ, ż]T ||.

• We guarantee that we can successfully localize using visual perception. In our

VT&R navigational system, the success of our visual localization during repeat

is associated with the number of localization inliers. When the number of

localization inliers L is below some threshold Lmin we do not have a reliable

estimate of our position. We, therefore, choose to represent the limitations of our

visual perception by a perception failure chance constraint where the probability

of the number of inliers going below our determined threshold remains very low.

Specifically, we can write this perception constraint as:

Pr(L < Lmin) ≤ δ, (7.1)

where δ is small.

7.3 Methodology

We approach the problem in three steps:

Geometric Perception Model: By treating each landmark from the closest teach

frame (trunk) independently, we develop a simple geometric model to associate a land-

mark with a probability of being matched successfully and becoming a localization

inlier. This is based on significant previous data (in nominal lighting conditions).

Perception Chance Constraint: Using this probability model, we transform our

perception failure chance constraint from (7.1) into a deterministic but nonlinear

constraint on the position of the multirotor UAV.

Perception-Aware MPC: In a method similar to standard nonlinear MPC ap-

proaches, we linearize this constraint at each time step about our previously predicted

trajectory and landmarks and perform 1 iteration of a sequential quadratic program

(SQP) online.

7.3.1 Geometric Perception Model

At the current position, we consider all landmarks from the trunk (closest in teach

path) that we could potentially successfully match and could become localization
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(a) Suffield dataset (b) Montreal dataset

(c) Best model fit on combined dataset

Figure 7.3: Normalized frequency of landmark selected as inlier vs parallax angle
α & view angle θ shown for (a) Suffield dataset, (b) Montreal dataset and (c) the
combined dataset. In (c) a best fit model c1 cos(c2θ) exp(c3α) is overlayed in black
where for optimal parameters (c1, c2, c3) = (0.424, 0.028,−0.145), a sufficient fit was
achieved (R2 = 0.92).
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inliers. Our aim is to associate each landmark i with a probability of being an inlier.

Specifically, we treat each landmark i as an independent Bernoulli random variable li

with some probability pi of being an inlier, that is:

li ∼ Ber(pi). (7.2)

Our aim is to develop a simple perception model that can be used to estimate the

probability pi for each landmark i. Let piso be the vector from the trunk sensor s to

landmark i described in the inertial frame o. As shown in Fig. 7.2, we develop this

perception model as a function of two geometric angles.

Parallax Angle: αi is the angle between the rays from landmark i to the camera

sensors s and s̃ as a result of the positional offset between the current frame and

trunk. This angle captures the perspective change, i.e., how much the landmark has

moved in the scene when reviewing it. It is computed as a function of the position

offset pao
o and is independent of the camera orientation:

αi = ∠(−piso ,−piso + pao
o ). (7.3)

View Angle: θi is the angle between the landmark i and the optical axis of the

current sensor s̃. It captures both the effect of the field-of-view of the camera and

potential degradation at the edges of the image. Let zs̃o be the vector representing

the current sensor optical axis described in the inertial frame o. We can compute the

θi as:

θi = ∠(zs̃o,p
is
o − pao

o ). (7.4)

We use teach and repeat paths from two datasets to identify the perception model.

Montreal dataset : We use 6 trials of a teach followed by a repeat in an urban envi-

ronment near downtown Montreal, Canada, see Fig. 6.8. Suffield dataset : We use

6 trials of a teach followed by a repeat at a rural environment in Alberta, Canada,

see Fig. 6.4. Fig. 7.1 shows examples of images observed. For all trials, for each

landmark i in the trunk we compute the associated angles αi and θi (as a result of

position and camera offset) and we mark whether the landmark was selected as a

localization inlier or not. For each angle range (i.e., some α and θ), we compute the

normalized frequency of a landmark being selected as an inlier by dividing the total

number of inliers by the total number of landmarks seen. We show the results for the

Montreal dataset, Suffield dataset and then the combined dataset in Fig. 7.3.
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Figure 7.4: Block diagram of proposed Perception-Aware Flatness-Based Model Pre-
dictive Control used during repeat to fly at some desired speed sdes. Including
perception-awareness into MPC requires additional inputs: 1) landmarks piso from
the trunk (closest vertex in the teach path) and 2) the current camera orientation zs̃o.
The Perception-Aware MPC involves solving an optimal control problem, for exam-
ple, (3.8), with an additional constraint (7.8).

We consider a frequentist approach and associate the determined normalized fre-

quency based on our data as a probability of that landmark being an inlier. We then

fit the model:

pi = c1 cos(c2θi) exp(c3αi) (7.5)

where pi is the probability of being an inlier, θi is the view angle and αi is the

parallax angle. The best least squares fit gives parameter constant values (c1, c2, c3) =

(0.424, 0.028,−0.145). Using (7.3) and (7.4) in (7.5), we can rewrite the probability

model as a nonlinear function of the output y = (pao
o , ψ) from (6.2):

pi = hL(y,piso , z
s̃
o). (7.6)

where piso is determined from the known landmark position (determined during teach)

and zs̃o is determined using the current gimbal orientation.

7.3.2 Perception Chance Constraint

We consider n̄ landmarks at the trunk where we treat each landmark li as an indepen-

dent non-identical Bernoulli trial given by (7.2). Each landmark is associated with a

probability pi based on (7.5) of being an inlier. Let L be the total number of successes

of these trials (i.e., the total number of inliers) where L has a distribution associated

with the sum of these n̄ independent, non-identical Bernoulli trials. This distribu-

tion is known as a Poisson binomial distribution where its first two moments can be

found by summing the expectation and variance of each non-identical Bernoulli trial
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respectively. This gives the expectation for L as:

E(L|p1, ..., pn̄) = n̄p̄

where p̄ = 1
n̄

∑n̄
i=1 pi and the variance for L as:

V(L|p1, ..., pn̄) = n̄p̄(1− p̄)− n̄s2
p

where n̄s2
p =

∑n̄
i=1(pi− p̄)2 ≥ 0. Note from this that the expectation for L is an upper

bound for its variance. Specifically:

V(L|p1, ..., pn̄) ≤ n̄p̄(1− p̄) ≤ n̄p̄ = E(L|p1, ..., pn̄).

We tend to have many landmarks at the trunk (i.e. n̄ tends to be around 600 - 800).

By using Lyapanov’s Central Limit Theorem, see Theorem 7 below, as justification,

we make a normal approximation for the Poisson binomial distribution L, that is

L ∼ N (µ, σ2), where µ = E(L|p1, ..., pn̄) and σ2 = V(L|p1, ..., pn̄) as given by the

expressions above. More specifically, we apply Lyapanov’s Central Limit Theorem

(CLT) in Theorem 7 to our Poisson binomial distribution to show that it converges

to a normal distribution in its limit.

Theorem 7 (Lyapanov’s CLT) Suppose {X1, X2, ..., Xn̄} are independent (not

necessarily identically distributed) random variables each with a finite mean µi and

variance σ2
i . If for some ρ > 0: limn→∞

1

sρ+2
n̄

∑n̄
i=1 E(|Xi − µi|ρ+2) = 0, where

s2
n̄ =

∑n̄
i=1 σ

2
i , then the Central Limit Theorem holds, i.e. 1

sn̄

∑
(Xi − µi) → N (0, 1)

as n̄→∞, see [Billingsley et al., 1995].

We treat the landmarks as independent Bernoulli random variables li ∼ Ber(pi)

where the first two moments of each variable, µi = pi and σ2
i = pi(1− pi), are finite.

We can show that Theorem 7 holds by, for example, selecting ρ = 2. We use the fact

that for a Bernoulli random variable E(Xk
i ) = E(Xi) = pi, ∀k, to show:

E(|Xi − pi|4) = pi(1− pi)− 3p2
i (pi − 1)2 ≤ pi(1− pi) = σ2

i .

Therefore, 1
s4n̄

∑n
i=1 E(|Xi − pi|4) ≤ 1

s2n̄
. We are now left to show that 1

s2n̄
→ 0 as

n̄→∞. For 0 < pi < 1, s2
n̄ =

∑n̄
i=1 σ

2
i =

∑n̄
i=1 pi(1− pi)→∞ as n̄→∞. Therefore,

1
s2n̄
→ 0 as n̄→∞. This shows that Lyapanov’s CLT holds which justifies the normal

approximation made. Using this normal approximation for L, we can now rewrite the
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Figure 7.5: Overview of teach path (red) physically flown while looking toward the
trees (Case 1) and toward the road (Case 2).

visual perception failure chance constraint from (7.1):

Pr(L < Lmin) ≤ δ, L ∼ N (µ, σ2),

as an equivalent deterministic constraint:

µ− Lmin ≥ c̄σ,

where c̄ =
√

2erf−1(1−2δ) and erf−1 is the inverse error function. By using the upper

bound for our variance, σ2 ≤ µ, a more conservative constraint becomes:

µ− c̄√µ ≥ Lmin. (7.7)

By recalling that µ =
∑n̄

i=1 pi and plugging in (7.6) we can rewrite this constraint as

a nonlinear constraint on position pao
o or output y in (6.2):

n̄∑
i=1

hL(y,piso , z
s̃
o)− c̄

√√√√ n̄∑
i=1

hL(y,piso , z
s̃
o) ≥ Lmin. (7.8)

7.3.3 Perception-Aware Model Predictive Control

We propose using the deterministic perception constraint on the multirotor position

pao
o in (7.8) in a flatness-based MPC framework, see Chapter 3 or [Greeff et al., 2018]

for details. In such a framework the only nonlinearity in the proposed optimal control
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Figure 7.6: Case 1 - Looking Toward Trees: (a) inlier bound for guaranteed local-
ization (µ− 3σ) and (b) average speed (m/s) when repeating the teach path (taught
facing the camera toward the trees) with a desired speed sdes = 10 m/s using a
flatness-based MPC with (i) no constraint (None), (ii) a fixed path error constraint
(1 m, 2 m, 3 m, 4 m, 5 m, 6 m) and (iii) our proposed perception-aware (P-A) con-
straint given by (7.8).
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Figure 7.7: Case 2 - Looking Toward Road: (a) inlier bound for guaranteed localiza-
tion (µ − 3σ) and (b) average speed (m/s) when repeating the teach path (taught
facing the camera toward the road) with a desired speed sdes = 10 m/s using a
flatness-based MPC with (i) no constraint (None), (ii) a fixed path error constraint
(1 m, 2 m, 3 m, 4 m, 5 m, 6 m) and (iii) our proposed perception-aware (P-A) con-
straint given by (7.8).

problem (OCP) comes from this perception constraint. We use the current state z

from (6.1) and output y from (6.2) from the vision system. In standard real-time

nonlinear MPC fashion, at each time step we linearize this constraint about the

previously predicted optimal trajectory and perform 1 iteration of the sequential

quadratic program (SQP) online. A block diagram can be seen in Fig. 7.4.

7.4 Simulations

We fly the same geometric teach path in the environment shown in Fig. 7.5. However,

we fly the path with the camera pointed in different (but fixed) directions. Specifically,
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we first fly the teach path with the camera pointing toward the trees. This is Case

1, see Fig. 7.8(a). We then fly the same teach path with the camera pointing toward

the road. This is Case 2, see Fig. 7.8(b). In both cases, we keep the camera at a

constant downward pitch of 50◦ from the horizontal.

In each of these cases, we simulate the repeat path that would be flown using a

flatness-based MPC (3.8) with (i) no path constraint, (ii) a fixed path constraint of

1 m, 2 m, 3 m, 4 m, 5 m and 6 m, and (iii) our proposed perception-aware (P-A)

constraint governed by (7.8). In each of these cases and trials we run our outer-loop

controller at 50 Hz. We implement our MPC with a discretization of 10 Hz and a 1.5

s prediction horizon (i.e. N = 15). We use the threshold for the minimum number

of inliers as Lmin = 30. We consider our probabilistic inlier bound to be 3 standard

derivations, i.e. c̄ = 3. In other words, we guarantee probabilistically that 99.9% of

the time we will maintain more than 30 inliers.

7.4.1 Case 1 - Looking Toward Trees

As seen in Fig. 7.6(a), we cannot guarantee localization when repeating the taught

path using flatness-based MPC with no constraint (None) or with fixed path-error

constraint of greater than or equal to 4 m. This is because there is some portion of

our repeat path where our inlier bound (µ− c̄σ) is less than our threshold of 30 inliers.

Consequently, we cannot guarantee localization (and thus to complete the path when

flying under vision).

While localization is guaranteed when we simulate our repeat path using a flatness-

based MPC with fixed path-error constraint of 3 m, we manage to achieve a slightly

higher average speed (Fig. 7.6(b)) with our proposed perception-aware (P-A) con-

straint. As illustrated in Fig. 7.8(a), we are able to achieve a slightly higher average

speed using our perception-aware constraint because we fly a profile with a path error

between 3 m and 4 m. Consequently, our average speed when using our perception-

aware constraint is between that flown under a fixed constraint of 3 m and 4 m in

Fig. 7.6(b).

Moreover, a key benefit over using a fixed path error constraint is that we do not

need to simulate (or fly) under different fixed path error constraints in order to find

the constraint that ensures localizability. Instead, we explicitly guarantee it in our

perception-aware constraint.
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(a) Case 1 - Looking Toward Trees
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Figure 7.8: (a) Simulated path profile of repeating taught path in Case 1 using
flatness-based MPC with (i) a fixed path error constraint of 3 m, (ii) a fixed path
error constraint of 4 m, (iii) our perception-aware constraint (P-A); (b) Simulated
path profile of repeating taught path in Case 2 using flatness-based MPC with (i) a
fixed path error constraint of 3 m, (ii) a fixed path error constraint of 4 m, (iii) our
perception-aware constraint (P-A).
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7.4.2 Case 2 - Looking Toward Road

As seen in Fig. 7.7(a), we cannot guarantee localization when repeating the taught

path using flatness-based MPC with no constraint (None) or with fixed path-error

constraint of greater than or equal to 4 m.

While localization is guaranteed when we simulate our repeat path using a flatness-

based MPC with fixed path-error constraint of 3 m, we manage to achieve a signifi-

cantly higher average speed (Fig. 7.7(b)) with our proposed perception-aware (P-A)

constraint. In this case, our perception-aware approach achieves an average speed

between that obtained with a fixed path error constraint of 4 m and 5 m. However,

with both a fixed path-error constraint of 4 m and 5 m we do not guarantee local-

ization (see Fig. 7.7(a)). As illustrated in Fig. 7.8(b), under our perception-aware

constraint we fly a repeat profile that allows a path error greater than 4 m after the

first corner, but then comes in to a 3 m path error after the second corner. This shows

that the allowable error under which we can localize can significantly vary along the

path. This is not only captured in our perception-aware constraint, but also exploited

to achieve a higher overall speed.

Another key result highlighted in Fig. 7.8 is that under our perception-aware

constraint, we do not repeat the taught path in the same way in Case 1 and Case

2. This is because it accounts for the landmark locations with respect to the path.

In Case 1, the direction of our path error relative to the teach path after corner 1

means that we move closer to the scene. In Case 2, the direction of our path error

relative to the teach path after corner 1 means that we move further from the scene.

By moving further away from the scene we can actually afford a greater path error

compared to when moving into the scene. This is because when moving away from

the scene we tend to achieve a smaller parallax angle for the same path error and

keep more landmarks within view. This effect is captured in our perception-aware

constraint and is, consequently, why we fly the same geometric path differently just

by looking in different directions.

7.5 Summary

We have presented an approach of building perception-awareness into flatness-based

MPC which allows for optimal fast flight under reliable vision-based navigation. The

key is that it does this by capturing:

• The variability of the localization envelope (allowable path error under which
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we can still localize) along a path;

• The difference in the localization envelope from one path to another. This

includes geometrically identical paths that are flown at different altitudes, in

different environments or with the camera pointed in different directions (as we

illustrated in simulation based on real vision data).

Practically, the proposed perception-aware approach is also beneficial as it does not

require ‘re-tuning’ the allowable constraint for every new path or environment flown

under vision-based navigation.

The approach in this chapter has three novel contributions:

• We develop and validate a simple geometric perception model (for nominal

lighting conditions - i.e., little difference in lighting conditions between teach

and repeat) using over 12 km of data for our visual localization system in

[Warren et al., 2019].

• We show how to integrate this perception model in a chance constraint, such

that localization is guaranteed, in our MPC and how to convert it to a deter-

ministic nonlinear constraint.

• Using real-world perception data, we provide simulation results demonstrating

the value of our perception-aware MPC in terms of reliably but optimally self-

regulating speed along a path compared to a similar perception-agnostic control.

The key insight of this chapter is that different prior visual environment knowl-

edge, for example, when flying a path using different camera directions, results in

planning a different optimal path.



Chapter 8

Discrete-Time Flatness Control

Bypassing Full State Estimation Using Discrete-Time

Flatness

8.1 Overview and Related Work

Multirotor unmanned aerial vehicles (UAVs), see Fig. 6.1, are mechanically simple

and highly maneuverable, which makes them suitable to a wide range of applications

such as infrastructure inspection, see [Thakur et al., 2019], transportation, search-

and-rescue missions, and mapping operations. This has challenged researchers to de-

velop multirotor systems that can move beyond lab demonstrations to real-world sce-

narios where GPS may not always be reliable due to poor satellite coverage, multipath

propagation or jamming. As such, in recent years significant advancements have been

made in enabling high-performance flight using vision-based sensing as a lightweight

and versatile alternative, see, for example, [Foehn et al., 2020] or [Gao et al., 2020].

Control design within the visual navigation pipeline tends to rely on high-rate

state estimates (generally 50-200 Hz for position control). In contrast, the visual

system often estimates lower-rate (currently 10-35 Hz) and noisy position (and orien-

tation) information compared to GPS or Vicon. The mismatch between the control

requirements and visual measurement is addressed with an additional state estima-

tor that uses a prediction model and/or integrates IMU measurements, to deter-

mine high-rate state estimates. Traditionally, the controllers and planners are de-

signed independently of the state estimator, see, for example, [Warren et al., 2019] or

[Song et al., 2021].

Control design tends to assume perfect state estimation. Historically, this has been

96
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motivated by the separation principle, which theoretically guarantees that optimality

is retained for certain linear stochastic systems when control and state estimation

are decoupled. However, the required assumptions for these guarantees, that is, a

linear model and zero-mean Gaussian output noise, are practically never satisfied by

vision-based multirotor systems in real-world operations.

Moreover, obtaining an accurate full-state estimate using visual navigation for

multirotor control is challenging due to typically noisy IMU measurements, an infre-

quent position update from the vision system due to the required computational time

and an imperfect motion model used to obtain high-rate state estimates required by

control.

Related work tends to address the challenge of high-performance control un-

der imperfect state estimation by (i) improving the state estimate by incorpo-

rating additional sensors, for example, IMU, laser range-finders, event cameras,

e.t.c., see [Foehn et al., 2020] or [Kaufmann et al., 2019]; (ii) designing robust con-

trol to account for the worst-case state estimation error learnt offline from data, see

[Jarin-Lipschitz et al., 2020] or [Dean et al., 2020]; or (iii) performing output feed-

back control by coupling control and state estimation, see [Brunke et al., 2021] or

[Kogel et al., 2017].

In this chapter, we present an alternative approach that bypasses the full state

estimation requirement by exploiting a property known as discrete-time flatness. This

property allows us to design a controller for vision-based flight that uses a window of

inputs and special flat outputs, specifically position and yaw, and avoids inaccurate

velocity and acceleration estimates.

8.1.1 Improving state estimation

Autonomous vision-based flight typically relies on visual or visual-inertial odome-

try (VIO), when an IMU is added, within a simultaneous localization and mapping

(SLAM), see [Foehn et al., 2020], or visual teach and repeat (VT&R) framework, see

[Warren et al., 2019] or [Gao et al., 2020]. For example, vision-based drone racing

relies on SLAM, see [Foehn et al., 2020] or [Kaufmann et al., 2019]. In drone racing

the multirotor must fly through static gates. The drift in VIO is compensated for

by using a deep neural network (DNN) to learn a robust gate model. The identified

gate locations are accounted for in an extended Kalman filter (EKF) to improve the

multirotor state estimate. The state is then used in time-optimal trajectory planners,

see [Song et al., 2021], and simple lower-level controllers, for example, PD control or
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model predictive control (MPC). This estimation approach is task-specific and relies

on static gates. Another approach, improves state estimates by fusing Ultra-wideband

(UWB) range measurements with VIO in an EKF, see [Nguyen et al.,2018].

8.1.2 Designing robust control for worst-case state estima-

tion

In [Dean et al., 2020], a bound on the state estimation error is learned offline using

data. A robust controller is synthesized that ensures a bounded system response

despite estimation errors. This has been applied to vision-based flight for multirotors

in [Jarin-Lipschitz et al., 2020]. This results in conservative performance and can

sometimes lead to an infeasible problem. Moreover, the current theory applies to

linear models and, therefore, has only been applied to flight near hover.

8.1.3 Coupling control and state estimation

While commonly MPC considers state feedback, output feedback MPC approaches

exist and rely on only measurements (or outputs). Robust output feedback

MPC explicitly considers bounded measurement noise and incorporates a state

estimator within the optimization problem in MPC, see [Brunke et al., 2021].

Robust output feedback MPC can be a tube-based method (which guarantees

constraint satisfaction despite measurement noise), see [Brunke et al., 2021] or

[Kogel et al., 2017], or a minmax method (which optimizes the worst-case perfor-

mance), see [Copp et al.,2017]. Current theory applies to linear models only, see

[Brunke et al., 2021] or [Kogel et al., 2017]. Moreover, the main practical limitation

is that these methods are slow to compute. Even for low-dimensional linear systems,

the controller can often only be implemented at around 5 Hz, see [Brunke et al., 2021].

For vision-based navigation, the measurement noise may vary and can be difficult to

evaluate prior to flight. Furthermore, overestimating the measurement noise can lead

to conservative performance.

8.1.4 Contributions

In this chapter, we present a predictive controller that does not rely on the full-state

estimate for vision-based multirotor flight. An accurate full-state estimate is often

challenging due to typically noisy IMU measurements, an infrequent position update

from the vision system and an imperfect motion model used to obtain high-rate
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state estimates required by control. Our controller avoids inaccurate velocity and

acceleration estimates and instead relies on only a window of outputs, specifically

position and yaw, and previously sent inputs.

In our flatness-based MPC in Chapter 3 (based on continuous-time flatness or

differential flatness), we rely on an accurate state estimate to ensure that the initial

condition in Theorem 1 holds. As we demonstrate below, this approach significantly

underperforms in the case of state estimator errors. In our vision-based system, state

estimation errors are a result of visual drift, time-delays, and an inaccurate motion

model used in the estimator. In this chapter, we show that flatness holds for the

discretization of multirotor dynamics (or discrete-time flatness). This is a useful

result because it allows us to use a finite window of output (or position) observations

and inputs to characterize the control system. We can, therefore, perform output

feedback and the controller does not rely on a state estimate.

The contributions of this work are three-fold:

• To the best of our knowledge, this is the first work to demonstrate that the

property known as discrete-time flatness holds for the Euler discretization of

multirotors. This means that only a window of input (thrust and torques) and

output (position and yaw) samples is required for control design.

• We highlight in simulation how the approach outperforms controllers that rely

on a poor full-state estimate as a result of noisy position measurements (and

higher-order derivative estimation) or large initial state uncertainty.

• In outdoor experiments, we show the application of our proposed discrete-time

flatness-based controller to vision-based flight at speeds up to 10 m/s and how

it outperforms controllers that hinge on accurate full-state estimation.

8.2 Background on Discrete-Time Flatness

The discrete-time counterpart of differential flatness, commonly referred to as

forward-difference flatness (or difference flatness), has recently been introduced

in [Guillot et al., 2020] and [Kolar et al., 2019]. The main difference is that time

derivatives in Definition 1 are replaced by forward-shifts of the output, see

[Diwold et al., 2020].

Definition 5 (Discrete-Time Flatness) A nonlinear system model,

xk+1 = f(xk,uk), (8.1)
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with k ≥ 0, xk ∈ Rn, uk ∈ Rm is difference flat if there exists an output yk ∈ Rm

whose components are independent (i.e., the components are not related to each other

through a difference equation), such that the following holds:

yk = Λ̃(xk,uk,uk+1, ...,uk+δ),

xk = Φ̃ (yk,yk+1, ...,yk+r−1) , (8.2)

uk = Ψ̃−1 (yk,yk+1, ...,yk+r) , (8.3)

where Λ̃, Φ̃, Ψ̃ are smooth functions, δ and r are the maximum number of forward

shifts of u and y needed to describe the system and yk = [y1,k, y2,k, ..., ym,k]
T is called

the flat output.

More intuitively, the system (8.1) is flat if there exists a one-to-one correspondence

(or mapping) between its solutions (xk,uk) and solutions yk of a trivial system (i.e.,

they do not satisfy a difference equation, but rather yk+r = vk where vk ∈ Rm is

a new fictitious input). This means that both the state xk and input uk at time

step k can be determined from a finite number of future values of the output yk, see

[Diwold et al., 2020]. The key concept of discrete-time flatness is that the trajectory

of the (flat) output in a certain finite window uniquely determines the state and input

at any time step, see [Alsalti et al., 2021].

Unfortunately, differential flatness of (2.1) does not necessarily imply difference

flatness of a discretization (either exactly if possible or using Euler discretization)

of (2.1). A counterexample is provided in [Diwold et al., 2020]. However, in this

paper, we show that difference flatness still applies to an Euler discretization of the

multirotor dynamics and how we can exploit this property in control design using

only input and output information (i.e., bypassing the more traditional requirement

for full-state information).

8.3 Methodology

We show that discrete-time flatness, as described in Definition 5, holds for the Euler

discretization of the full multirotor dynamics model (from [Mellinger et al., 2011]).

We also, briefly, show that this property holds for a simpler 2-D motion model,

with underlying first-order pitch and roll dynamics (as a result of lower-level attitude

controllers), which is used in our simulation and experimental results in Sec. 8.4 and
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8.5. In Sec. 8.3.3, we illustrate how discrete-time flatness can be used in a predictive

controller that uses only input and (flat) output information.

8.3.1 Discrete Flatness of Euler-Discretized Multirotor Dy-

namics Model

Dynamics Model

We consider the following discrete-time model (using the Euler discretization approx-

imation of the model in [Mellinger et al., 2011]):

xk+1 = xk + δtẋk,

where δt is the time step of the discretization and the state at time step k,

xk = [xk, ẋk, yk, ẏk, zk, żk, θk, φk, ψk, pk, qk, rk]
T ,

comprises the 3-D position xk, yk, zk, the 3-D velocity ẋk, ẏk, żk, the vehicle roll φk,

pitch θk and yaw ψk, and the angular velocities (in the vehicle frame) pk, qk, rk at

time step k. The translational dynamics are: ẍk

ÿk

z̈k + g

 =
Tk
m

R13,k

R23,k

R33,k

 , (8.4)

where ẍk, ÿk, z̈k are the 3-D accelerations at time step k, Tk is the commanded thrust

at time step k, g is the gravitational constant, m is the vehicle mass, and R is the

rotation matrix from the body to inertial frames.

The notation Rij,k denotes the i row and j column entry of rotation matrix R at

time step k. The rotational dynamics are:ṗkq̇k
ṙk

 =

−
(Izz−Iyy)

Ixx
qkrk + 1

Ixx
τxk

− (Ixx−Izz)
Iyy

pkrk + 1
Iyy
τ yk

− (Iyy−Ixx)

Izz
pkqk + 1

Izz
τ zk

 , (8.5)

where ṗk, q̇k, ṙk are the angular accelerations and τxk , τ
y
k , τ

z
k are the commanded

torques, about the respective axes, at time step k. We have assumed a diagonal

inertial matrix with diagonal components Ixx, Iyy, Izz.
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Discrete-Time Flatness Derivation

We consider the output comprising the 3-D position and yaw at time step k:

yk = [xk, yk, zk, ψk]
T .

We show that both state xk, (8.2) in Definition 5, and input uk = [Tk, τ
x
k , τ

y
k , τ

z
k ]T ,

(8.3) in Definition 5, can be determined from forward shifts of the output yk.

State from Forward Shifts of Output: From the discretized position dynamics

we obtain the velocity at time step k in terms of forward shifts of the output, i.e.,

ẋk = xk+1−xk
δt

and ẏk = yk+1−yk
δt

, and żk = zk+1−zk
δt

. Similarly, velocity at time step k+1

can be described in terms of forward shifts of the output, i.e., ẋk+1 = xk+2−xk+1

δt
, ẏk+1 =

yk+2−yk+1

δt
, żk+1 = zk+2−zk+1

δt
. Given that [R13,k,R23,k,R33,k]

T is a unit vector in (8.4),

we can obtain this vector from forward shifts of the output as [R13,k,R23,k,R33,k]
T =

tk
|tk|

where:

tk =


xk+2−2xk+1+xk

δt2

yk+2−2yk+1+yk
δt2

zk+2−2zk+1+zk
δt2

+ g

 . (8.6)

We obtain the pitch θk and roll φk at time step k in terms of 2 forward shifts of the

output by plugging in the above expressions for R13,k,R23,k,R33,k into:

θk = atan

(
R13,k

R33,k

Cψk +
R23,k

R33,k

Sψk

)
, (8.7)

φk = atan

((
R13,k

R33,k

Sψk −
R23,k

R33,k

Cψk

)
Cθk

)
, (8.8)

where we have assumed θk ∈ (−π/2, π/2) and φk ∈ (−π/2, π/2). From these Euler

angles, we can describe the rotation matrix Rk at time step k in terms of forward

shifts of the output.

We can obtain similar expressions for R13,k+1,R23,k+1,R33,k+1 at time step k + 1

by computing tk+1 in (8.6). We determine the pitch θk+1 and roll φk+1 at time step

k+1 by using R13,k+1,R23,k+1,R33,k+1 and ψk+1 in (8.7) - (8.8). We can obtain similar

expressions for the pitch θk+2 and roll φk+2 at time step k + 2. The angular velocity

of the vehicle in the inertial frame ωk at time step k is (see [Mellinger et al., 2011] for



CHAPTER 8. DISCRETE-TIME FLATNESS CONTROL 103

details):

ωk =

Cψk R12,k 0

Sψk R22,k 0

0 R32,k 1


φ̇kθ̇k
ψ̇k

 = Rk

pkqk
rk

 .
Exploiting the Euler discretization, we obtain:pkqk

rk

 = R−1
k

Cψk R12,k 0

Sψk R22,k 0

0 R32,k 1



φk+1−φk

δt
θk+1−θk

δt
ψk+1−ψk

δt

 . (8.9)

Using the relationship between forward shifts of the output yk and the Euler angles

θk, φk, ψk at time step k, see (8.7) - (8.8), and θk+1, φk+1, ψk+1 at time step k + 1 in

(8.9), we can determine the angular velocities pk, qk, rk at time step k in terms of

forward shifts of the output. Similarly we can obtain expressions for pk+1, qk+1, rk+1

by plugging in the expressions for φk+1, θk+1, ψk+1 and φk+2, θk+2, ψk+2 in terms of the

forward shifts of the output.

Input from Forward Shifts of Output: We can obtain the commanded thrust

at time step k in terms of forward shifts of the output from (8.4) as Tk = m|tk|, where

|tk| is the magnitude of tk in (8.6). Using the Euler discretization of the rotational

dynamics (8.5), the torques at time step k are:τ
x
k

τ yk
τ zk

 =

Ixx
pk+1−pk

δt
+ (Izz − Iyy) qkrk

Iyy
qk+1−qk

δt
+ (Ixx − Izz) pkrk

Izz
rk+1−rk

δt
+ (Iyy − Ixx) pkqk

 . (8.10)

Using the expressions for angular velocities pk, qk, rk at time step k and pk+1, qk+1, rk+1

at k+1 in terms of the forward shifts of the output allows us to compute the torques in

(8.10) from 4 forward shifts of the output (i.e., we require yk,yk+1,yk+2,yk+3,yk+4).

From (8.3) in Definition 5, we call this a window of r = 4.

8.3.2 Discrete Flatness of Multirotor Model in 2-D with

First-Order Pitch-Roll Dynamics

We consider a slightly simpler model in the simulations, Sec. 8.4, and experiments,

Sec. 8.5, performed in this chapter. The multirotor performs only 2-D motion in the

x-y plane and we have an underlying attitude controller. The underlying attitude con-
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troller generates a first-order pitch and roll response. This is a common (and useful)

assumption for many commercial platforms (such as the DJI M600 in Fig. 6.1) where

a black-box attitude controller is implemented onboard, see [Greeff et al., 2018].

Dynamics Model

We consider the following discrete-time model (using Euler discretization approxima-

tion):

xk+1 = xk + δtẋk,

where the state at time step k, xk = [xk, ẋk, yk, ẏk, θk, φk]
T comprises the 2-D position

xk, yk, the 2-D velocity ẋk, ẏk, and the pitch θk and roll φk angles. We consider the

dynamics:

ẋk = [ẋk, g
R13,k

R33,k

, ẏk, g
R23,k

R33,k

,
k̃

τ
θcmd,k −

θk
τ
,
k̃

τ
φcmd,k −

φk
τ

]T , (8.11)

where R is the rotation matrix from the body to inertial frames, Rij,k is the i row

and j column of rotation matrix R at time step k, τ is the first-order time constant

and k̃ is the first-order gain for the roll and pitch dynamics. The control input

uk = [θcmd,k, φcmd,k]
T includes the commanded pitch and roll. We assume the yaw is

fixed, i.e., ψk = ψ? ∀k.

Discrete-Time Flatness Derivation

We consider the output comprising of the position at time step k:

yk = [xk, yk]
T .

We show that both state xk and input uk can be determined from forward shifts of

the output yk.

State from Forward Shifts of Output: Similar to Sec. 8.3.1, we can obtain the

2-D velocity at time step k and k+1 in terms of forward shifts of the output. Similarly,

by using the 2-D velocity at time step k and k + 1 in (8.11), we obtain the rotation

at time step k in terms of forward-shifts of the output. That is,
R13,k

R33,k
= xk+2−2xk+1+xk

gδt2

and
R23,k

R33,k
= yk+2−2yk+1+yk

gδt2
. The pitch θk and roll φk at time step k in terms of forward

shifts of the output is obtain from (8.7) - (8.8) with ψk = ψ?.
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Input from Forward Shifts of Output: Similar to Sec. 8.3.1, the rotation at

time step k + 1, i.e.,
R13,k+1

R33,k+1
= xk+3−2xk+2+xk+1

gδt2
and

R23,k+1

R33,k+1
= yk+3−2yk+2+yk+1

gδt2
, is used

to determine the pitch θk+1 and roll φk+1 at k + 1 in terms of forward shifts of the

output. From the first-order pitch and roll dynamics we can determine the pitch and

roll commands θcmd,k and φcmd,k from the pitch and roll at time steps k and k + 1,

i.e.:

θcmd,k =
1

k̃
(τθk+1 − θk) ,

φcmd,k =
1

k̃
(τφk+1 − φk) .

The pitch and roll at time steps k and k+1 can be determined from 3 forward shifts of

the output. Consequently, we have determined the input at time step k as a function

of 3 forward shifts of the output, i.e.,

uk = Ψ̃−1 (yk,yk+1,yk+2,yk+3) . (8.12)

We coin this function (8.12) the Output-To-Input Map with a window r = 3 in (8.3).

The Input-To-Output Map is described by its inverse, i.e.,

yk+3 = Ψ̃ (yk,yk+1,yk+2,uk) . (8.13)

8.3.3 Predictive Control Exploiting Discrete Flatness

We present a predictive control design in Fig. 8.1 that exploits discrete-time flatness,

from Definition 5, to use a window of previous inputs and measured (flat) outputs

to compute the control input. To do this, we propose three core components: (i)

Output-to-Input Map – maps a window r of the future optimized trajectory to the

input using (8.14); (ii) Input-To-Output Map – maps a window of past inputs and

output measurements to constraint the future trajectory using (8.15); and (iii) Output

Trajectory Optimization – optimizes the output trajectory using (8.16).

Output-To-Input Map

At time step k we require a window of future time steps of the output trajectory

yk,yk+1, ...yk+r to determine the input uk. We propose using predictive control to

predict the optimized output trajectory window y∗k,y
∗
k+1, ...y

∗
k+r which can be used
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Figure 8.1: Overview of predictive control (horizon N) design using a window r = 3
of input and (flat) output data by exploiting discrete-time flatness.

to determined the input from (8.3) as:

uk = Ψ̃−1
(
y∗k,y

∗
k+1, ...y

∗
k+r

)
. (8.14)

For example, we use the optimized output trajectory window y∗k,y
∗
k+1, ...y

∗
k+3 in the

Output-to-Input Map in (8.12) for our 2-D multirotor model (Sec. 8.3.2) with a

window size r = 3.

Input-To-Output Map

At time step k we require a window of past time step measurements of the output

trajectory ymk ,y
m
k−1,y

m
k−r+1 and previously sent inputs uk−1, ...,uk−r+1 to determine

the effect of past inputs on the future output trajectory at ymk+1, ...y
m
k+r−1. More

precisely, we compute ymk+1, ...,y
m
k+r−1 as:

ymk+(j−1) = Ψ̃
(
ymk−(r−j+1), ...,y

m
k+(j−2),uk−(r−j+1)

)
, (8.15)

where j = 2, ..., r and r is the window size. For example, the Input-to-Output Map in

(8.13) for our 2-D multirotor model (Sec. 8.3.2) determined a window size r = 3. In

this case, we compute the effect of uk−1 and uk−2 on ymk+1 and ymk+2 as:

ymk+1 = Ψ̃
(
ymk−2,y

m
k−1,y

m
k ,uk−2

)
,

ymk+2 = Ψ̃
(
ymk−1,y

m
k ,y

m
k+1,uk−1

)
.
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Figure 8.2: Simulation comparison of the effect of position noise on the tracking per-
formance of PD Control in green, Flatness MPC (predictive control using continuous-
time flatness) in blue, and our discrete-time flatness or Discrete-Flatness in red. Mea-
surements of the x-position have zero-mean Gaussian noise ym = y + [N (0, σ2), 0]T ,
where we vary the standard deviation σ (Output Noise). For each σ, we compute
the average position or output tracking error over 10 trials. The proposed Discrete-
Flatness (red) is more robust to position noise compared to the traditional Flatness
MPC (blue), which relies on higher-order position derivative estimates for predictive
control.

This is used to constrain the output trajectory optimization to account for the effects

of previously sent inputs.

Output Trajectory Optimization

At each time step, we solve the following optimization problem:

y∗k:k+N = argmin
yk:k+N

J (yk:k+N)

s.t. yk+j−1 = ymk+j−1,∀j = 1, .., r,

(8.16)

where N is the prediction horizon, J(·) is a selected trajectory cost function (often

selected as a quadratic with a tracking error term and a regularization term regulating

how quickly the output changes). Additional constraints on the output trajectory can

also be enforced if necessary.

8.4 Simulations

We consider the dynamics in (8.11) from Sec. 8.3.2 and consider a 1-D motion in the

x-direction with ψ∗ = 0, y = 0, ẏ = 0 and φ = 0. The dynamics (8.11) are executed
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Figure 8.3: Simulation comparison of the effect of initial state uncertainty on the
performance of the proposed Discrete-Flatness in red and NMPC+EKF, i.e., using a
standard nonlinear MPC with an extended Kalman filter (EKF) for state estimation,
in grey. Our proposed Discrete-Flatness has robustness to significant initial uncer-
tainty in the pitch, because unlike the EKF we do not linearize about the the current
estimate and instead implicitly use the relationship between the state at time-step k
and the position (or output) trajectory from k to k + r as described by the discrete-
time flatness property in (8.2) to discard biased state estimates after r time steps.
The shaded grey region shows where the NMPC+EKF approach is unstable.

at 200 Hz. The controllers are run at 50 Hz. We consider the proposed predictive

control in Discrete-Flatness exploiting discrete-time flatness with the cost in (8.16):

J(·) =
N∑
k=0

(yk − yref,k)
T Q̃ (yk − yref,k) + v̄Tk R̃v̄k

where v̄k = yk+3− 3yk+2 + 3yk+1−yk, N = 200 is the prediction horizon, Q̃ weights

the error with the reference point and R̃ weights a regularisation term.

8.4.1 Robustness to noisy position and higher-order deriva-

tive estimates

We start from no motion at the origin, i.e., xk = 0, y = 0 at k = 0. We compare the

effect of noise on the performance of Flatness MPC, that uses continuous-time differ-

ential flatness as in [Greeff et al., 2018] and relies on position and first-order finite-

difference velocity and acceleration estimates in the state feedback, PD Control, which

relies on position and finite-difference velocity estimates, and the proposed Discrete-

Flatness control. At each noise level or σ, we compute the average position tracking

error for the feasible reference trajectory yref = At sin(ωt) where A = 1.4, ω = 1.0

over 10 trials for each controller. In Fig. 8.2, we observe that at low position noise
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(i.e. σ < 0.0005) all controllers are tuned to have similar performance. However,

as the position noise increases the performance of Flatness MPC (blue in Fig. 8.2)

significantly worsens as a result of heightened noise in the higher-order derivatives

used in the state estimate. PD Control outperforms Flatness MPC for higher posi-

tion noise (i.e. σ > 0.005) because we consider a feasible trajectory and it does not

rely on a state estimate to make future model predictions. Our proposed approach

is a predictive controller that achieves better performance despite high position noise

(i.e. σ > 0.005) by avoiding higher-derivatives of the position estimates.

8.4.2 Robustness to initial state uncertainty

In simulation, we consider a multirotor with motion in 1-D in the x-direction starting

at an initial position and velocity of zero. The objective is to move to a reference

point 10 m away. We assume that measurements are obtained at the same rate of 50

Hz as the control input. In Fig. 8.3, we compare the average error for our proposed

Discrete-Flatness and NMPC+EKF, which uses a standard extended Kalman filter

(EKF) and nonlinear model predictive controller (NMPC). Both controllers assume

the quadrotor starts at rest (i.e., the state is zero). The EKF considers an initial

state uncertainty with standard deviation of 0.5 rad on the pitch angle. We compare

the performance of each of the approaches for different true initial pitch values. We

assume no measurement or process noise.

8.5 Experiments

We compare three controllers (PD Control [Warren et al., 2019], Flatness MPC

[Greeff et al., 2018], and our proposed Discrete-Flatness controller) implemented at

50 Hz. We consider only flight in 2-D (fixed yaw and no motion in the z-direction).

All controllers are used to determine roll and pitch commands as described in Sec.

8.3.2. As described in Sec. 6.3 in Chapter 6, STEAM uses low-rate position estimates

from vision to estimate a continuous-time state-trajectory, that can be queried by the

controller at the current time, but relies on an accurate motion model or prior. Fig.

6.13 shows the position estimate (red) queried by the controller from STEAM at each

control time step for a 9 m/s trajectory. Associated with each of these position esti-

mates is also a velocity and acceleration estimate for example. As demonstrated in

Fig. 6.13 for sharp turns at higher speeds STEAM does not accurately estimate the

trajectory. Flatness MPC relies on position, velocity and acceleration estimates from
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Figure 8.4: Comparison of path error at increasing desired speeds for autonomous
vision-based flight of multirotor in Fig. 6.1 using PD Control (green), Flatness MPC
(blue) and our proposed Discrete-Flatness controller (red). The box plots are com-
puted over 3 trials (for each controller at each speed) repeating the L-shaped path
in Fig. 8.5. Our proposed approach Discrete-Flatness (red) outperforms related con-
trollers by performing prediction and not relying on noisy and delayed state estima-
tion. The vehicle under PD Control (green) goes unstable at 9 m/s. The performance
under Flatness MPC (blue) degrades as the speed increases. Our proposed Discrete-
Flatness (red) maintains low path error for all desired speeds and achieves an average
path error reduction of 20 − 40% for low speeds ≤ 5 m/s and 65 − 80% for high
speeds > 5 m/s over Flatness MPC.

STEAM. PD Control relies on position and velocity estimates from STEAM. Our

proposed Discrete-Flatness approach relies on only the position estimate as feedback.

8.5.1 Reference Generation

We use a simple reference generation approach. The geometric teach path is created

by connecting keyframes from teach with straight lines segments. The reference po-

sition and velocity at time step k for the non-predictive controller (PD Control) is

determined by finding the closest point on the path, i.e., yref,k = yclosest, and com-

puting the reference velocity ẏref,k as the desired speed in the direction of the next

keyframe. PD Control [Warren et al., 2019] determines the commands at time step

k by weighting the position error yk − yref,k with the velocity error ẏk − ẏref,k. In the

predictive controllers (Flatness MPC and Discrete-Flatness) we compute the refer-

ence on the path with a fixed desired speed. At time step k we compute the reference

by finding the closest point yclosest on the path, i.e., yref,k = yclosest. We compute the

reference at the next time step by moving in the direction of the reference velocity

(desired speed in the direction of the next keyframe) ẏref,k as yref,k+1 = yref,k+δtẏref,k,

for the prediction horizon k + 1, k + 2, ...k +N . The reference velocity ẏref,k changes
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Figure 8.5: Visualization of path flown when repeating the teach path (black) under
vision-based navigation using different controllers with a desired speed of (a) 3 m/s
(b) 5 m/s (c) 7 m/s and (d) 9 m/s. The L-path starts at the lower left corner
(at approximately (−20,−30)) and ends at the origin. We show one trial (out of
three used in Fig. 8.4) for each controller. We compare the paths flown using PD
Control (green), Flatness MPC (blue) and our proposed Discrete-Flatness (red).
Our proposed Discrete-Flatness (red) outperforms the alternative controllers that
rely on noisy/delayed state estimates. Unlike the alternative controllers our proposed
approach achieves high performance (see Fig. 8.4) by turning before the corner even
at high speeds.

as the output reference moves to the next straight line segment of the path.

8.5.2 Parameters

We consider a lookahead of 2 s for Discrete-Flatness and 1.5 s for Flatness MPC.

These were the maximum horizons for each controller that we could reliably compute

at a rate of 50 Hz (20 ms). The lookahead difference is a result of Flatness MPC

requiring a few additional matrix multiplications at each time step. We tune the

weights for all controllers to maximize stable performance.
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Figure 8.6: Visualization of 3 additional paths flown using vision-based navigation
and the proposed Discrete-Flatness control achieving speeds up to 10 m/s. We fly
three paths: 1) a D-shaped path (at 10 m/s), 2) an S-shaped path (at 3 m/s) and 3)
an L-shaped path (at 8 m/s). This spells out the abbreviation of our lab “Dynamic
System Lab” or DSL.

8.5.3 Results

We consider a simple L-shape teach path, black in Fig. 8.5, at a fixed altitude of

10 m above ground. In Fig. 8.4, we present a box plot of the path error for each

controller with desired speeds of 3 m/s, 5m/s, 7m/s and 9 m/s. These results are

obtained from 3 repeated trials for each controller at each speed. As expected, the

PD Control (green) has the worst performance as it is unable to predict and react to

the sharp turn in the path. At 9 m/s the PD Control is not reliable and causes the

vehicle to go unstable. Flatness MPC (blue) has good performance for 3 m/s and 5

m/s, however, the performance dramatically degrades at 7 m/s and 9 m/s. Similar

to the simulation in Sec. 8.4, Flatness MPC (blue) relies on higher-order derivatives

of position (velocity and acceleration). STEAM filters some of the noise in these

estimates but introduces a delay. Consequently, inaccurate real-time estimation of

these quantities prevents the Flatness MPC from making an accurate forward model

prediction. As such the vehicle does not turn before the corner (bottom right of black

teach path in Fig. 8.5) for 7 m/s and 9 m/s. Our proposed Discrete-Flatness (red)

approach maintains a low tracking error at all speeds by turning before the corner as
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Figure 8.7: Visualization of various 3D paths flown using vision-based navigation and
the proposed Discrete-Flatness control.

highlighted in Fig. 8.5.

Demonstration of Discrete-Flatness up to 10 m/s: We demonstrate the effi-

cacy of our proposed Discrete-Flatness controller for VT&R at speeds up to 10 m/s

by flying three paths (at fixed 20 m altitude above ground) - a D-shaped path (at 10

m/s), an S-shaped path (at 3 m/s) and an L-shaped path (at 8 m/s). The DSL flights

are shown in Fig. 8.6 with the speed profile overlay. The wobbles in the D-shaped

path are a result of the heightened real-time position noise when turning as illustrated

in Fig. 6.13. We have extended the proposed Discrete-Flatness control to 3-D and

show outdoor trajectories at various speeds using vision-in-the-loop in Fig. 8.7.

8.6 Summary

Exploiting discrete-time flatness for outdoor high-speed vision-based navigation, with

potentially noisy high-rate real-time output (position) measurements, is a promising

approach as it allows closed-loop visual autonomy without full state estimation. This
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is particularly relevant to future work on learning-based control that could improve

performance by simultaneously learning Ψ̃−1(·) in (8.12) and Ψ̃(·) in (8.13) using

only input and output data. More traditional learning-based controllers require full-

knowledge of the state to learn the dynamics model. Furthermore, this overcomes

limitations when the state estimator and controller use different learned dynamics

models. Another potential challenge is that the window size r determined from first

principles may differ for the actual system. In future work, we propose developing a

learning-based controller by varying the window size and observing the effect on the

learning performance. Future work is also required to extend the proposed control

design to account for different input and output rates. Video: https://tinyurl.

com/flyoutthewindow

https://tinyurl.com/flyoutthewindow
https://tinyurl.com/flyoutthewindow


Chapter 9

CLOUD: Canadian Longterm

Outdoor UAV Dataset

9.1 Overview

Unmanned Aerial Vehicles (UAVs) are mechanically simple and highly maneuverable

which makes them well-suited to a wide range of applications including patrol-and-

inspection, search-and-rescue and delivery operations. The limitations of traditional

GPS-based navigation to dropout, jamming and interference has motivated relying

on vision-based navigation as a suitable lightweight alternative. Despite the signif-

icant recent success in autonomous high-speed visual navigation, see, for example

[Foehn et al., 2020], longterm robust visual navigation in outdoor environments is

still an open challenge.

The Canadian Longterm Outdoor UAV Dataset (CLOUD) contains over 30 km of

visual-inertial data collected at three different locations across Canada. Specifically,

these locations include paths at Suffield, Montreal and the University of Toronto

Institute for Aerospace Studies (UTIAS) in Toronto as shown in Fig. 9.1.

While outdoor UAV visual-inertial datasets exist, see for example

[Majdik et al., 2017], they tend to be quite limited in scope. Specifically, they

cover one location at a single time of day during a single season of the year. We

present this dataset for two main reasons:

• To challenge the robustness of state-of-the-art visual navigation in different

environments and to significant lighting and seasonal changes;

• To enable the use of rendered satellite images for UAV navigation.

115
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Figure 9.1: Our data is collected at three different locations across Canada.

CLOUD contains a variety of environmental, lighting and seasonal conditions

which makes it well-suited for research in robust UAV visual localization. More-

over, many other potential use cases exist including satellite image UAV navigation,

experience-based localization and simultaneous localization and mapping.

The data in CLOUD has been used throughout this thesis. We list a few relevant

publications:

• Our CLOUD data, specifically the data in Table 9.2, has been used in Vi-

sual Teach and Repeat (VT&R) experiments in [Warren et al., 2019] to demon-

strate the closed-loop autonomous performance of a visual navigation pipeline

for emergency return in the event of GPS failure.

• Our CLOUD data has been used in [Greeff et al., 2020(b)] along with a feature-

based visual localization algorithm to develop a simple perception model that

is used in a perception-aware model predictive controller.

• Our CLOUD data, specifically the data in Table 9.7, has been used in visual lo-

calization using Google Earth images. The satellite images used for reconstruc-

tion to generate the Google Earth images may have been collected many years

ago. This can result in significant differences between a live UAV image and the

rendered Google Earth images. Our data has been used in [Patel et al., 2020]

and [Bianchi et al., 2021] to try to address this challenge of robustly and accu-

rately localizing live UAV images to Google Earth images.
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Table 9.1: Comparison of our dataset with related visual-inertial UAV datasets.

Dataset Location No. Cam. IMU Max Sat. Total
Env. Rate Rate Speed Im. Km

(Hz) (Hz) (m/s)

Euroc Indoor 2 20 200 2.3 No 0.9
Blackbird Indoor 3 120 100 7 No 60.0
Zurich Urban Outdoor 1 20 10 3.9 Yes 2.0
UPenn Fast Outdoor 1 40 200 17.5 No 2.4
UZH-FPV Racing Both 2 30/50 500/1000 12.8/23.4 No 6.17
CLOUD (Ours) Outdoor 3 15 400 14.3 Yes 36.58

9.2 Related Work

While indoor visual-inertial UAV datasets can provide very accurate ground truth

data, their usefulness to longterm visual outdoor navigation may be quite limited as

they generally consist of shorter flights, lack significant seasonal and lighting changes,

and other disturbances commonly prevalent in outdoor applications. The EUROC

MAV dataset, see [Burri et al., 2016], contains 11 trajectories flown indoors with a

maximum speed of 2.3 m/s. The Blackbird Dataset, see [Antonini et al., 2020], is the

largest indoor UAV dataset and contains 168 flights with over 17 trajectories up to

velocities of 7 m/s. While it contains a variety of environments, these environments

are rendered using photo-realistically generated images.

Many current UAV visual-inertial outdoor datasets target visual navigation dur-

ing fast aggressive maneuvers, see [Sun et al., 2018] and [Delmerico et al., 2020]. The

UPenn Fast dataset, used in [Sun et al., 2018], comprises of the same path flown at

4 different speeds achieving a maximum speed of 17.5 m/s. The UZH-FPV Racing

dataset, see [Delmerico et al., 2020], significantly extends this and provides multi-

ple outdoor aggressive trajectories with speeds up to 23.4 m/s. These datasets are

well-suited to test aggressive visual-navigation. However, their application to test or

benchmark robust longterm visual navigation is limited as they do not provide multi-

ple trials over various lighting and seasonal conditions. Furthermore, they currently

contain data from a single environment.

Our Canadian Longterm Outdoor UAV Dataset (CLOUD) was collected from

2018-2020 in three distinct environments in Canada and across multiple seasons. To

our knowledge, our dataset is currently the largest UAV visual outdoor dataset with

over 30 km of visual-inertial flight data. We show a comparison to related datasets in

Table 9.1. We include multiple trials of a given path and our data spans both rural
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and urban locations.

Moreover, similar to [Majdik et al., 2017], we also provide satellite images (gen-

erated using Google Earth) for the flown paths. Given the range of the data pro-

vide (different environments, lighting conditions, seasonal conditions), our dataset

is also well-suited to enable and test UAV navigation using satellite images, see

[Patel et al., 2020] and [Bianchi et al., 2021].

9.3 Datasets

9.3.1 Suffield Dataset

The Suffield dataset contains 15 trials (composed of both a Teach and Repeat run)

collected at Suffield, Alberta between 14 - 15 June, 2018. The maximum speed

during the trials varies between 3 m/s and 15 m/s. The Suffield dataset contains

approximately 14 km of flight data. The scenes comprise of mainly grassland with

some shipping containers. The data is well-suited for high-speed visual navigation.

9.3.2 Montreal Dataset

The Montreal dataset contains 10 trials (composed of both a Teach and Repeat run)

collected at Silo 5 near downtown Montreal between 9 - 11 September, 2018. The

Montreal dataset contains approximately 7 km of flight data. The scenes comprise

of urban structure, including flying near various building structures. A section of

the path includes scenes with the St Lawrence River. We also provide Google Earth

images taken along the path. This data is well-suited for inspection and patrol ap-

plications. We show example images and the Google Earth view in Fig. 9.2.

9.3.3 UTIAS Dataset

The UTIAS dataset contains 5 different paths (composed of various trials) collected

around the University of Toronto Institute for Aerospace Studies between 25 October

2018 - December 2020. The UTIAS dataset contains approximately 13 km of flight

data where scenes comprise of mainly natural vegetation with some building structure.

Notably, this dataset contains scenes flown in snow, windy conditions, and under

extreme sun glare. We also provide Google Earth images taken along the various

flight paths.
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Shorter UTIAS Datasets

Multiple trials are collected for the first three paths (UTIAS Straight, UTIAS circle,

UTIAS field). They are generally shorter paths with simple configurations (i.e., flying

a straight line, in a u-shape and in a circle). These datasets are useful for quick

benchmarking and testing because they comprise of simple flight paths but include

challenging feature-sparse scenes as highlighted in Fig. 9.3.

UTIAS Day Datasets

UTIAS Day was collected within a single day from morning to evening and is ideally

suited to test robustness of UAV visual navigation to daily lighting changes. RBG

images and RTK-GPS are provided for this dataset.

UTIAS Winter Datasets

UTIAS Winter was collected over multiple weeks during the winter months in Toronto,

Canada and is ideally suited to test robustness of UAV visual navigation to rapid

seasonal changes as shown in Fig. 9.4. RBG images and RTK-GPS are provided for

this dataset.

9.4 Hardware

Our dataset was captured using a DJI M600 Pro as shown in Fig. 6.1. A StereoLabs

camera is attached using a DJI Ronin-Mx gimbal to the M600 platform. We addi-

tionally store logged GPS data, raw IMU data and the gimbal orientation. We collect

(grey-scale or RGB) camera images (from the left camera) at 15 Hz. For the data in

UTIAS Suffield, UTIAS Montreal and shorter UTIAS datasets we provide grey-scale

images at 15 Hz. For the data in UTIAS Day and UTIAS Winter we provide colour

images at 15 Hz and RTK-GPS.

9.5 Data Description

9.5.1 Coordinate Frames

Fig. 9.5 illustrates the coordinate frames applicable to our dataset. All data is

described in one of these frames. The rigid transformations (described in the form of

a vector followed by a quaternion) from the vehicle frame Fvehicle to the base frame
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Figure 9.2: Example of live images (top) and Google Earth view (bottom) from
Montreal dataset.

(a) UTIAS Field (b) UTIAS Circle (c) UTIAS Straight

Figure 9.3: Example images from shorter paths around UTIAS. These datasets are
useful for quick benchmarking and testing as they include challenging feature-sparse
scenes.

Fbase and from the camera frame Fcamera to the gimbal frame Fgimbal can be found at

https://www.dynsyslab.org/cloud-dataset/. We also include the transformation

from the gimbal (when it is in the neutral position) Fgimbal to the vehicle Fvehicle. The

key co-ordinates frames are the ground Fground, vehicle Fvehicle and base Fbase frames:

• Ground Frame(s) - There are two ground frames, i.e., East-North-Up (ENU)

and North-East-Down (NED).

• Vehicle and Base Frames - The vehicle Fvehicle and base Fbase frames are both

Forward-Left-Up (FLU). The vehicle frame Fvehicle is aligned at approximately

the center-of-gravity of the M600 while the base frame Fbase is shift vertically

to align approximate at the base of the legs of the M600 UAV.

https://www.dynsyslab.org/cloud-dataset/
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Figure 9.4: Example images from UTIAS Winter dataset highlight potential use-case
for demonstrating robustness of visual navigation to rapid seasonal changes.

Figure 9.5: Overview of coordinate frames.

9.5.2 File Structure

The dataset is split into trial folders (which can be downloaded separately). For the

Suffield, Montreal and shorter UTIAS datasets each trial contains a teach and repeat

run. The repeat run is the same path as the teach run but traversed in the reverse

direction (often autonomously using vision) shortly after the teach path ends. For

the UTIAS Day and UTIAS Winter only a teach folder is provided. For trials where

we have collected Google Earth Images along the path, see Tables 9.2-9.8, we also

provide a folder with the associated Google Earth Images and their GPS locations

and orientation.

The images subfolder contain images obtained from the left camera. Images are

named in the order they were obtained. In each of the run folders we provide the asso-
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ciated timestamp for each image, GPS measurements, attitude, acceleration, velocity,

gimbal angles and gimbal state. For more detail see the next section Interpreting files.

9.5.3 Interpreting files

All timestamps are Unix timestamps given in nanoseconds. These may be converted

to UTC via standard datetime library functions.

Velocity Stream

The estimated velocity is provide as vector in the ground frame (ENU) Fground at

a rate of 50 Hz. It is provided in a human-readable, comma-delimited text file

velocities.txt where each row provides the timestamp followed by the velocity vec-

tor.

Attitude Stream

The raw attitude is provide as quaternion from the vehicle frame Fvehicle to the ground

frame (ENU) Fground at a rate of 100 Hz. It is provided in a human-readable, comma-

delimited text file attitude.txt where each row provides the timestamp followed by the

attitude quaternion.

Acceleration Stream

The raw acceleration is provide as vector in the vehicle frame Fvehicle at a rate of 400

Hz. It is provided in a human-readable, comma-delimited text file acceleration.txt

where each row provides the timestamp followed by the acceleration vector.

GPS Stream

The raw GPS is provide as latitude, longitude and altitude (in m with respect to the

WGS 84 ellipsoid) at a rate of 50 Hz. It is provided in a human-readable, comma-

delimited text file gps.txt where each row provides the timestamp followed by the

GPS measurement.

Gimbal State Stream

The estimated gimbal state is provide as vector and quaternion which described the

transformation from the base frame Fbase to the camera frame Fcamera at a rate of
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50 Hz. It is provided in a human-readable, comma-delimited text file gimbalstate.txt

where each row provides the timestamp followed by the vector and quaternion.

Gimbal Angle Stream

The raw gimbal angles are provide as Euler angles that describe the rotation of

from the gimbal frame Fgimbal to the Fground (NED) frame at a rate of 50 Hz. The

Euler angles are in the standard ZYX convention (roll, pitch, yaw). They are given

in degrees. The roll and pitch angles are given relative to the global NED frame,

however the yaw angle is given relative to the Vehicle/Base frames. Unfortunately,

this is the convention used in the DJI ROS SDK. However, for further convenience

our estimated gimbal state (position and orientation) relative to the Base frame Fbase

is provided in the Gimbal State Stream.

Image IDs Stream

The images ids are also human-readable and comma-delimited with each row repre-

senting the timestamp followed by the associated image ID (as found in the images

folder). Images are collected at approximately 15 Hz.

9.6 Summary of Trials



Table 9.2: Summary of Suffield Dataset.

Trial Date Teach Repeat
(yy-mm-dd) Start Max Sat. Start Max Sat.

Time Speed Images Time Speed Images

1 18-06-14 11:39 3.51 m/s No 11:41 4.43 m/s No
2 18-06-14 11:47 7.55 m/s No 11:49 7.64 m/s No
3 18-06-14 11:55 8.60 m/s No 11:57 8.69 m/s No
4 18-06-14 12:02 10.58 m/s No 12:04 10.68 m/s No
5 18-06-14 12:09 12.63 m/s No 12:11 12.16 m/s No
6 18-06-14 12:22 15.06 m/s No 12:23 13.27 m/s No
7 18-06-14 12:38 3.51 m/s No 12:41 3.43 m/s No
8 18-06-14 13:05 7.57 m/s No 13:07 7.56 m/s No
9 18-06-14 13:12 10.64 m/s No 13:14 10.81 m/s No
10 18-06-14 13:18 14.28 m/s No 13:20 10.62 m/s No
11 18-06-14 13:32 7.62 m/s No 13:34 7.70 m/s No
12 18-06-14 13:40 7.72 m/s No 13:42 7.62 m/s No
13 18-06-14 13:49 7.68 m/s No 13:51 7.62 m/s No
14 18-06-15 10:34 3.62 m/s No 10:37 4.07 m/s No
15 18-06-15 11:13 3.50 m/s No 11:15 3.82 m/s No

Table 9.3: Summary of Montreal Dataset.

Trial Date Teach Repeat
(yy-mm-dd) Start Max Sat. Start Max Sat.

Time Speed Images Time Speed Images

1 18-09-11 14:07 2.47 m/s Yes 14:10 2.63 m/s No
2 18-09-11 14:22 3.47 m/s No 14:25 3.53 m/s No
3 18-09-11 14:39 3.52 m/s No 14:41 3.79 m/s No
4 18-09-11 16:18 3.52 m/s No 16:21 2.81 m/s No
5 18-09-11 16:32 3.60 m/s No 16:35 2.76 m/s No
6 18-09-11 16:46 3.61 m/s No 16:49 2.35 m/s No
7 18-09-10 10:11 2.43 m/s No 10:14 2.44 m/s No
8 18-09-10 12:47 2.59 m/s No 12:50 2.89 m/s No
9 18-09-10 15:16 2.63 m/s No 15:20 2.68 m/s No
10 18-09-09 16:48 2.56 m/s No 16:51 2.57 m/s No
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Table 9.4: Summary of UTIAS Field Dataset.

Trial Date Teach Repeat
(yy-mm-dd) Start Max Sat. Start Max Sat.

Time Speed Images Time Speed Images

1 19-08-16 11:16 5.60 m/s Yes 11:17 6.26 m/s No
2 19-08-16 11:23 5.57 m/s No 11:24 6.93 m/s No
3 19-08-16 11:35 5.63 m/s No 11:36 8.81 m/s No
4 19-08-16 11:42 5.62 m/s No 11:43 10.84 m/s No
5 19-08-16 11:44 5.62 m/s No 11:50 11.89 m/s No

Table 9.5: Summary of UTIAS Circle Dataset.

Trial Date Teach Repeat
(yy-mm-dd) Start Max Sat. Start Max Sat.

Time Speed Images Time Speed Images

1 18-10-25 13:40 3.37 m/s Yes 11:42 3.71 m/s No
18-10-26 15:30 3.55 m/s No
18-10-29 09:25 4.31 m/s No
18-10-30 16:42 3.62 m/s No
18-10-30 17:52 4.08 m/s No
18-11-05 13:46 3.79 m/s No
18-11-08 16:20 4.56 m/s No
18-11-12 12:10 3.64 m/s No

2 18-11-08 14:37 3.49 m/s No 14:42 3.92 m/s No
18-11-08 14:49 4.73 m/s No
18-11-08 14:57 7.20 m/s No
18-11-08 15:09 8.67 m/s No

Table 9.6: Summary of UTIAS Straight Dataset.

Trial Date Teach Repeat
(yy-mm-dd) Start Max Sat. Start Max Sat.

Time Speed Images Time Speed Images

1 19-02-11 16:08 3.37 m/s Yes 16:27 3.38 m/s No
19-02-11 16:30 3.24 m/s No
19-02-11 16:34 3.36 m/s No
19-02-11 16:41 3.35 m/s No
19-02-11 16:45 3.40 m/s No
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Table 9.7: Summary of UTIAS Day Dataset.

Trial Date Teach Repeat
(yy-mm-dd) Start Max Sat. Start Max Sat.

Time Speed Images Time Speed Images

1 19-08-01 10:37 3.75 m/s Yes
2 19-08-01 11:56 3.79 m/s No
3 19-08-01 14:35 3.68 m/s No
4 19-08-01 17:50 3.61 m/s No
5 19-08-01 20:24 3.68 m/s No

Table 9.8: Summary of UTIAS Winter Dataset.

Trial Date Teach Repeat
(yy-mm-dd) Start Max Sat. Start Max Sat.

Time Speed Images Time Speed Images

1 20-11-05 15:55 3.56 m/s Yes
2 20-11-16 15:49 3.53 m/s No
3 20-11-23 14:08 3.46 m/s No
4 20-12-10 11:58 3.50 m/s No
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Chapter 10

Summary and Future Work

This chapter summarizes the key contributions of this thesis. We explain the rela-

tionship between the chapters and refer to the related publications. At the end of

this chapter we provide further insights into research paths for future work.

10.1 Contributions and Publications

Our first motivation was for multirotor UAVs to achieve safe high-performance fast

flight by accounting for nonlinearities and unknown dynamics in computationally

tractable control algorithms that can be used in real-time operation in a high-

frequency feedback loop.

A core idea behind this thesis is to exploit a structural property of many nonlinear

models, including multirotors, known as differential flatness, see [Fliess et al., 1995]

and [Mellinger et al., 2011]. Intuitively, differential flatness allows us to separate the

nonlinear model into a linear dynamics component and a nonlinear transformation.

A common control approach for differentially flat systems is to try to cancel the

nonlinear term (using feedback linearization) and design a controller using the linear

dynamics component which is computationally efficient to design. However, in reality,

performance and safety are limited by the mismatch between the nominal model (for

example, used to cancel the nonlinearity) and the actual system dynamics (which

may include unknown disturbances and changing dynamics). In Part I: Exploiting

Flatness Structure, we explored control design that exploits differential flatness to

develop computationally tractable control that is able to achieve high performance

and safety despite the mismatch between the nominal model and actual system.
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Contribution I: In Chapter 3, we utilized the differential flatness property to

couple a feedback model predictive controller that uses the linear dynamics with

feedforward linearization to account for nonlinearity. The proposed Flatness-Based

Model Predictive Control (FMPC) approach has two main advantages. Firstly, by

solving a convex quadratic program in linear model predictive control, we achieved a

computational benefit over nonlinear model predictive control which requires solving

a non-convex nonlinear program. Secondly, by using feedforward linearization, we

still account for nonlinearities and demonstrate, practically, that we obtain improved

robustness to model parameter uncertainty and input time delays over the more

common feedback linearization method.

The contributions of this chapter are three-fold.

• Firstly, we presented a novel Flatness-based Model Predictive Control (FMPC)

architecture that coupled feedback MPC with feedforward linearization. We

demonstrated that feedback MPC and feedforward linearization have a symbi-

otic relationship. Feedforward linearization allows us to use a simplified linear

model in MPC, while using MPC as our feedback controller allows us to satisfy

the conditions for feedforward linearization.

• Secondly, we implemented our FMPC architecture on a multirotor UAV, ac-

counting for inner-loop dynamics and known input time delays.

• Finally, we demonstrate experimental results for FMPC as an outer-loop con-

troller on a multirotor UAV with improved trajectory tracking performance in

many cases over nonlinear model predictive control (NMPC) and linear model

predictive control (LMPC).

The publication associated with this chapter is:

• M. Greeff and A. P. Schoellig, “Flatness-based model predictive control for

quadrotor trajectory tracking,” in Proc. IEEE International Conference on

Intelligent Robots and Systems (IROS), pp. 6740-6745, 2018.

Our method in Chapter 3 is model-based and closed-loop performance is limited to

the accuracy of the prior model and does not improve with online-data. Consequently,

in Chapters 4 - 5, we explored learning-based control as it can often outperform con-

ventional model-based techniques in the presence of model uncertainties by using

online system data. However, most state-of-the-art learning-based nonlinear trajec-

tory tracking controllers still lack any formal guarantees.
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Contribution II: In Chapter 4, we exploit the property of differential flatness

to design an online, robust learning-based controller to achieve both high tracking

performance and probabilistically guarantee a uniform ultimate bound on the tracking

error. This chapter has three key contributions:

• We present a novel approach that uses a Gaussian Process to improve feedback

linearization and quantify how well we are able to linearize the system.

• We proved that theoretically our quantified uncertainty can be combined with

a standard robust LQR to probabilistically guarantee an ultimate bound on the

tracking error.

• We show through simulations how our proposed approach results in improved

tracking performance over related learning-based controllers that use differential

flatness.

The publication associated with this chapter is:

• M. Greeff and A. P. Schoellig, “Exploiting differential flatness for robust

learning-based tracking control using Gaussian Processes,” IEEE Control Sys-

tems Letters, vol. 5, no. 4, pp. 1121-1126, 2020.

Our flatness-based robust learning control approach in Chapter 4 has three main

limitations: (i) it relies on robust LQR and cannot be combined with alternatives

controllers, for example, linear model predictive control; (ii) the method is computa-

tionally intractable for high-rate feedback as it takes on average approximately 0.3 s

to compute each iteration and (iii) it cannot account for state and input constraints.

Contribution III: In Chapter 5, we learn a filter that can augment any controller

for control-affine differentially flat systems to efficiently certify robot tracking conver-

gence and input constraints in the presence of model uncertainty.

The three key contributions of this work are:

• We provide a novel filter that can augment any controller for control-affine

differentially flat systems to achieve high tracking performance while certifying

robot tracking convergence and input constraints despite model uncertainty.

• We show that for control-affine systems the filter comprises of an optimization

problem that is not only convex but can be solved efficiently as a second-order

cone program (SOCP).
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• We demonstrate, in simulation, a significant reduction in average computation

over related methods, while still achieving high tracking performance. This

makes our proposed approach suitable for online and onboard implementation

in high-rate feedback loops, for example, on autonomous UAVs.

The publication associated with this chapter is:

• M. Greeff, A. W. Hall, and A. P. Schoellig, “Learning a stability filter for un-

certain differentially flat systems using Gaussian Processes,” in Proc. IEEE

Conference on Decision and Control (CDC), pp. 789-794, 2021.

The second challenge with real-world environments is that we may not be able to

always operate with reliable GPS. This has motivated developing vision-based navi-

gation that relies primarily on lightweight, inexpensive onboard camera sensors. One

such vision-based approach uses a Visual Teach and Repeat (VT&R) framework that

allows the UAV to repeat a previously taught path by matching current visual fea-

tures to those in the locally metric map created during teach, see [Gao et al., 2020] or

[Warren et al., 2019]. In Part II: Autonomous Vision-Based Flight, we consid-

ered the Visual Teach and Repeat (VT&R) framework and focused on the controller

required to autonomously repeat a previously taught path.

Contribution IV: Many state-of-the-art controllers are perception-agnostic and

tend to assume that the action computed by the controller has no effect on the

ability of vision-based navigation to determine the UAV’s location (or localization).

In Chapter 7, we present a perception-aware model predictive controller that accounts

for its effect on the visual localization capabilities of our system in Chapter 6.

There are three points of novelty to the proposed perception-aware MPC:

• We develop and validate a simple geometric perception model (for nominal

lighting conditions - i.e., little difference in lighting conditions between teach

and repeat) using over 12 km of data for our visual localization system in

Chapter 6.

• We show how to integrate this perception model in a chance constraint, such

that localization is guaranteed, in MPC and how to convert it to a deterministic

nonlinear constraint.

• Using real-world perception data, we provide experimental simulation results

demonstrating the value of our perception-aware MPC in terms of reliably
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(without losing localizability) but optimally self-regulating speed along a path

compared to similar perception-agnostic controllers.

The publication associated with this chapter is:

• M. Greeff, T. D. Barfoot, and A. P. Schoellig, “A perception-aware flatness-

based model predictive control for fast vision-based multirotor flight,” in Proc.

IFAC World Congress, vol. 53, no. 2, pp. 9412-9419, 2020.

The main limitation with the perception-aware MPC formulation in Chapter 7 is

that it relies on traditional model predictive control which assumes a perfect full-state

estimate (including position, velocity and acceleration) to make accurate predictions.

Contribution V: In Chapter 8, we present an alternative predictive controller that

does not rely on the full-state estimate for vision-based multirotor flight. An accurate

full-state estimate is often challenging due to typically noisy IMU measurements, an

infrequent position update from the vision system and an imperfect motion model

used to obtain high-rate state estimates required by control. Our controller avoids

inaccurate velocity and acceleration estimates and instead relies on only a window of

outputs, specifically position and yaw, and previously sent inputs.

The contributions of this chapter are three-fold:

• To the best of our knowledge, this is the first work to demonstrate that the

property known as discrete-time flatness holds for the Euler discretization of

multirotors. This means that only a window of input (thrust and torques) and

output (position and yaw) samples is required for control design.

• We highlight in simulation how the approach outperforms controllers that rely

on a poor full-state estimate as a result of noisy position measurements (and

higher-order derivative estimation) or large initial state uncertainty.

• In outdoor experiments, we show the application of our proposed discrete-time

flatness-based controller to vision-based flight at speeds up to 10 m/s and how

it outperforms controllers that hinge on accurate full-state estimation.

The publication associated with this chapter is:

• M. Greeff, S. Zhou, and A. P. Schoellig, “Fly out the window: Exploiting

discrete-time flatness for fast vision-based multirotor flight,” IEEE Robotics

and Automation Letters, vol. 7, no. 2, pp. 5023-5030, 2022.
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10.2 Future Work

Part I: Exploiting Flatness Structure

Certifying Differential Flatness: In Chapters 3 - 5, we rely on the assumption

that the system is differentially flat in a known and measured flat output. This as-

sumption is based on the derivation of differential flatness for inaccurate first-principle

models. For example, we assume that our multirotor system is differentially flat (in

position and yaw) based on a first-principle model of the system. There is still an

open question as to whether this property remains to be true despite unknown dis-

turbances and/or unmodelled dynamics. Future work could develop techniques to

certify when the property of differential flatness, currently derived from inaccurate

first-principle models, can be safely exploited by using data from physical robotic

systems. Further extensions could also investigate data-driven approaches to learn or

estimate likely flat outputs of the system.

Long-Term and Short-Term Learning: In Chapters 4 - 5, we develop learning-

based techniques to achieve high-performance while certifying safety (through guar-

anteeing tracking convergence) by exploiting differential flatness. However, we did

not differentiate between long-term learning and online short-term learning. An in-

teresting next step would be to explore the role of long-term learning and online

short-term learning in differential flatness-based control architectures. For example,

one idea is to use long-term learning to learn and certify differential flatness and up-

date the linear dynamics model while short-term learning is used to compensate for

the nonlinear term (similar to our approaches in Chapters 4 - 5).

State Constraints: Future work could combine flatness-based model predictive

control in Chapter 3 with the learning-based stability filter in Chapter 5. Such an

approach would benefit from using a linear model predictive controller to consider

constraints while using data from the system to improve performance. In our lin-

ear model predictive controller in Chapter 3 we approximated state constraints to

constrain the transformed state (i.e., the flat output and higher derivatives). Fu-

ture work, could explore how to approximate state constraints when transforming

them into convex constraints on the transformed state such they are guaranteed to

be satisfied.
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Part II: Autonomous Vision-Based Flight

Perception-Aware Models: In Chapter 7, we presented a perception model to

capture the limitations of feature-based localization approaches. However, in re-

cent years there has been significant progress in alternative more robust localization

methods such as using mutual information, as in [Patel et al., 2020], or kernel-based

approaches, as in [Bianchi et al., 2021]. Unlike feature-based approaches, these meth-

ods have been successfully used to localize using satellite images. Future work should

investigate developing models that capture the limitations, accuracy and variability

of these current state-of-the-art localization approaches. These models could be used

in planners and robust controllers to actively plan paths where the UAV is likely to

be able localize well.

Learning and Adaptive Discrete-Time Flatness Control: In Chapter 8, we

presented a predictive controller by exploiting discrete-time flatness to bypass a noisy

full state estimate. The work in this chapter has been model-based. As such, fu-

ture work could explore learning-based control that could improve performance by

simultaneously learning both the input-to-output mappings and the output-to-input

mappings in our discrete-time framework by using only input and output data. Most

learning-based controllers, see Chapter 4 for example, require full-knowledge of the

state to learn the dynamics model. Furthermore, this could potentially overcome

limitations when the state estimator and controller use different learned dynamics

models. Another interesting direction is to explore the role of adaptive control in

discrete-time flatness control to compensate for both dynamic disturbances, such as

wind, and visual odometry biases, such as a scale bias. Another potential challenge

with our proposed discrete-time flatness control approach is that we use a model to

determine the window size r of output (specifically flat outputs) and input (our sent

commands) data samples required for control. In practice the window size r deter-

mined from first principle models may differ for the actual system. In future work,

we propose developing a learning-based controller by varying the window size and

observing the effect on the control performance. Our controller in Chapter 8 required

the output estimation rate to be the same as the commanded input rate. This meant

that we relied on an additional estimator (specifically STEAM) between the relative

position estimate from visual odometry and the higher-rate estimates sent to the con-

troller. Future work is also required to extend the proposed control design to account

for different input and output rates.
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J. Umlauft, L. Pöhler and S. Hirche, “An uncertainty-based control Lyapunov

approach for control-affine systems modelled by Gaussian process,” IEEE Control

Systems Letters, vol. 2, pp. no. 3, pp. 483-488, 2018.

M. Greeff and A. P. Schoellig, “Exploiting differential flatness for robust learning-

based tracking control using Gaussian processes,” IEEE Control Systems Letters,

vol. 5, no. 4, pp. 1121-1126, 2020.

L. Zheng, R. Yang, J. Pan, H. Cheng and H. Hu, “Learning-based safety-stability-

driven Control for safety-critical systems under model uncertainties,” in Proc.

International Conference on Wireless Communications and Signal Processing

(WCSP), pp. 1112-1118, 2020.

E. Sontag. “A ‘universal’ construction of Artstein’s theorem on nonlinear stabiliza-

tion,” Systems & Control Letters, vol. 13, pp. 117-123, 1989.

A. Taylor, V. Dorobantu, H. Le, Y. Yue, and A. Ames. “Episodic learning with

control lyapunov functions for uncertain robotic systems,” in Proc. IEEE Inter-

national Conference on Intelligent Robots and Systems (IROS), pp. 6878-6884, 2019.

F. Castaneda, J. J. Choi, B. Zhang, C. J. Tomlin, and K. Sreenath, “Gaussian

process-based min-norm stabilizing controller for control-affine systems with uncer-

tain input effects,” in Proc. IEEE American Control Conference (ACC), pp. 3683-

3690, 2021.

Y. Nesterov and A. Nemirovski, Interior-point polynomial algorithms in convex

programming, Siam studies in applied mathematics: 1994.

D. D. Fan, J. Nguyen, R. Thakker, N. Alatur, A. A. Agha-mohammadi, and E. A.

Theodorou, “Bayesian learning-based adaptive control for safety critical systems,”

in Proc. IEEE International Conference on Robotics and Automation (ICRA), pp.

4093-4099, 2020.

D. Thakur, G. Loianno, L. Jarin-Lipschitz, A. Zhou, and V. Kumar, “Autonomous

inspection of a containment vessel using a micro aerial vehicle”, in Proc. IEEE Inter-



BIBLIOGRAPHY 139

national Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 1-7, 2019.

M. Warren, M. Greeff, B. Patel, J. Collier, A. P. Schoellig and T. D. Barfoot,

“There’s no place like home: visual teach and repeat for emergency return of

multirotor UAVs during GPS failure,” IEEE Robotics and Automation Letters, vol.

4, no. 1, pp. 161-168, 2019.

P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski, M. Gehrig, M. Muglikar,

and D. Scaramuzza, “AlphaPilot: autonomous drone racing,” Autonomous Robots,

vol. 46, pp. 307-320, 2022.

F. Gao, L. Wang, B. Zhou, X. Zhou, J. Pan, and S. Shen. “Teach-repeat-replan: a

complete and robust system for aggressive flight in complex environments,” IEEE

Transactions on Robotics, vol. 36, no. 5, pp. 1526-1545, 2020.

Y. Song, M. Steinweg, E. Kaufmann and D. Scaramuzza, “Autonomous drone

racing with deep reinforcement learning,” in Proc. IEEE International Conference

on Intelligent Robots and Systems (IROS), pp. 1205-1212, 2021.

E. Kaufmann, M. Gehrig, P. Foehn, R. Ranftl, A. Dosovitskiy, V. Koltun, and

D. Scaramuzza, “Beauty and the beast: optimal methods meet learning for drone

racing,” in Proc. IEEE International. Conference on Robotics and Automation

(ICRA), pp. 690-696, 2019.

T. Nguyen, A. H. Zaini, C. Wang, K. Guo and L. Xie, “Robust target-relative

localization with ultra-wideband ranging and communication,” in Proc. IEEE

International Conference on Robotics and Automation (ICRA), pp. 2312-2319,

2018.

S. Dean, N. Matni, B. Recht, and V. Ye, “Robust guarantees for perception-based

control,” in Proc. Conference on Learning for Dynamics and Control (L4DC), vol.

120, pp. 350-360, 2020.

L. Jarin-Lipschitz, R. Li, T. Nguyen, V. Kumar and N. Matni, “Robust, perception-

based control with quadrotors,” in Proc. IEEE International Conference on



BIBLIOGRAPHY 140

Intelligent Robots and Systems (IROS), pp 7737-7743, 2020.

L. Brunke, S. Zhou, and A. P. Schoellig, “RLO-MPC: robust learning-based output

feedback MPC for improving the performance of uncertain systems in iterative

tasks,” in Proc. IEEE International Conference on Decision and Control (CDC),

pp. 2183-2190, 2021.

J Lorenzetti and M. Pavone, “A simple and efficient tube-based robust output feed-

back model preditive control scheme,” in Proc. IEEE European Control Conference

(ECC), pp. 1775-1782, 2020.

M. Kogel and R. Findeisen, “Robust output feedback mpc for uncertain linear

systems with reduced conservatism,” in Proc. IFAC World Congress, vol. 50, no. 1,

pp. 10685-10690, 2017.

D. A. Copp and J. P. Hespanha, “Simultaneous nonlinear model predictive control

and state estimation,” Automatica, vol. 77, pp. 143-154, 2017.

P. Guillot and G. Millerioux, “Flatness and submersivity of discrete-time dynamical

systems,” IEEE Control Systems Letters, vol. 4, no. 2, pp. 337-342, 2020.
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