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Abstract

Visual Localization for UAVs in Outdoor GPS-denied Environments

Bhavit Patel

Master of Applied Science

Graduate Department of University of Toronto Institute for Aerospace Studies

University of Toronto

2019

Vision-based navigation techniques are commonly used for autonomous flight in outdoor

Global Positioning System (GPS)-denied environments. We adapt Visual Teach and

Repeat (VT&R), a vision-based autonomous route-following system, to use on multirotor

Unmanned Aerial Vehicles (UAVs). Since multirotors are underactuated, there are no

guarantees that the camera viewpoint will be the same at matching positions along

the teach and repeat paths, which causes visual localization to be challenging. The

first part of this thesis demonstrates that by using a 3-axis gimballed camera with an

appropriate active pointing strategy, we can improve the visual localization performance

and robustness within the VT&R framework. The second part of this thesis presents a

method to estimate the global pose of a UAV by using an information-theoretic approach

to register real images with rendered georeferenced images from 3D Google Earth. We

show that this method is capable of accurately estimating the 6DoF pose with a position

accuracy on par with GPS.
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Notation

F−→a A reference frame for a three dimensional coordinate system

SE(3) The Special Euclidean Group in three dimensions used to represent rigid

body transformations and poses, a matrix Lie group

se(3) The Lie algebra vectorspace associated with SE(3)

SO(3) The Special Orthogonal Group in three dimensions used to represent rigid

body rotations, a matrix Lie group

so(3) The Lie algebra vectorspace associated with SO(3)

Tb,a A matrix in SE(3) that transforms points expressed in F−→a to F−→b

Cb,a A matrix in SO(3) that rotates points expressed in F−→a to F−→b

ra,bb A vector in R
3×1 representing the translation of the origin of F−→b to F−→a

expressed in F−→b

exp(·∧) A Lie algebra operator mapping from se(3) to SE(3) or so(3) to SO(3)

ln(·)∨ A Lie algebra operator mapping from SE(3) to se(3) or SO(3) to so(3)

(̌·) A prior value

(̂·) A posterior value

(·)∗ An optimized value

N (µ, σ2) A normal distribution with mean µ and variance σ2

v



Chapter 1

Introduction

1.1 Background and Motivation

The demand for using Unmanned Aerial Vehicles (UAVs) in a variety of industrial and

commercial applications has rapidly risen due to the their technological advancements

over the past decade; emergency response, surveillance and reconnaissance, agriculture,

remote sensing and monitoring, and delivery services are just a few of many expected

applications. However, one crucial element that is limiting their widespread use is safety.

The majority of UAVs available today are capable of autonomous navigation using

Global Positioning System (GPS) and inertial sensors. This reliance on GPS poses a

problem for environments where poor satellite coverage, multipath propagation, and

intentional jamming can hinder its use. As a result, government regulations generally

restrict the use of UAVs to Visual Line of Sight (VLOS) operations to allow a human to

manually pilot the vehicle in the event of GPS loss. To enable beyond VLOS operations

and expand the scope of UAV applications, there is a need to develop safe and robust

autonomous navigation solutions that can serve as standalone or backup solutions during

GPS loss.

Vision-based autonomous navigation techniques are commonly used for UAVs in GPS-

denied environments due to the light weight, low power consumption, and low cost of

cameras. The majority of these techniques involve Visual Odometry (VO). VO alone

is unreliable for accurate pose estimates since it ultimately drifts in the absence of cor-

rections. Visual Simultaneous Localization and Mapping (SLAM) corrects these drifts

through loop closure and has been sucessfully demonstrated in GPS-denied environments

[Blösch et al., 2010, Weiss et al., 2013, Shen et al., 2015] but requires revisiting locations.

On the other hand, VT&R [Furgale and Barfoot, 2010] can enable safe navigation with-

out requiring globally accurate poses. VT&R is a route-following technique that enables

1



Chapter 1. Introduction 2

long-range autonomous navigation without reliance on external positioning systems such

as GPS. While its development has largely focused on ground vehicles, we adapt it for

use on multirotor UAVs.

We use the VT&R framework to develop a redundant navigation system that enables

the safe, autonomous return of multirotor UAVs in the event of primary navigation

failure such as GPS loss. This system has numerous use cases including drone delivery

and surveillance and reconnaissance where an attacker can be prevented from stealing

an expensive package or recovering sensitive information by intentionally jamming GPS.

During the outbound flight where the UAV is manually piloted or under autonomous GPS

waypoint control, a visual map is generated using only a stereo camera and performing

sparse feature-based VO. Following a GPS loss, the UAV is able to return to the takeoff

location by autonomously navigating backwards along the outbound flight path using a

vision-based flight controller.

Although part of the contribution of this thesis is engineering work and experimental

verification of the VT&R system for emergency return, we opt to not include a separate

chapter detailing the system. This thesis will instead focus on the contributions made

in addressing two challenges: 1) handling large camera viewpoint changes between the

teach and repeat flights due to the underactuated nature of multirotor UAVs, and 2)

enabling flight along routes untraversed by the vehicle itself.

We address the first challenge by using a 3-axis gimbal to actively point the camera.

Chapter 2 details various pointing strategies and compares their performance in multiple

outdoor flight tests. We also demonstrate closed-loop vehicle control with active camera

pointing to conclude our initial verification of using the VT&R system for emergency

return of a multirotor UAV.

The second challenge arises from the desire to continue to the destination after GPS

loss, especially if the destination is closer than the takeoff location, and perform emer-

gency return along a route more efficient than the outbound. To address this challenge,

we initially forego the use of a teach-and-repeat style technique, and instead solve the

more general problem of global pose estimation. We develop a method to accurately esti-

mate the global pose of a UAV by visually localizing using a set of georeferenced images.

Chapter 3 presents the pose estimation method and successful results on real-world data.

1.2 Related Work

Vision-based autonomous navigation for UAVs in GPS-denied environments is a popular

research area with many groups showing successful demonstrations under limited condi-
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tions. We briefly present a few examples with a focus on SLAM and teach-and-repeat

style techniques. Related work pertaining to gimbals on UAVs (Chapter 2) and localiza-

tion with georeferenced images (Chapter 3) are detailed in their respective chapters.

Visual SLAM techniques have been sucessfully demonstrated for GPS-denied envi-

ronments in indoor [Blösch et al., 2010, Weiss et al., 2011] and outdoor settings [Achtelik

et al., 2011, Weiss et al., 2013, Shen et al., 2013]. In many cases, a fixed downward facing

monocular camera along with an Inertial Measurement Unit (IMU) is used [Blösch et al.,

2010, Weiss et al., 2011, Achtelik et al., 2011, Weiss et al., 2013]. Shen et al. [2013] added

a stereo camera as a secondary camera for metric scale.

Work in [Blösch et al., 2010, Weiss et al., 2011, Achtelik et al., 2011, Weiss et al., 2013]

use Parallel Tracking and Mapping (PTAM) [Klein and Murray, 2007] implementation

of visual SLAM, which splits the localization and mapping into two separate threads

allowing high rate motion estimation with a lower rate mapping. Extensions to [Blösch

et al., 2010] allow all processing to be performed onboard the UAV by reducing the num-

ber of features tracked and limiting the number of keyframes stored [Weiss et al., 2011].

The pose estimates were fused with an IMU in an Extended Kalman Filter (EKF) to

self-calibrate the IMU and visual drifts [Weiss et al., 2013] resulting in a 1.47m final

position error from autonomous navigation along a 360m outdoor flight with 70m al-

titude change. While the keyframe limit enables real-time processing onboard, it also

reduces the chance of loop closure in large environments due to the keyframe dropping.

Additionally, revisiting a location may require remapping.

LIDAR SLAM has also been demonstrated on UAVs to explore and map indoor

[Bachrach et al., 2009] and outdoor [Bachrach et al., 2011] environments. Huh et al.

[2013] use a LIDAR, monocular camera, and IMU for indoor and outdoor autonomous

flight. The LIDAR scans are used to estimate the depth of all features detected in a

camera image for visual SLAM. However, in both cases the mapping and path planning

was offloaded to a powerful ground station. Also, the high power consumption and weight

of LIDAR sensors make them unsuitable for smaller multirotor UAVs.

The teach phase of VT&R differs from SLAM in two key ways. The first is that most

SLAM techniques require the creation of monolithic, globally consistent maps whereas

VT&R does not have this requirement. Instead, locally consistent overlapping maps are

created during the teach run. During the repeat runs, the mobile robot can be localized

against the locally consistent map at the nearest keyframe. Second, the human-operated

teach phase precludes the need to develop a safe autonomous exploration algorithm.

A proof-of-concept demonstration of VT&R on multirotor UAVs was shown in [Pfrun-

der et al., 2014]. A monocular downward facing camera was utilized with an altitude
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sensor for scale to autonomously follow an 8m straight and constant altitude route. War-

ren et. al adapted the localization engine of VT&R to successfully localize a fixed-wing

UAV with a fixed downward facing camera over a taught 1200m trajectory at an altitude

of 80m [Warren et al., 2018]. We extend this work to improve the visual localization and

close the loop with a vision-based flight controller for our emergency return system.

Recently, there have also been demonstrations of similar teach-and-repeat style tech-

niques for visual navigation [Toudeshki et al., 2018, Surber et al., 2017]. Sparse features

are replaced with semantic objects in [Toudeshki et al., 2018] but this requires reliable

detection of distinct objects in real time. Surber et al. [2017] perform map building offline

thus their method cannot be used as an emergency return solution.

1.3 SE(3) Math Overview

In this section, we define some of the notation used to represent poses and transforms,

as well as provide a brief overview of important operators associated with the Special

Euclidean Group in three dimensions (SE(3)) that will be used throughout this thesis.

We refer the reader to [Barfoot, 2017] for a more detailed explanation.

SE(3) represents rigid body transformations and poses. Similarly, the Special Or-

thogonal Group in three dimensions (SO(3)) represents rigid body rotations. In this

work, we define

Ta,b =

[

Ca,b rb,aa

0⊤ 1

]

∈ SE(3) (1.1)

as the 4 × 4 transformation matrix that transforms points in coordinate frame F−→b to

F−→a. This transformation matrix consists of a 3 × 3 rotation matrix, Ca,b ∈ SO(3), and

a translation vector, rb,aa = [xb,aa yb,aa zb,aa ]⊤. The superscript of rb,aa indicates it is a vector

from the origin of F−→a to F−→b, while the subscript indicates the vector is expressed in F−→a.

Both SE(3) and SO(3) are matrix Lie groups, and have an associated Lie algebra,

se(3) and so(3), respectively. The Lie group and Lie algebra can be related through an

exponential and logarithmic mapping. Here, we will only describe the relationship for

SE(3) and se(3) as the relationship for SO(3) and so(3) is quite similar. The exponential

map takes us from se(3) to SE(3):

Ta,b = exp(ξ∧) =
∞
∑

n=0

1

n!
(ξ∧)n, (1.2)

where ξ = [ρ φ]⊤ ∈ R
6 is a pose vector with ρ ∈ R

3 as the translation and φ ∈ R
3 as
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the rotation components, and

ξ∧ =

[

ρ

φ

]∧

=

[

φ× ρ

0⊤ 1

]

∈ se(3) (1.3)

is a 4 × 4 matrix in the Lie algebra vectorspace. The (·)× operator creates a skew-

symmetric matrix. The logarithmic map takes us from SE(3) to se(3) so we can obtain

a pose vector from a transformation matrix:

ξ = ln(Ta,b)
∨. (1.4)

If we let Ta,b be an uncertain transform with uncertainty Σa,b, then we can use an

SE(3) perturbation scheme to represent it as

Ta,b = exp(ǫ∧)T̄a,b, ǫ ∈ R
6 ∼ N (0,Σa,b), (1.5)

where T̄a,b is the nominal (i.e., mean) transformation, and ǫ is a small Gaussian random

pose perturbation. Finally, the adjoint of an SE(3) transform,

Ta,b = Ad(Ta,b) = Ad

([

Ca,b rb,aa

0⊤ 1

])

=

[

Ca,b (rb,aa )×Ca,b

0⊤ Ca,b

]

, (1.6)

is a 6× 6 matrix that we will make use of when compounding uncertain transforms.

1.4 Contributions

The main contributions of this thesis are:

1. Aided in the development of a vision-based emergency return system for UAVs and

experimentally verified the system in multiple field tests at: University of Toronto

Institute for Aerospace Studies (UTIAS); Koffler Scientific Reserve; Suffield, Al-

berta; and downtown Montreal. This work resulted in a journal publication as a

contributing author:

Michael Warren, Melissa Greeff, Bhavit Patel, Jack Collier, Angela P. Schoellig,

and Timothy D. Barfoot. There’s no place like home: Visual teach and repeat

for emergency return of multirotor UAVs during GPS failure. IEEE Robotics and

Automation Letters, 4(1):161–168, 2019. doi: 10.1109/LRA.2018.2883408.

2. A modular gimbal controller that resides within the VT&R system and is capa-
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ble of performing orientation matching or centroid pointing. Both strategies were

demonstrated to improve the visual localization performance within the VT&R

framework. This work resulted in a conference paper as first author and received a

best paper award:

Bhavit Patel, Michael Warren, and Angela P. Schoellig. Point me in the right direc-

tion: Improving visual localization on UAVs with active gimballed camera pointing.

In Proc. of the Conference on Computer and Robot Vision (CRV), 2019.

Chapter 2 consists of this paper with some modifications and additional details.

3. A method to estimate the 6 Degree of Freedom (DoF) global pose of a UAV using

a dense Mutual Information (MI) based image registration technique to metrically

localize real images with rendered georeferenced images from Google Earth (GE).

This work resulted in a journal paper submission as first author:

Bhavit Patel, Timothy D. Barfoot, and Angela P. Schoellig. Visual localization with

google earth images for robust global pose estimation of UAVs. IEEE Robotics and

Automation Letters, 2020. Submitted.

Chapter 3 consists of this paper with some modifications and additional details.



Chapter 2

Gimballed Camera Pointing

2.1 Motivation

One challenge associated with localization on multirotor UAVs for VT&R is that the

camera viewpoint can be extremely different between teach and repeat flights. The

underactuated nature of multirotor UAVs causes a camera mounted statically to the

vehicle to undergo large viewpoint changes during accelerations. These viewpoint changes

are an issue as many visual localization techniques rely on matching feature descriptors

such as Speeded-Up Robust Features (SURF) [Bay et al., 2008], which are known to be

highly sensitive to scene perspective changes. While a vehicle controller tries to keep

the vehicle close to the originally flown path, there are no guarantees that the camera

viewpoint will be the same at matching positions along the teach and repeat flights unless

the UAV follows an identical acceleration profile.

To address this problem, we use a 3-axis gimbal to fully decouple the camera and

vehicle orientations. Moreover, the gimbal allows independent camera viewpoint manip-

ulation to improve visual localization robustness under conditions of high winds, large

path-following errors, and faster flight speeds compared to the map-generation flight.

The benefit is most apparent in scenarios where the scene is spatially close to the cam-

era (such as when flying near the ground or in close proximity to buildings). In these

situations, any small viewpoint errors result in a large reduction in image overlap, which

makes it difficult to visually localize. Such close proximity flights are common in moni-

toring and inspection applications or when operating in urban environments. The use of

a static camera in these scenarios is prone to localization failures from large perspective

errors.

We use an active gimballed camera on a multirotor UAV in a similar manner as done

in [Warren et al., 2018] for ground vehicles and in [Warren et al., 2019] for UAVs. We

7



Chapter 2. Gimballed Camera Pointing 8

improve the response time of the gimbal controller by using angular rate commands to

handle the UAV’s fast dynamics. We also introduce a centroid pointing strategy as an

alternative to orientation matching. Finally, we perform multiple outdoor flight experi-

ments to i) highlight the robustness an active gimballed camera adds over a static camera,

ii) show that an off-the-shelf passively stabilized gimbal can actually be detrimental for

localization, and iii) demonstrate the ability of orientation matching and centroid point-

ing strategies to enable visual localization despite large path-following errors and velocity

discrepancies. In this work, we define active strategies as those that require user control

input and are further divided into those that use visual information to determine where

to point the camera (e.g., orientation matching and centroid pointing) and those that

simply stabilize the camera (e.g., active stabilization). Passive strategies, on the other

hand, require no user control input.

2.2 Related Work

Early work using gimballed cameras on UAVs involved applications unrelated to vision-

based navigation: they were used to increase the effectiveness of target tracking and

surveillance [Quigley et al., 2005, Skoglar, 2002, Skoglar et al., 2012], and search and

rescue [Goodrich et al., 2008]. Non-static cameras have been used for vision-based landing

of UAVs: a pan-tilt monocular camera was utilized to increase the effective Field Of

View (FoV) during landing [Sharp et al., 2001], and 3-axis gimballed monocular cameras

were leveraged for autonomous landing on moving platforms [Borowczyk et al., 2017,

Wang et al., 2017].

The majority of vision-based autonomous navigation solutions for UAVs use static

cameras [Blösch et al., 2010, Weiss et al., 2011, Achtelik et al., 2011, Weiss et al., 2013,

Shen et al., 2013, Pfrunder et al., 2014, Warren et al., 2017, Toudeshki et al., 2018,

Surber et al., 2017]. Recent work demonstrates the integration of gimballed cameras

with Visual-Inertial Odometry (VIO) [Choi et al., 2018] and visual SLAM [Playle, 2015].

Work in [Playle, 2015] performs a reactive viewpoint selection strategy by panning the

camera to areas of high feature density with the goal of improving localization accuracy

of monocular visual SLAM using a two-axis gimbal. In contrast, we perform a predictive

strategy and control in more than one axis.

The most closely related work is our previous work demonstrating the use of VT&R

as an emergency return system on multirotor UAVs [Warren et al., 2019] using the ac-

tive gimballed camera implementation introduced in [Warren et al., 2018]. While work in

[Warren et al., 2019] shows successful localization using an orientation matching strategy,
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in this work, in addition to improving the gimbal controller implementation, we perform

new outdoor experiments to show the improvement and robustness that an active gim-

balled camera adds over a passive gimbal and static camera for visual localization.

2.3 VT&R Overview

In this section we provide a high-level overview of the VT&R system focussing on the

localization as it pertains to the gimbal pointing. We refer the reader to Section 3.3 for

more detailed explanation of the VO, and previous work for the localization [Paton et al.,

2016] and multirotor UAV emergency return adaptation with closed-loop vehicle control

[Warren et al., 2019].

Figure 2.1: A simplified overview of the vision-based localization system with an active
gimballed camera. During teach, the phase where the map is created, active stabilization
can be performed while in repeat, the phase where the map is used for localization, any
of the proposed gimbal pointing strategies can be selected.
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During a human-piloted or autonomous GPS waypoint outbound flight, termed the

teach phase, a visual map is generated using a stereo camera and performing sparse

feature-based VO. Following a GPS loss, the UAV returns home by autonomously nav-

igating backwards along the outbound flight path using a vision-based flight controller

and a gimbal controller to promote localization; this is the repeat phase although it is

different than a typical repeat phase since we are repeating the path in the opposite

direction.

Figure 2.1 shows an overview of the VT&R software system without the vehicle

controller. We include a new gimbal controller implementation that allows active control

in both the teach and repeat phases with faster response times. The new implementation

also provides the ability to select different pointing methods to use in each phase.

During an outbound teach flight, sparse feature-based gimballed VO is performed

to estimate the pose of the vehicle and scene structure using only the stereo images

and gimbal joint angles captured at 10Hz. The visual observations are inserted into a

relative map of pose and scene structure in the form of a Spatio-Temporal Pose Graph

(STPG) (see Figure 2.2). Each vertex α stores the 3D positions of landmarks with

associated covariances observed by the camera, {pαj ,σ
α
j }, and the non-static vehicle-to-

sensor transform, Tαs,α (i.e., the pose of the vehicle in the camera frame at vertex α).

The vehicle-to-sensor transform is obtained by applying forward kinematics with the roll,

pitch, and yaw gimbal angular positions. Edges link temporally and spatially adjacent

vertices metrically with a 6DoF SE (3) transformation, Tα,α−1, with uncertainty Σα,α−1.

The set of linked temporal edges represent the locally consistent path. During teach, this

path is marked as privileged.

During an inbound repeat flight, the same visual odometry and map building as teach

is performed, however, the experience is saved as non-privileged. In parallel, the system

visually localizes to the map of the privileged experience, which provides the error to the

privileged path. These localization updates are used for gimbal control in the orientation

matching and centroid pointing strategies. Although not demonstrated here, the updates

can also be sent to our vision-based path-follower to autonomously retraverse the path.

To facilitate tracking of important vertices and associated transforms in the STPG,

a localization chain is used with a ‘tree’ naming convention: leaf (l), twig (w), branch

(b), trunk (t). The leaf (latest live frame) connects to the twig vertex (last successfully

localized vertex on the current path) by a temporal transform. The branch is the privi-

leged vertex that was most recently localized against; connected to the twig by a spatial

transform. The trunk vertex is the spatially nearest privileged vertex to the leaf frame.

Note that the leaf does not necessarily need to be a vertex. Only VO keyframes are
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saved as vertices in the STPG. With every successful VO update, the estimated trans-

form from the trunk to the leaf, Ťl,t = Ťh,c = Th,gTg,dTd,c in Figure 2.2, is updated in

the localization chain. This includes updating the trunk vertex to the privileged vertex

that is spatially closest to the new leaf if necessary.

When VO inserts a new vertex into the STPG, visual localization attempts to estimate

a spatial transform from the new vertex to its trunk. For example, in Figure 2.2 the

new vertex will be H with C as its trunk. The first step is to extract a local window

of privileged vertices around the trunk of the new vertex. All 3D landmarks in the

local window are transformed into trunk vertex using the privileged temporal transforms

in a step termed landmark migration. Features are matched from the non-privileged

new vertex to the features associated with all migrated landmarks using their SURF

descriptors. These raw matches are sent to a Maximum Likelihood Estimation SAmple

Consensus (MLESAC) robust estimator to generate a set of localization inlier matches

and estimate the spatial transform. Finally, the spatial transform is optimized using

the Simultaneous Trajectory Estimation And Mapping (STEAM) engine [Anderson and

Barfoot, 2015]. The localization chain is updated with the new spatial transform: Tw,b ←

Th,c.

H

Tb,a
Tc,b Td,c

Te,d

Tg,f
Th,g

e tra olate

I
Ti,h

Tg,d
Tf,e

Tis,i

Tbs,b

Privileged Temporal Edge Temporal Edge

Spatial EdgeVehicle to Sensor Transform

Figure 2.2: Depiction of an STPG with a single privileged experience. Active vision
pointing strategies use the transforms from the live (repeat) path to the privileged (teach)
path for gimbal control (e.g., Tg,d, the 6DoF transformation from vertex D to G).
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2.4 Gimbal Control

All active gimbal strategies use a cascaded position-velocity control loop. The outer

position loop applies proportional gains to the angular position errors to generate angular

rate commands, which are sent to the gimbal’s internal controller. Let Φ = [φ θ ψ]⊤

be the roll, pitch, and yaw joint angles of the gimbal, respectively. The angular velocity

commands are computed as

u = K (Φd −Φ) , (2.1)

where K is a 3 × 3 diagonal matrix with proportional gains kφ, kθ, and kψ, and Φd are

the desired joint angles. The gimbal controller is run at 10Hz to match the update rate

of the gimbal state and VO. To be clear, the angles provided by the gimbal are with

respect to a gravity-aligned frame attached to the vehicle (i.e., the roll and pitch angles

are global while the yaw angle is relative to the vehicle heading). Therefore, we use the

IMU to obtain the vehicle attitude, which we can then use to recover the gimbal joint

angles.

The selected gimbal only allows control of the pitch and yaw axes with rate commands.

The roll axis is left to the gimbal to passively stabilize, which promotes consistent tracking

of features. Figure 2.3 shows a visual comparison of the pointing strategies we compare

in this thesis.

2.4.1 Passive Stabilization

The gimbal used in this work stabilizes all three axes without any user control input (i.e.,

passively). The roll and pitch axes are globally stabilized in a gravity-aligned inertial

frame while the yaw follows the vehicle heading. This off-the-shelf solution, however, is

slow to respond to changes in the vehicle heading to promote smooth image motion for

filmmaking.

2.4.2 Active Stabilization

To address the yaw following issue, the gimbal can be actively controlled to more closely

follow the vehicle heading while stabilizing the pitch. With this strategy, the camera can

also be pointed at a non-zero fixed yaw angle relative to the vehicle heading or maintain

a global yaw angle. During active stabilization, no information from the vision system is

used for gimbal control. It is typically used during our teach phase, but we also test its

use in the repeat phase for a full comparison.
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Figure 2.3: The top row shows an example vehicle and camera orientation that occurred
during the teach flight with the camera FoV and landmarks observed also shown. The
bottom row shows how each of the pointing strategies would respond during the repeat
flight when the vehicle orientation is different at a nearby position. The passive and active
stabilization strategies simply stabilize the roll and pitch axes in a gravity-aligned frame
and align the yaw with the vehicle heading. The orientation matching strategy matches
the camera orientation that occured during the teach flight but does not account for path
offsets. Our centroid pointing strategy points the camera at the geometric centroid of the
previously observed landmarks. In this example, passive and active stabilization result
in a landmark falling out of the camera FoV.

2.4.3 Orientation Matching

The goal of orientation matching is to minimize the camera’s viewpoint orientation error

during repeats. The gimbal yaw and pitch axes are actively controlled to match the

camera’s recorded orientation at the spatially nearest privileged vertex using the current

camera pose estimated by the visual system.

At the beginning of each control step, the localization chain is queried to obtain the

latest trunk to leaf transform, Ťl,t. To compensate for the gimbal actuation delay, we

extrapolate the vehicle pose 200ms ahead on a trajectory generated by the STEAM

engine. We denote the extrapolated pose as l
′ with its associated trunk as t

′ (vertex I

and B, respectively, in Figure 2.2). The pose of the camera at t′ with respect to the pose
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of the camera at l′ is given by:

Tl′s,t′s = Tis,bs = Tis,sTi,hŤh,cTc,bT
−1
bs,b
, (2.2)

where Tih is obtained from extrapolation, and Ťh,c ← Th,gTg,dTd,c. Currently a motion

model is not used to predict the vehicle-to-sensor transform at I. Instead we set it

to the live transform (i.e., Tis,i ← Ths,h). The camera’s viewpoint orientation error is

extracted from Tis,bs to compute the desired gimbal angular position, Φd. Figure 2.4

shows an additional visual representation of the relative pose (2.2) that is used for both

orientation matching and centroid pointing.

2.4.4 Centroid Pointing

Pointing the camera at the centroid of previously observed 3D landmarks accounts for

vehicle path-following errors during repeats. The first two steps in the centroid pointing

procedure are submap extraction and landmark migration (similar to visual localization).

The STEAM trajectory is queried to obtain the extrapolated vehicle pose with respect

to its spatially nearest privileged vertex, Tl′,t′ = Ti,b. The uncertainty in this transform

in the direction of the privileged path is used to extract a window of vertices around

vertex t
′ (i.e., a submap denoted as S). The privileged temporal transform between the

extrapolated trunk and the next vertex in the privileged path, Tt′,n, and the extrapo-

lated trunk to extrapolated leaf, Tl′,t′ , give the direction along the path expressed in the

extrapolated leaf vehicle frame:

ûn,t′

l′
= Cl′,t′

rn,t
′

t′
∥

∥

∥
rn,t

′

t′

∥

∥

∥

2

, (2.3)

where rn,t
′

t′
is the position of vertex n in t

′, and Cl′,t′ is the 3× 3 rotation matrix from the

extrapolated trunk to extrapolated leaf. Let Σr be the 3× 3 translational component of

the pose covariance matrix Σl′,t′ . The uncertainty along the path is given by

σû =

√

ûn,t′ ⊤

l′
Σrû

n,t′

l′
. (2.4)

This uncertainty is used as a distance criterion for selection of a window of vertices.

The maximum window size is restricted to limit the spread of the 3D landmarks used to

compute the centroid.

All landmarks in this window are transformed into the sensor frame at the extrapo-
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lated trunk vertex, t′
s
, using the privileged temporal transforms. The centroid of these

landmarks is further transformed into the sensor frame at the extrapolated leaf, l′
s
. Let

p̃αs

j be the jth landmark in the sensor frame of vertex α ∈ S in homogeneous coordinates.

Using the extrapolated leaf and trunk vertex in Figure 2.2, the centroid in the sensor

frame at the extrapolated leaf in homogeneous coordinates, denoted c̃ is given by

c̃ = Tis,bs

∑

α∈S

∑nα

j=1 Tbs,bTbαT
−1
αs,α

pαs

j

∑

α∈S

nα
, (2.5)

where nα is the number of landmarks at vertex α, and Tis,bs is computed by (2.2). A

spherical wrist model for the gimbal is used to compute the desired gimbal angles Φd to

align the camera’s optical axis with the centroid.

Figure 2.4: In this example, orientation matching uses the relative pose between the
predicted and map camera, Tis,bs , to match the global camera orientation that occured
during the outbound flight at vertex B. Centroid pointing considers the landmarks that
were observed at vertex B and possibly a window of vertices surrounding B.
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2.5 Experimental Results

We perform multiple outdoor flight tests at the University of Toronto Institute for

Aerospace Studies to compare: i) a static and gimballed camera on dynamic and non-

dynamic paths, ii) all gimbal pointing strategies in the presence of speed discrepancies,

and iii) orientation matching and centroid pointing in the presence of cross-track errors.

An example flight path is shown in Figure 2.5. Unless otherwise noted, the camera is

pitched down 30 degrees relative to a gravity-aligned inertial frame (or vehicle body frame

for the static camera). To perform a proper comparison, we do not use a vision-based

path-follower. Instead, we send a GPS waypoint mission to follow the path in the reverse

direction. This allows us to directly evaluate the localization performance without adding

any coupling effects from control-in-the-loop. Furthermore, it enables experimentation

on complicated, dynamic paths to explore failure cases safely.
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Figure 2.5: The dynamic path used for our gimbal pointing strategy comparisons which
shows the height above takeoff, vehicle heading, and location of privileged vertices. Only
the heading at each GPS waypoint and every fifth privileged vertex are shown for clarity.
The vehicle heading rotates in the shortest direction between waypoints. Note that at
the fifth waypoint (privileged vertices 70 to 75 in this example) the altitude changes
on-the-spot from 10m to 6m (and vice-versa during repeat).

Figure 2.6 shows the hardware setup for the static and gimballed camera systems.

We use the DJI Matrice 600 Pro (M600) multirotor UAV with a 3-axis DJI Ronin-MX
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gimbal. All processing for the VT&R system is performed on-board by an NVIDIA

Tegra TX2. A StereoLabs ZED camera is connected to the onboard computer to provide

672 × 376 greyscale stereo images. A 900MHz XBee low-bandwidth, long-range radio

communication link is used to send high-level mission commands to the onboard com-

puter. These high-level mission commands include manually triggering state transitions

and sending GPS waypoint missions to the flight controller. The gimbal connects to

the flight controller to accept control commands and feedback angular positions. The

M600’s flight controller communicates with the onboard computer via Robot Operating

System (ROS).

1 2

3

4

5

6

Figure 2.6: The hardware setup with a static camera (left) and gimballed camera (right)
on a multirotor UAV: (1) DJI Matrice 600 Pro, (2) DJI A3 GPS module, (3) DJI Ronin-
MX 3-axis gimbal, (4) NVIDIA Tegra TX2, (5) XBee Pro 900MHz XSC S3B RF module,
(6) StereoLabs ZED camera.

2.5.1 Gimballed Camera Robustness

The performance of a static and gimballed camera on a simple 315m path at 15m

altitude taught at 3m/s and returned at 9m/s is shown in Figure 2.7. One interesting

outcome is a higher maximum number of inliers for the static camera system. This can

be attributed to inaccuracies and latency in the gimbal angular positions indicating more

careful calibration is required. However, the inconsistency of a static camera due to large

perspective shifts is clearly shown by the variance in the inliers.

On more dynamic paths, the large perspective shifts undergone by a static camera

result in localization failures. Figure 2.8 shows a zigzag pattern flight path highlighted
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Figure 2.7: For a simple path with few dynamic motions, a static camera localizes even
when returning at a faster speed (from 3m/s outbound to 9m/s target inbound speed).
However, a gimbal reduces the variance in localization inliers by maintaining similar
perspective.

Figure 2.8: For highly dynamic paths, the static camera system has trouble localizing
due to large viewpoint changes. The active gimballed camera system minimizes perspec-
tive error during the dynamic motions to improve localization performance with a 37%
increase in the mean number of inliers.
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with the average number of localization inliers at each position over two runs. The path

is 115m in length with 130 degree rotations in the vehicle heading between waypoints.

It was flown at a height of 7m above ground with the camera pitched down 80 degrees to

promote the adverse effects of viewpoint orientation error. Even for 3m/s flights, a static

camera frequently fails to localize since small perspective errors result in a large reduction

in image overlap on this path. The gimbal enables successful localizations by attenuating

viewpoint orientation errors. Figure 2.9 shows an example of the static camera failure at

one of the corners. The gimbal with active camera pointing increases the mean number

of inliers by 37% over a static camera.

(a) Teach (left) and repeat (right) images for the statically-mounted camera

(b) Teach (left) and repeat (right) images for the gimballed camera

Figure 2.9: At one of the corners in the zig-zag pattern path, the vehicle undergoes a
large roll and pitch to quickly change directions. Since the statically-mounted camera
is coupled to the vehicle’s orientation, the viewpoint changes drastically between the
outbound and return flights as shown by the fence and road becoming visible in the top
left of the return image. Our gimballed camera with an orientation matching strategy
reduces the perspective error, which allows it to localize at the same corner. The return
images show the SURF feature tracks while the outbound images show the localization
inliers.
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Figure 2.10: The CDF of the localization pose uncertainties show that active pointing
strategies result in more confident localization estimates with centroid pointing show-
ing slightly more confidence than orientation matching. The localization uncertainty is
computed as the log determinant of the 6DoF spatial pose uncertainty matrix for each
localization update (i.e., Σl,t).

2.5.2 Handling Velocity Discrepancies

In this experiment, we evaluate the localization performance of passive and active gim-

balled strategies with increasing return velocities from 3m/s to 9m/s with all teach

flights conducted at 3m/s. Figure 2.5 shows the altitude-varying 170m flight path used

for these tests. The CDF of the localization uncertainties is shown in Figure 2.10 while

Figure 2.11 summarizes the localization inliers for each strategy over two runs. Active

pointing strategies are able to handle increasing speed discrepancies as they show only

a small drop in inliers with no failures. Pointing strategies with vision-in-the-loop (i.e.,

orientation matching and centroid pointing) result in the highest number of inliers and

the greatest localization confidence as expected. Off-the-shelf passive stabilization actu-

ally causes localization failures when there are speed discrepancies between flights, which

demonstrates the necessity of active pointing to add visual localization robustness on

UAVs.

Camera perspective errors that result from different vehicle orientations at matching

positions along the teach and repeat paths can be reduced using active pointing strate-

gies. Figure 2.12 shows the vehicle and camera orientation errors grouped as a pair for

each pointing strategy and across different return velocities. Each pair of orientation

errors is obtained using the vehicle and camera spatial localization transforms (e.g., Tg,d

and Tgs,ds in Figure 2.2). As the velocity discrepancy between flights increases, the ve-

hicle orientation error also increases as expected. Passive stabilization actually increases

the camera viewpoint orientation error due to lag in following the vehicle heading. Since

the vehicle heading rotates in opposite directions in the teach and reverse repeat flights,

the lag results in an increase in the camera orientation error on the yaw axis. This effect

is more pronounced with larger velocity discrepancies resulting in localization failures as
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shown in Figure 2.13. Active stabilization removes the yaw lag but does not account for

vehicle yaw error between teach and repeat runs as it only follows the current vehicle

heading. However, the act of stabilizing the roll and pitch to reduces the camera error.

Both active strategies with vision-in-the-loop provide the greatest reduction in perspec-

tive error. Centroid pointing does not directly attempt to minimize the perspective error

but provides an improvement by pointing at previously observed landmarks. Orientation

matching clearly performs its duty by minimizing the perspective error the most. It

provides a 65%, 58%, and 54% reduction in the root-mean-square orientation error from

the vehicle to camera frame for 3m/s, 6m/s, and 9m/s return flights, respectively.

Figure 2.11: Active gimbal control prevents localization failures despite increasing speed
discrepancies between teach and repeat flights. Incorporating visual information in the
pointing strategy results in better localization performance.
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Figure 2.12: A gimballed camera with active pointing strategies reduces the camera
perspective error that result from vehicle orientation errors between teach and repeats
flights. The simple act of adding a gimbal is not enough as we see an off-the-shelf
passive stabilization strategy actually increases the camera perspective error. Centroid
pointing does not attempt to minimize viewpoint orientation error but it is compared for
completeness.

2.5.3 Handling Path-following Errors

In this experiment, we intentionally add path offsets to the repeat path to further evaluate

the localization performance of orientation matching and centroid pointing (see Figure

2.14). Intuitively, a centroid pointing strategy is more suitable for situations with large

path-following errors since it attempts to compensate for the translation errors.

On segment 1, the vehicle descends from 10m to 6m altitude with lateral offsets up

to 6.5m. Since the scene structure is spatially close to the camera along this segment,

the 6.5m lateral offset creates perspective errors that orientation viewpoint manipulation

alone cannot compensate. Landmarks simply fall out of view when matching orientations.

With centroid pointing, the angle at which they are viewed dramatically changes resulting

in difficulty with SURF feature matching. Along segment 2, the vehicle undergoes a pure

vertical offset: climbing from 6m to 10m altitude. Segment 3 contains growing lateral

and vertical offsets finishing with a −5m altitude offset when it rejoins the original path.

Segment 4 contains an 8m lateral offset at 25m altitude while segment 5 contains pure

lateral offsets. Along segments 4 and 5, the scene structure is far enough away from

the camera that both strategies can easily compensate for the large position offsets.

Along segment 2 and parts of 3, the position offsets are large enough to reduce landmark

visibility when orientation matching but small enough to be compensated by centroid

pointing. Figure 2.15 shows an example of the viewpoints of both strategies during an

altitude offset along segment 2. Landmarks in the bottom half of the map image are not

present in the orientation matching view causing localization to be difficult. The same

landmarks are visible in the centroid pointing view.

Although centroid pointing shows a slight performance benefit along certain segments
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(a) Teach (left) and repeat (right) images using the passive stabilization strategy

(b) Teach (left) and repeat (right) images using the active stabilization strategy

(c) Teach (left) and repeat (right) images using the orientation matching strategy

(d) Teach (left) and repeat (right) images using the centroid pointing strategy

Figure 2.13: A comparison of the camera perspective and localization performance at the
same position for each pointing strategy during 9m/s returns. The repeat images show
the SURF feature tracks while the teach images show the localization inliers. Passive
stabilization has a slow yaw alignment resulting in it viewing the left side of the group
of trees during the outbound flight and the right side during the return flight. This
ultimately leads to a localization failure. All active strategies result in a similar camera
viewpoint in this example and successfully localize.
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of the path, it is important to note that the overall performance of both strategies is com-

parable. We aim to explore dynamic selection of pointing strategies during flight in future

work. Orientation matching can be used when closely following the path while centroid

pointing can be employed when the path offset is large enough to cause a substantial

number of landmarks to fall out of the field of view.

Figure 2.14: While the overall performance is similar, centroid pointing shows an advan-
tage along segment 2 and parts of 3. The black line shows the outbound teach path while
the inlier highlights are centered on the inbound repeat path.
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(a) Teach (left) and repeat (right) images for an orientation matching run

(b) Teach (left) and repeat (right) images for a centroid pointing run

Figure 2.15: Comparison of orientation matching and centroid pointing return views
(right) on segment 2. The spatially nearest images captured during the teach runs (left)
are used for localization. The landmarks along the bottom of the image, such as the
outlined shrubbery, are missing from the orientation matching view due to the altitude
offset. Centroid pointing keeps the landmarks in the field of view.

2.6 Summary

We demonstrated improved visual localization performance using an active gimbal-stabilized

camera within a VT&R framework on a multirotor UAV. We experimentally showed the

need for a gimballed camera over a traditional statically-mounted camera. Multiple

gimbal pointing strategies were evaulated including off-the-shelf passive stabilization, ac-

tive stabilization, and two active strategies that use visual information to minimize the

camera viewpoint orientation error (orientation matching) and point at the centroid of

previously observed landmarks (centroid pointing). We showed that a passively stabilized

gimbal can actually lead to localization failures. Finally, we demonstrated the ability of

orientation matching and centroid pointing to enable visual localization despite velocity

discrepancies and large path-following errors between the teach and repeat flights.
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Visual Localization with Google

Earth Images

3.1 Motivation

Vision-based techniques involving VO are the most popular for Unmanned Aerial Vehi-

cle (UAV) navigation in GPS-denied environments. However, pure odometry techniques

are unreliable for accurate pose estimates since they drift over time in the absence of

corrections. Visual SLAM corrects these drifts through loop closure and has been sucess-

fully demonstrated in GPS-denied environments [Blösch et al., 2010, Weiss et al., 2013,

Shen et al., 2015] but requires revisiting locations. On the other hand, VT&R [Furgale

and Barfoot, 2010] can enable safe navigation in the absence of GPS without requiring

globally accurate poses but is limited to navigation along previously traversed routes.

Such a technique is suitable to perform emergency return of UAVs in the event of GPS

loss [Warren et al., 2019].

The aforementioned techniques require the vehicle itself to map an area either through

a human-operated manual teach phase in the case of VT&R or a carefully developed safe

exploration algorithm for autonomous SLAM. However, a 3D reconstruction of many

parts of the world is already available in GE. The ability to use this 3D reconstruction

as a map would enable global pose estimation without GPS, having to worry about safe

exploration, or restricting navigation to a previously traversed route. One of the main

challenges to using this map is the large appearance difference between the 3D recon-

struction and the true world: lighting and seasonal changes, as well as recent structural

changes to the environment all present difficulties for visual localization.

In this work, we present a technique to determine the full six DoF global pose of

26
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Real from UAV Camera Rendered from Google Earth

Figure 3.1: Comparison of real-world UAV images and rendered Google Earth images
taken from the approximately same viewpoint at three locations along one of the flights.
Large appearance changes, especially with vegetation, impermanent objects such as cars,
poor 3D reconstructions (e.g., trees in middle pair), and structural changes to buildings
(e.g., top pair) can all cause difficulties for visual localization.
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a UAV in an area where the UAV itself has not mapped by using only a gimballed

stereo camera, IMU, and georeferenced images from GE. These geoferenced images are

rendered before the flight and stored onboard the UAV to enable navigation within the

region covered by the images. The only limitations to the map size are the extents of the

reconstruction coverage area and the available onboard storage.

Visual localization of the real images with the rendered images using traditional sparse

features (e.g., SURF) is challenging due to the large appearance difference mentioned

previously (see Figure 3.1). Therefore, we perform image registration using a dense

technique that relies on MI. MI provides robustness to appearance changes allowing

us to accurately register the images. We optimize the MI over warping parameters to

align the real and rendered images. The result from this image registration is then fused

with a pose estimated by a gimballed VO pipeline. The performance of this technique is

evaluated on multiple datasets collected at the UTIAS.

The contribution of this work is a method to accurately estimate the global pose of a

UAV in GPS-denied environments using pre-rendered images from a 3D reconstruction of

the Earth. Our method allows accurate estimation at lower altitude flights compared to

similar previous work described below. We also demonstrate robust estimation over an

entire day in the presence of signficant lighting changes incurred from sunrise to sunset

on 6.8 km of real-world data.

3.2 Related Work

Some of the earliest work using georeferenced satellite images used edges for registration.

However, a simple edge detector resulted in only two successful matches along a 1 km

trajectory [Conte and Doherty, 2008]. Building outlines extracted using local features

were more successful in estimating the 6DoF pose of an aerial vehicle [Son et al., 2009].

Unfortunately, this technique cannot be employed for lower altitude flights where the

outlines of multiple buildings are not visible in a single image.

Some recent work using local image features use street view images to estimate the

pose of a ground robot [Agarwal and Spinello, 2015] and a UAV [Majdik et al., 2015]. In

both cases, techniques similar to bag-of-words are first used for place recognition followed

by image registration using SIFT keypoints in the matched images. However, even after

finding the best matching georeferenced image, the feature matching can contain 80%

outliers [Majdik et al., 2015] due to the large image appearance and viewpoint differences

which makes it difficult to accurately localize.

Unsurprisingly, Convolutional Neural Networks (CNNs) have seen increased usage in
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recent years as image descriptors due to their ability to learn generic features that can

be applied to a variety of tasks such as image classification [Krizhevsky et al., 2012,

Simonyan and Zisserman, 2014] and object detection [Redmon et al., 2016]. Features

from the middle layers of the CNNs have been shown to be robust against appearance

changes while features from the final layers are robust to viewpoint changes and provide

more semantic information about the structure of the scene [Sünderhauf et al., 2015].

Often pretrained CNNs are further trained for the task of place recognition allowing

topological localization [Lin et al., 2015, Kim and Walter, 2017, Shetty and Gao, 2019]

followed by filtering with VO in a particle filter [Kim and Walter, 2017] or Kalman filter

[Shetty and Gao, 2019]. These whole-image descriptors only allow finding an image

match and do not provide metric information about the relative pose between the query

and map image. Often the pose of the matching map image is taken as the best estimate

which ultimately limits the accuracy of the localizations to the spatial resolution of the

georeferenced images.

We are interested in accurate metric localization using georeferenced images. To

accomplish this, we use a dense image registration technique to align images captured

by a camera mounted on the UAV with pre-rendered georeferenced images. Instead of

minimizing the photometric error, we use a metric computed using MI to add robustness

to appearance changes.

We adopt the use of the Normalized Information Distance (NID) [Pascoe et al., 2015,]

which is computed from MI (3.13). The NID is a value between 0 and 1 that is not as

dependent on the amount of information content in the images (i.e., the amount of

image overlap) as MI. It has been shown to be able to robustly register images [Pascoe

et al., 2015], and localize a ground vehicle equipped with a monocular camera using a

textured 3D map generated from a LIDAR and camera [Pascoe et al., 2015]. One of the

reasons for the high accuracy in [Pascoe et al., 2015] is their ability to generate synthetic

images online from the textured 3D map allowing direct optimization over the SE(3)

pose parameters. GE has no online 3D view API, so we are required to semi-manually

pre-render images at a limited number of poses before the flight. We then perform a

warping online for interpolation.

Similar to our work is [Yol et al., 2014], which determines the global position and

heading of a UAV by finding the optimal scale-rotation-translation (sRt) warping (3.11)

that maximizes the MI of a query image taken by a nadir-pointed camera warped into

a mosaic of satellite images. An sRt warping is a 4DoF image warping that performs

a scaling (zoom), 1D rotation, and 2D translation. It assumes the scene is planar and

parallel to the image plane. For a nadir-pointed camera this assumption becomes more



Chapter 3. Visual Localization with Google Earth Images 30

Figure 3.2: Gimballed VO is applied on the sequence of UAV images to obtain incremental
pose estimates. For each keyframe, the associated query image is registered with a
selected GE map image. The poses estimated by the image registrations are treated as
measurements to apply corrections to VO in a filtering framework.

valid at higher altitudes since the building heights become small relative to the distance to

the camera. In contrast to [Yol et al., 2014], we conduct lower altitude flights (e.g., 36m

Above Ground Level (AGL) compared to 150m) where the scene is often non-planar.

Despite this, we are able to use this warping due to our method of rendering images at

mulitple nearby poses in the 3D reconstruction.

3.3 Pose Estimation

We estimate the global 6DoF SE(3) pose of a multirotor UAV using only a gimballed

stereo camera, an IMU (for vehicle attitude only), and a set of geoferenced GE images.

Let

TW,k =

[

CW,k rk,WW
0⊤ 1

]

(3.1)

be the transformation from the vehicle at keyframe k to a world East-North-Up (ENU)

frame. The position of the vehicle in the ENU frame is given by rk,WW = [xk,WW y
k,W
W z

k,W
W ]⊤

and the roll, pitch, and yaw (φW,k, θW,k, ψW,k, respectively) can be extracted from the

3× 3 rotation matrix CW,k. Let I
q = (Iq1, I

q
2, . . . , I

q
K) be the sequence of real UAV query

images from each keyframe. We attempt to localize each keyframe image using a set of

geoferenced map images, Im = {Im1 , I
m
2 , . . . , I

m
N}, where the global pose of map image n
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is denoted TW,ns
with s indicating the sensor (camera) frame. Figure 3.2 provides an

overview of the estimation pipeline.

3.3.1 Gimballed Visual Odometry

The first step in the estimation pipeline is to perform VO on the UAV images. VO is

performed using the VT&R 2.0 software system adapted for use on UAVs with gimballed

cameras [Warren et al., 2019].

The inputs are rectified stereo greyscale images and a non-static vehicle-to-sensor

transform, Tfs,f , computed at 10Hz for each frame. It is computed by compounding

transformations using the three gimbal angles and known translations between joints

followed by a rotation into the standard camera frame. The roll and pitch axes of the

gimbal are globally stabilized in a gravity-aligned inertial frame while the yaw follows

the vehicle heading.

For each input stereo image pair, SURF features are extracted and descriptors gener-

ated. For each image we have SURF keypoints {k1,k2, . . . ,kN} with associated descrip-

tors {d1,d2, . . . ,dN} where di ∈ R
64, and ki = (u, y) are image plane coordinates with

uncertainty Ri:

ki = k̄i + δki, δki ∼ N (0,Ri). (3.2)

Triangulation

Stereo triangulation is performed by matching keypoints in the left and right stereo im-

age pair via their descriptors. From the matches we can triangulate the corresponding

3D landmark position, pi = [x y z]⊤. Stereo triangulation is unable to accurately tri-

angulate landmarks at extreme depths when the baseline is small. Therefore, in our

pipeline, landmarks are also triangulated from motion by matching keypoints between

successive frames. This allows varied altitude flights as the system can rely more on these

sequentially triangulated landmarks when flying at high altitudes and stereo triangulated

landmarks are lower altitudes.

RANSAC

To estimate incremental motion, each feature is matched to the last keyframe via SURF

descriptor matching. The raw matches and associated landmarks {yi,pi} are sent through

a 4-point RANSAC estimator to determine the relative transform between the current

frame and last keyframe’s pose in the sensor frames, Tfs,ks . RANSAC samples 4 point

correspondances and solves the P3P problem using 3 points with the 4th point used to
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select an appropriate solution. The reprojection errors along with a robust cost function

are used to assess the solution.

A 3D landmark can be projected into pixel coordinates using the pinhole projection

camera model:
[

u

v

]

= g(p) =

[

1 0 0

0 1 0

]







fu 0 cu

0 fv cv

0 0 1







1

z







x

y

z






. (3.3)

The reprojection errors are computed by transforming the landmarks into the current

frame, projecting into image coordinates, and comparing to the measured image coordi-

nates:

ei(Tfs,ks) = yi − g(Cf,kpi + rk,ff ). (3.4)

The weighted reprojection error for the ith raw match is given by:

ui(Tf,k) =
√

ei(Tf,k)⊤R
−1
i ei(Tf,k). (3.5)

A raw match is an inlier if the weighted reprojection error is below a threshold ui < uthres.

Furthermore, the overall cost of the solution is computed using the weighted reprojection

errors from all matches as

J(Tf,k) =
N
∑

i=1

σiρ(ui(Tf,k)), (3.6)

where σi is a scaling term and ρ(x) is the Geman-McClure robust cost function:

ρ(x) =
1

2

x2

1 + x2
. (3.7)

The cost and number of inliers are used to keep track of the best solution. The RANSAC

algorithm finishes early if the number of inliers exceeds a desired threshold (e.g., 400

inliers).

The relative transform is then optimized in a nonlinear refinement step using the

STEAM engine [Anderson and Barfoot, 2015] to minimize the weighted reprojection

errors, and using a constant velocity model to smooth out the pose estimates.

The estimated incremental pose is still in the sensor frames thus the vehicle-to-sensor

transform at the keyframe and current frame are used to recover the incremental pose

estimate in the vehicle frame:

Tf,k = T−1
fs,f

Tfs,ksTks,k. (3.8)
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Figure 3.3: Gimballed VO uses the non-static vehicle-to-sensor transform to recover the
incremental vehicle transformation from the estimated camera motion.

Keyframe Windowed Refinement

If the translation or rotation exceeds a threshold or the number of inliers drops below a

minimum amount, a new keyframe is added. For each keyframe, all of the features, new

landmarks that were observed, and the vehicle-to-sensor transform are stored as a vertex

in a pose graph. The relative transform is stored as the edge between vertices in this

pose graph. When a new vertex is inserted into the graph, windowed bundle adjustment

is performed on the last 5 keyframes using a similar cost function as before but now

adjusting landmark positions in addition to the relative poses.

The end result of gimballed VO is a set of linked dead-reckoned poses that represent

the traversed path. As with all odometry techniques, incremental errors build up to cause

drift in the estimated position and orientation that must be corrected with some other

measurement.

3.3.2 Image Registration

For every keyframe image, Iqk, the goal is to determine the relative SE(3) pose between

the query camera at k and a virtual GE camera that generated image n, Tks,ns
. The

global pose measurement of the vehicle is then obtained from

TW,k = TW,ns
T−1
ks,ns

Tks,k. (3.9)

In this work, all real and rendered images are taken with the camera pointed in the nadir

direction. The relative roll, φks,ns
, and pitch θks,ns

, are obtained from our gimbal, which

keeps these angles at approximately 0 degrees. Therefore, we only need to estimate four

pose parameters:

η = [xns,ks
ks

y
ns,ks
ks

z
ns,ks
ks

ψks,ns
]⊤. (3.10)
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Since the image registration is estimating 4DoF, we use an sRt warping instead of a full

homography:

x′ = w(x,µ) = sR(ψ) + t, (3.11)

where x = [x y]⊤ is the query image plane coordinate warped to x′ = [x′ y′]⊤ for the

map image, s is a scale, R(ψ) is a 1D rotation, t = [tx ty]
⊤ is a 2D translation, and

µ = [s ψ tx ty]
⊤. We can also directly warp pixel coordinates u = [u v]⊤ from the query

image into map image pixel coordinates u′ = [u′ v′]⊤:

ū′ = w(ū,µ) = K′

[

sR(ψ) t

0⊤ 1

]

Kū, (3.12)

where ū = [u v 1]⊤ and K is the camera intrinsics matrix.

The NID between a query image and warped map image is

NID(Iqk, I
m
n ,µ) =

H(Iqk, I
m
n ,µ)−MI(Iqk; I

m
n ,µ)

H(Iqk, I
m
n ,µ)

, (3.13)

where the MI is

MI(Iqk; I
m
n ,µ) = H(Iqk) +H(Imn ,µ)−H(Iqk, I

m
n ,µ). (3.14)

The joint entropy is given by

H(Iqk, I
m
n ,µ) = −

N
∑

a=1

N
∑

b=1

pqm(a, b,µ) ln(pqm(a, b,µ)), (3.15)

where pqm(a, b,µ) is the joint probability distribution of image intensities in Iqk and Imn

for N bins with bin indices a and b. An example of the joint probability distribution for

two artificial images is shown in Figure 3.4e. Similarly, the individual entropies are

H(Iqk) = −
N
∑

a=1

pq(a) ln(pq(a)), (3.16)

H(Imn ,µ) = −
N
∑

b=1

pm(b,µ) ln(pm(b,µ)), (3.17)

where pq(a) and pm(b,µ) are the marginal probability distributions (e.g., pm(b,µ) gives

the probability that pixel u′ in image Imn has intensity that falls into bin b). An example of

the marginal probability distributions are shown in Figures 3.4b and 3.4d. These marginal
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probability distributions are simply the image histograms normalized by the total number

of pixels. The entropies are scalar values computed using these distributions. For the

example shown in Figure 3.4, the joint and both marginal entropies evaluate to a value

of 2.83 since the artificial images contain the same information content. The resulting

NID between the two images is therefore 0. MI is robust to appearance changes such as

a linear shift in image intensity throughout the image as shown in this example.

To register the images we determine the optimal warping parameters, µ∗ = [s∗ ψ∗ t∗x t
∗
y]

⊤,

to minimize the NID between a query image and selected map image:

µ∗

k = argmin
µ

NID(Iqk, I
m
n ,µ). (3.18)

Since this optimization problem is non-convex, we solve it using Limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) algorithm; a quasi-Newton method. Previous work

has modified the discrete marginal and joint probabilty distribution functions to be an-

alytically differentiable by using B-spline weights [Pascoe et al., 2015]. We instead use

a simpler approach of a central difference numerical gradient. Furthermore, we apply a

two-step optimization procedure. The first step applies a Gaussian blur on both images

to smooth out the cost function and gradients and optimizes with the blurred images.

The second step uses the optimal warping from the blurred optimization to initialize a

refined optimization that operates on the raw images.

The query-to-map pose parameters (3.10) are recovered from the optimal warping:

x
ns,ks
ks

= −t∗xs
∗zg,ns

ns
(3.19a)

y
ns,ks
ks

= −t∗ys
∗zg,ns

ns
(3.19b)

z
ns,ks
ks

= zg,ns

ns
(s∗ − 1) (3.19c)

ψks,ns
= −ψ∗, (3.19d)

where zg,ns
ns

is the distance from the nadir-pointed virtual camera to the ground. There-

fore, for each successfully registered image we have an estimate for Tks,ns
, which is used

to obtain the global pose via (3.9).

It is important to select an appropriate map image Imn to register the query image Iqk.

We compute the NID between the query image and unwarped map images in a radius

around a predicted pose given by VO (3.28b). This strategy aims to provide the best

aligned images before any warping. A simpler strategy is to select the spatially nearest

map image to the predicted pose but this relies on having accurate predictions and is

less robust to drift. We start with a larger search radius (e.g., 10m) until VO is scaled
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(a) Query Image, Iq
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(b) Query Image Histogram/PDF, pq(a)

(c) Map Image, Im
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(d) Query Image Histogram/PDF, pm(b,µ)
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(e) Joint PDF, pqm(a, b,µ)

Figure 3.4: An example of the probability distributions with N = 16 bins for two artificial
images. The query image is generated from the map image by increasing every greyscale
intensity value by 48 with no clipping (i.e., it is a ‘recolouring’). In this example, we
can assume the images are aligned thus the sRt warping parameters are µ = [1 0 0 0]⊤.
The joint probability distribution consists of only an off-diagonal since the two images
are related by a shift in image intensity. Mutual Information is robust to this kind of
appearance change; the resulting NID between these two images is 0.
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and then reduce (e.g., to 4m) for subsequent registrations. If registration is unsuccessful

for multiple keyframes in a row, then we once again inflate the search radius. An image

registration is deemed unsuccessful if the position distance or relative yaw from the

registered pose to the predicted pose (3.28b) is too large or the optimizer fails to converge.

3.3.3 Pose Filtering

We follow the methods in [Barfoot, 2017] to compound uncertain transforms and fuse

uncertain pose estimates. The estimation is performed in a local coordinate frame where

TW,0 is constructed using the RTK position and vehicle attitude at the first VO keyframe.

VO provides a relative transform between keyframes, Tk,k−1, which serves as an input

to our filtering framework. We found the VO uncertainties to be overconfident so we

define our own. Since VO is unscaled, we use a large uncertainty,

Qk = diag(0.04, 0.04, 0.04, 0.05, 0.05, 0.01),

until there are enough recent localizations to estimate a scale factor, λ, after which we

reduce the position uncertainty by a factor of 10. For the prediction step of our filter, we

have two uncertain poses that we want to compound: our posterior estimate from the

previous timestep {T̄k−1,0, P̂k−1} and the latest VO estimate {T̄k,k−1,Qk}. We can use

our SE(3) perturbation scheme (1.5) to express our uncertain transforms as

T̂k−1,0 = exp(ǫ∧k−1)T̄k−1,0, ǫk−1 ∼ N (0, P̂k−1), (3.20)

Tk,k−1 = exp(w∧

k )T̄k,k−1, wk ∼ N (0,Qk). (3.21)

By compounding these transforms we obtain

Tk,0 = Tk,k−1Tk−1,0 (3.22a)

exp(ǫ∧k )T̄k,0 = exp(w∧

k )T̄k,k−1 exp(ǫ
∧

k−1)T̄k−1,0 (3.22b)

exp(ǫ∧k )T̄k,0 = exp(w∧

k ) exp
(

(T̄k,k−1ǫk−1)
∧
)

T̄k,k−1T̄k−1, (3.22c)

where T̄k,k−1 is the SE(3) adjoint of T̄k,k−1 computed using (1.6). So our nominal motion

model is

T̄k,0 = T̄k,k−1T̄k−1,0, (3.23)

and we can derive the resultant uncertainty, Pk, from the perturbations using a second-
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order approximation (see [Barfoot, 2017]):

Pk = Qk + T̄k,k−1P̂k−1T̄
⊤

k,k−1. (3.24)

Each incremental transform is scaled with the result of a sliding-window scale esti-

mator. The VO scale estimator determines a scale factor to minimize the uncertainty-

weighted error between the incremental posterior and VO position estimates inside a

window of size N keyframes. Let uk = rk,k−1
k−1 be the incremental VO position estimates,

xk = r̂k,k−1
k−1 be the incremental posterior estimates from the filter, andQpk be the position

component of the VO uncertainty then

J(λk) =
1

2

k−1
∑

j=k−N−1

(xj − λkuj)
⊤Q−1

pj
(xj − λkuj), (3.25)

is the cost function used to estimate the scale for each keyframe, provided there are N

recent successful localizations. The cost function is quadratic in the scale factor allowing

us to find the optimum in one step ( δJ(λ)
δλ

= 0):

(

k−1
∑

j=k−N−1

u⊤

j Q
−1
pk
uj

)

λ∗k =

(

k−1
∑

j=k−N−1

x⊤

j Q
−1
pk
uj

)

(3.26)

Our image registration provides a measurement of the vehicle pose for each keyframe,

Tk,0, which we use to apply corrections to VO. In the future, we aim to explore proper

uncertainty quantification for the image registrations. One idea is to use inverse of

the Hessian at the optimum of the MI optimization (3.18): this Hessian describes the

curvature of a cost function at the optimal sRt parameters, and therefore can be used to

give an indication of the quality or confidence of the optimum for each image registration.

However, for now we use a fixed measurement covariance where

Rk = diag(0.11, 0.11, 1.0, 0.01, 0.01, 0.01).

Therefore, the correction step fuses two uncertain poses with the error between them

defined as

ek = ln
(

Tk,0Ť
−1
k,0

)∨
, (3.27)

where ek ∈ R
6 is a pose vector obtained using our logarithmic mapping (1.4).
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As a result, our filtering equations are

P̌k = Qk + Tk,k−1P̂k−1T
⊤

k,k−1 (3.28a)

Ťk,0 = Tk,k−1T̂k−1,0 (3.28b)

Kk = P̌k

(

P̌k +Rk

)−1
(3.28c)

P̂k = (1−Kk)P̌k (3.28d)

T̂k,0 = exp
(

(

Kk ln(Tk,0Ť
−1
k,0)

∨
)∧
)

Ťk,0, (3.28e)

where Tk,k−1 is the adjoint of Tk,k−1 computed using (1.6), the prior uncertainty P̌k

is a second-order approximation, and Kk is the Kalman gain. We refer the reader to

[Barfoot, 2017] for more detail. For unsuccessful registrations, the predicted position

and uncertainties are propagated (i.e., T̂k,0 = Ťk,0 and P̂k = P̌k). The posterior global

vehicle pose at each keyframe is obtained by

T̂W,k = TW,0T̂
−1
k,0. (3.29)

3.4 Experimental Setup

3.4.1 UAV Dataset Collection

The experiments are conducted with data collected at UTIAS using the hardware setup

shown in Figure 3.5. We use the DJI Matrice 600 Pro multirotor UAV with a 3-axis DJI

Ronin-MX gimbal. A StereoLabs ZED camera is connected to the onboard NVIDIA Tegra

TX2 computer to provide 1280 × 720 RGB stereo images at 10FPS. These images are

downscaled to 560× 315 and converted to greyscale for VO and image registration. The

gimbal connects to the flight controller to provide angular positions from joint encoders at

10Hz. The RTK-GPS system provides the vehicle position at 5Hz, and an IMU provides

the vehicle attitude at 50Hz.

The first dataset is a simple 303m rectangular path flown with height variations be-

ween 45−48m AGL. It was collected in the fall during an overcast day and is the primary

dataset used for development and tuning of our method. We also collected six datasets

during a sunny summer day on a more complicated 1132m path flown with height vari-

ations between 36− 42m AGL to show the ability of our method to localize a) at lower

altitudes, and b) using a single map image database despite significant lighting changes

in the real-world images. We collect a dataset near distinctive times of the day: sun-

rise (06:17 AM), morning (08:50 AM), noon (11:54 AM), afternoon (02:50 PM), evening
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StereoLabs ZED Camera

NVIDIA Tegra TX2

Ronin-MX Gimbal

RTK-GPS Module

DJI Matrice 600 Pro

Figure 3.5: A 3-axis gimballed stereo camera on a multirotor UAV with an onboard
computer is used for our data collection.

(05:50 PM), and sunset (08:24 PM). Figure 3.6 shows examples of the extreme lighting

changes that occur throughout the day at two locations. These flights are over both

man-made structure and significant stretches of vegetation to evaluate the performance

in different environments.

3.4.2 Map Images

The set of geoferenced map images, Im, is generated from the 3D view in Google Earth

at desired camera poses in an offline step. We define a virtual camera at each pose with

the same focal length as the UAV-mounted camera so that query and map images taken

at the same pose can have a nearly perfect alignment when the 3D reconstruction is

precise. We also use GE elevation data to obtain the height of the camera AGL at each

pose.

After planning the UAV path, we render images at discrete poses along the nominal

path. For this work, all images are rendered with the camera facing east and pointed

in the nadir direction. A multirotor UAV is able to travel in all directions with the

same heading allowing this restriction to be feasible for many applications such as drone

delivery. It is also possible to use a second gimbal to orient an application-specific sensor.

Images are generated every 3m along the nominal path to match our gimballed VO

pipeline, which creates a new keyframe at approximately the same spacing. We extend
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Rendered Google Earth Image Real Images

06:18:23

14:51:18

08:51:59

17:51:08

11:57:38

20:25:38

06:23:26

14:56:22

08:57:04

17:56:06

12:02:43

20:30:43

Figure 3.6: Examples of lighting changes that occur from sunrise to sunset east of the
dome (top) and north-west of the soccer field (bottom). The Google Earth reconstruction
appears to contain late morning to early noon shadows.

Figure 3.7: Location of the georeferenced map images relative to the starting position of
a desired path. Only a short, straight part of the path is shown for clarity. We render
images at multiple locations around the nominal path to ensure we capture non-planar
changes to the scene.
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the images 12m to the left and right, and above and below the path with a 6m spacing.

The end result is a rectangular tube of images centered along the path with a 24× 24m

cross-section and 6 × 6 × 3m spacing between images. Figure 3.7 shows an example of

the position of map images for a short part of the beginning of a path. The tube of

images ensures that if the vehicle deviates off the nominal path, there is a map image

taken from a nearby pose that captures the non-planar changes in the scene (e.g., side of

a building becoming visible). This allows us to accurately localize with sRt warping at

lower altitudes where the planar scene assumption is less valid. The spacing was chosen

heuristically: the largest possible distance to any map image is 4.5m when inside the

tube, which is approximately the width of our convergence basin at the altitude flown in

these experiments.

The map images could be extended beyond 12m or cover an entire flight area. The

only limitation is the storage available on the UAV. Although we save high-resolution

RGB images, the image registration algorithm only uses 560 × 315 4-bit greyscale im-

ages (the NID is computed using 16-bin histograms of the greyscale intensities). Our

313m and 1.1 km paths contain 2393 and 8992 map images, respectively, which would

require approximately only 212Mb and 794Mb if saved in the minimum required format.

With today’s large capacity and inexpensive storage, map images covering several square

kilometres could easily be stored onboard.

3.4.3 Ground Truth

It is important to note that the RTK-GPS and GE global coordinate frames, F−→W ′ and

F−→W , respectively, do not perfectly align. Therefore, we uniformly sample 10% of the

posterior pose estimates along the path and use these to align the coordinate frames with

a transform, TW ′,W , that is determined by miniziming the uncertainty-weighted relative

pose errors between the RTK-GPS poses and posterior pose estimates. We report all

image registration and filtered errors on the remaining 90% of the path.

From our filter we have the transform from the GE world frame to the estimated pose

with uncertainty at keyframe k, {T̄k,W ,Pk}. Also, we have the transform from the vehi-

cle pose to the RTK-GPS world frame with uncertainty for each keyframe, {T̄W ′,k,Sk}.

These two uncertain transforms can be compounded to obtain a nominal or mean trans-

form,

T̄W ′,W = T̄W ′,kT̄k,W , (3.30)

with uncertainty

Σk = Sk + T̄W ′,kPk,W T̄ ⊤

W ′,k. (3.31)
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Note that T̄W ′,W is not associated withTW ′,W , which is the transform we wish to estimate

to align the coordinate frames.

We can define the error for each keyframe as

ek(TW ′,W ) = ln
(

T̄W ′,kT̄k,WT−1
W ′,W

)∨
. (3.32)

Using our SE(3) perturbation scheme we have TW ′,W = exp(ǫ∧)Top so that

ek(TW ′,W ) = ln
(

T̄W ′,kT̄k,WT−1
op exp(−ǫ∧)

)∨
(3.33a)

≈ ek(Top)−Gkǫ, (3.33b)

where Gk = J (−ek(Top))
−1 is the inverse left Jacobian [Barfoot, 2017]. Our approxi-

mation is valid when T̄W ′,kT̄k,WT−1
op is small which is true provided we start with a good

intial guess. Our cost function is defined as

J(TW ′,W ) =
1

2

K
∑

j=0

ek(TW ′,W )⊤Σ−1
k ek(TW ′,W ) (3.34a)

≈
1

2

K
∑

j=0

(ek(Top)−Gkǫ)
⊤Σ−1

k (ek(Top)−Gkǫ). (3.34b)

We can solve this iteratively using Gauss-Newton procedure where

(

K
∑

j=0

G⊤

kΣ
−1
k Gk

)

ǫ∗ =

(

K
∑

j=0

G⊤

kΣ
−1
k ek(Top)

)

(3.35)

is used to update our operating point:

Top ← exp(ǫ∗∧)Top. (3.36)

After convergence we have an optimal TW ′,W = T∗
op that is used to align the GE and

RTK-GPS coordinate frames.

3.5 Results and Discussion

3.5.1 MI-based Image Registration

We first show an example of aligning two images with sRt warping using the NID cost

function. Figure 3.8 shows the cost function values swept over the four warping parame-
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ters for the first image in the overcast dataset. The warping that generates the minimum

NID is often the best image alignment as shown in this example. However, it is not

guaranteed that there will be a single minimum or even that the global minimum corre-

sponds to the best alignment. Furthermore, the absolute NID value highly depends on

the scene. The near-perfect alignment in the example occurs at nearly 0.93 even though

the NID is a value between 0 and 1 with a lower value indicating more similarity. For

this reason, we use a geometric criterion for classifying image registration failures instead

of thresholding the NID.

Next, we show the image alignment using our two-step optimization approach using

the same two images as in Figure 3.8 to compare with the grid search results. Figures

3.9a and 3.9b show the cost function value per iteration during this optimization. The

optimal warping parameters from the refined optimization are a scale of 0.99, rotation

of 0.14 degrees, and translation of (5.6, 6.1) pixels, which result in an NID of 0.921.

The grid search resulted in an optimum at a scale of 1.0, rotation of 0 degrees, and

translation of (6, 6) pixels with a NID of 0.928. Our two step optimization approach

successfully finds the optimum with fewer function evaluations and provides sub-pixel

and sub-degree warping parameters.

We now present our image registration results on all datasets using our two-step

optimization approach. Table 3.1 shows the success rate and Root-Mean-Square Error

(RMSE) computed using all registrations and only successful ones. The optimizer always

converged to a solution thus all failures were instead due to poor image alignment.

Table 3.1: Summary of MI-based Image Registration Results

Lighting Registration Successful Registrations All Registrations
Condition Success (%) RMSE (m) RMSE (m)

long. lat. alt. heading long. lat. alt. heading

Overcast 100 0.69 0.46 0.50 0.89 0.69 0.46 0.50 0.89
Sunrise 94.7 1.10 0.71 1.17 2.28 1.87 1.47 1.73 2.80
Morning 95.1 1.02 0.58 0.78 2.57 2.24 1.39 1.20 2.97
Noon 97.8 0.78 0.61 1.01 1.82 1.26 1.02 1.40 2.70
Afternoon 96.0 1.69 0.92 1.17 1.71 2.14 1.57 1.54 2.63
Evening 81.3 3.03 1.32 1.35 2.49 4.09 3.63 2.98 5.25
Sunset 87.5 1.95 1.12 1.55 2.64 3.03 1.95 2.54 3.06

For the overcast flight we successfully register every keyframe and achieve sub-metre

position and sub-degree orientation errors. This is in part due to the higher altitude flight

(although this is still relatively low compared to previous work), which provides more

objects and boundaries to aid in the alignment. An example of the optimal NID values

for each keyframe is shown in Figure 3.10. This further showcases the difficulty in using

the absolute value to classify failures. For the sunrise to sunset flights, the registration
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(a) NID cost function swept from -15 to 15 pixel translations in tx and
ty at three different scales and rotations.

(b) Alpha blended image of the UAV query image (prominent) and the
Google Earth map image warped with the optimal sRt parameters.

Figure 3.8: An example sRt alignment using the NID cost function showing the smooth-
ness over the warping parameters with a clear optimum that corresponds to a nearly
perfect alignment.
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(b) Refined optimization using L-BFGS

(c) Alpha blended image of the UAV query image (prominent) and the
Google Earth map image warped with the optimal sRt parameters from
the refined optimization.

Figure 3.9: Optimizing the NID cost function over the sRt warping parameters using our
two-step optimization approach produces sub-pixel and sub-degree sRt parameters that
generate a lower NID than our costly grid search.
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Figure 3.10: The optimal NID value from image registration for each keyframe in our
overcast dataset.

performs the best at noon as expected; the GE 3D reconstruction in our flight area

resembles early noon. The image registrations alone were able to achieve nearly less than

3m and 3◦ position and heading RMSE.

There are two types of scenes that are particularly difficult for our image registration:

scenes with lots of self-similar texture (e.g., vegetation in Figures 3.11b, 3.11c), and

scenes with large shadows (e.g., Figures 3.11a, 3.11d). Self-similar texture results in

many local minima in the registration cost function. Shadows can trick the MI into

associating the shadow with its caster resulting in a strong local minimum that may

even be a global minimum. These shadows were most prevalent in the evening flight

resulting in its lower success rate. While our blurred optimization provides robustness to

shallow local minima, we depend on good initial guesses to handle the aforementioned

problematic areas. Figures 3.11f, 3.11g, 3.11h show examples of when the MI optimizer

can settle in the correct local minimum with an initial guess given by VO near the

true alignment. Another method to handle these scenes is to optimize over a window

of keyframes. Although this may produce a suboptimal alignment for each individual

keyframe, it prevents large jumps in the measured poses introduced by these additional

minima.

The number of cost function evaluations required per image registration is presented

in Figure 3.12. Currently we place a very loose constraint on the number of iterations

allowed for optimization. If necessary, we can reduce this number as, in many cases,

the additional iterations do not provide a significant improvement to the accuracy. The

current offline implementation uses the SciPy library for optimization thus is not able to

run in real-time. However, we strongly believe our upcoming C++ implementation will

enable the image registration to run at rate of at least 1Hz.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.11: The top two rows show examples of bad alignments due to (a) alignment
of the building with its shadow, (b) and (c) almost no structure to aid in alignment,
and (d) alignment of the trees with their shadows. The bottom two rows show good
alignments despite: (e) poor 3D reconstructions, (f) and (h) large shadows, and (g) very
little structure. A better initial pose guess and slightly more structure in (h) compared
to (d) allows the MI optimizer to correctly align the images.
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Figure 3.12: Number of cost function evaluations per image registration at each step of
the proposed method.

3.5.2 Comparison with Feature-based Registration

We briefly present the results from a feature-based image registration scheme for com-

parison. We use the aforementioned VT&R framework with SURF. The GE images

along the nominal path are used for the teach run. Repeats are then attempted with

each of the sunrise to sunset flights but the result is a poor registration performance.

The features are only capable of producing less than 7% successes per repeat where the

registration is declared a failure if the number of MLESAC inliers is below 30.

Since it is quite obvious that feature matching across the rendered and real-world

images will struggle, we also briefly evaluate the performance of a typical teach-and-

repeat without the use of GE images. The sunrise flight is used as the teach with

subsequent flights used as repeats. This results in 34.9%, 30.3%, 15.0%, 8.4%, and 72.4%

success rate for morning to sunset. It is clear that the dramatic changes in lighting makes

feature matching unreliable. The sunset flight is able to localize the most frequently due

to the similar brightness and minimal shadows that appear during sunrise and sunset.

3.5.3 Filtered Pose Estimation

Finally, we highlight the accuracy we can achieve by fusing VO and our MI-based real-to-

rendered image registration. The pure VO, image registration measurements, and filtered

position estimates for the overcast flight are shown in Figure 3.13 alongside the ground

truth. A histogram of the position and orientation errors is presented in Figure 3.14. It is

clear that the combination of scaled VO to smooth out registrations and the registrations

to correct for drifts in VO results in an accurate filtered global pose estimate. Figures

3.15 - 3.20 show the position estimates for each of our six flights from sunrise to sunset,

and Figures 3.21, 3.22 show histograms of position and orientation errors, respectively.



Chapter 3. Visual Localization with Google Earth Images 50

As we saw previously, a few particular areas were problematic for image registration in

the presence of lighting changes. However, VO was able to carry the estimation through

these small stretches (5 − 10 keyframes) of failures that predominantly occurred during

the evening and sunset flights. Overall, our method is able to estimate a global pose

throughout the day with a position accuracy that rivals (non-differential) GPS.

Table 3.2: Summary of Filtered Results

Lighting RMSE (m)
Condition long. lat. altitude roll pitch heading

Overcast 0.61 0.42 0.32 0.27 0.29 0.84
Sunrise 1.10 0.76 0.32 0.31 0.69 2.19
Morning 1.15 0.80 0.31 0.35 0.46 2.67
Noon 0.91 0.82 0.30 0.55 0.78 1.76
Afternoon 1.51 0.86 0.47 0.52 0.61 1.54
Evening 2.73 1.64 0.45 0.52 0.82 2.48
Sunset 1.78 0.76 0.51 0.52 0.84 2.55

3.6 Summary

We presented a method for global pose estimation of a UAV by visually localizing real-

world images with pre-rendered images from a 3D reconstruction of the Earth. We used

a MI-based dense image registration scheme to align the real and rendered images for

metric localization. The registrations were then used to apply corrections to gimballed

VO in a filtering framework. On multiple flights totaling 7.1 km of data with altitudes

as low as 36m AGL, we estimated the full pose with an accuracy on the order of a few

metres and degrees. We also showed the ability to consistently localize over the course

of a sunny summer day using a single database of pre-rendered images despite dramatic

changes in lighting. Our method enables global pose estimation with a position accuracy

on par with GPS.
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Figure 3.13: Position estimates using our method for the 303m overcast flight. The VO
drifts significantly but our accurate image registrations allow us to estimate the scale and
apply corrections.
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Figure 3.14: Histogram of filtered position and orientation errors for our overcast flight.
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Figure 3.15: Position estimates for our 1132m sunrise flight. The path starts at the
intersection and spirals outward clockwise. Note that we show all image registration
results here, even if they were classified as a failure. Our estimator performs well despite
the drifting, unscaled VO, and image registrations using real images at sunrise that
appear darker than the GE images.
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Figure 3.16: Position estimates for our 1132m morning flight. The path starts at the
intersection and spirals outward clockwise. Note that we show all image registration
results here, even if they were classified as a failure. Our estimator performs well despite
the drifting, unscaled VO.
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Figure 3.17: Position estimates for our 1132m noon flight which shows our best local-
ization performance. The path starts at the intersection and spirals outward clockwise.
Note that we show all image registration results here, even if they were classified as a
failure. Our estimator performs well despite the drifting, unscaled VO. Our image regis-
trations during the noon flight are quite accurate due to the similar apperance between
the real images at noon and the GE images.



Chapter 3. Visual Localization with Google Earth Images 56

0 50 100 150 200 250 300 350

Easting (m) +6.233e5

0

50

100

150

200

250

300

N
o
rt

h
in

g
 (

m
)

+4.8486e6

Filtered

Measurements

Ground Truth

VO only

Map Images

(a)

0 50 100 150 200 250 300 350 400 450

Keyframe

25

30

35

40

45

50

55

H
e
ig

h
t 

a
b

o
v
e
 G

ro
u

n
d

 (
m

)

Filtered

Measurements

Ground Truth

VO only

(b)

Figure 3.18: Position estimates for our 1132m afternoon flight. The path starts at the
intersection and spirals outward clockwise. Note that we show all image registration
results here, even if they were classified as a failure. Our estimator performs quite well
despite the drifting, unscaled VO.
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Figure 3.19: Position estimates for our 1132m evening flight which shows our worst local-
ization performance. The path starts at the intersection and spirals outward clockwise.
Note that we show all image registration results here, even if they were classified as a
failure. The evening flight had the largest number of image registration failures due to
the large shadows that appear in the real images. The worse performance can clearly
be seen by the large jumps in the measured positions. However, the image registrations
were good enough to apply corrections and scale VO to result in a fairly accurate filtered
estimate.
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Figure 3.20: Position estimates for our 1132m sunset flight. The path starts at the
intersection and spirals outward clockwise. Note that we show all image registration
results here, even if they were classified as a failure. While the image registrations had
the 2nd lowest success rate due to the darker real images at sunset compared to the GE
images, the overall estimation was still fairly accurate.
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Figure 3.21: Histogram of filtered position errors for our sunrise to sunset flights. The
majority of errors are less than a few metres.
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Figure 3.22: Histogram of filtered orientation errors for our sunrise to sunset flights. The
majority of errors are less than a few degrees.
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Conclusion and Future Directions

4.1 Conclusion

The first contribution of this thesis is aiding in the development of a vision-based route-

following system for the emergency return of a multirotor UAV in the event of GPS loss;

this was developed using the VT&R system as a foundation. The primary contribution

was assisting in the software development, hardware setup, and experimental validation

over months of outdoor flight tests at UTIAS; Koffler Scientific Reserve; Suffield, Al-

berta; and downtown Montreal. An emphasis was placed on contributing to the visual

localization algorithm and gimballed camera pointing. Using a slower absolute angle

gimbal controller with an orientation matching strategy enabled successful localizations

at speeds up to 15m/s on a 450m path flown at 12m AGL with return flights per-

formed under GPS control. We also showed successful localizations despite increasing

altitude errors with the mapping flights performed at 12m AGL and returns at up to

18m AGL. Finally, we demonstrated closed-loop vehicle control using a vision-based PID

path-following controller on the same 450m path at 12m AGL with path-following errors

equivalent to the onboard GPS controller. This work resulted in a journal publication

[Warren et al., 2019].

The next contribution of this thesis is a modular gimbal controller that resides inside

the VT&R software system (Chapter 2). The user is able to select an absolute angle

command controller or an angular rate controller for a faster response. The user can

additionally select a desired camera pointing strategy for the teach and repeat phases. In

Chapter 2, we evaluated multiple gimbal pointing strategies including off-the-shelf passive

stabilization, active stabilization, orientation matching to minimize the camera viewpoint

orientation error, and centroid pointing to point at the centroid of previously observed

landmarks. We highlighted the robustness a gimballed camera adds to visual localization

61
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by showing a statically-mounted frequently failing on a dynamic path while orientation

matching was able to minimize the perspective errors to retain localization. We showed

that active pointing is necessary; simply adding a gimbal with a passive control strategy

can actually lead to localization failures. Finally, we showed our orientation matching

and centroid pointing strategies enable successful localizations on a 170m flight path with

6 − 25m altitude variations despite large velocity discrepancies (teaching at 3m/s and

repeating at 9m/s) and large path-following errors (up to 8m) between the outbound

and return flights. This work resulted in a best paper award [Patel et al., 2019].

Lastly, this thesis contributes a global pose estimation method for a multirotor UAV

using a set of pre-rendered images from a 3D reconstruction of the Earth (Chapter 3). We

use an information theoretic approach for dense image registration of real-world images

with rendered georeferenced images. Using a MI-based cost instead of photometric allows

accurate registration despite large appearance differences between the 3D reconstruction

and the true world. On 7.1 km of flight data over multiple flights with altitudes as

low as 36m AGL, we achieved less than a few metres and few degrees global RMSE.

We were able to consistently localize from sunset to sunrise during a 16 hour sunny

summer day using a single database of pre-rendered images from Google Earth despite

the dramatic changes in lighting in the real-world images. Our method is able to provide

global position estimates with an accuracy on par with GPS. This work resulted in a

journal paper submission [Patel et al., 2020].

4.2 Future Directions

For active camera pointing we considered fairly simple and intuitive pointing strategies for

the repeat runs. Although these provide performance that is good enough for closed loop

control at slower speeds, future work could explore more advanced pointing strategies.

One idea is to point the camera to maximize the probabilty of acheiving a minimum

number of inliers informed by an inlier model that is a function the angular offset from

the camera to the landmark caused by a position offset between the teach and repeat

paths. As this angle increases, the probability that the landmark will be matched via

SURF features descreases. Future work could also explore pointing strategies for the

teach phase to improve the visual map. One such strategy is an altitude-based pitch

control to point the camera towards the horizon during low altitude flights and towards

the ground during high altitude flights to maximize useful visual information.

The global pose estimation method presented here opens the door to many research

and engineering opportunities. First, the estimation is currently running offline in a
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Python implementation so the next step is to implement it in C++ and within the VT&R

software system. We expect this will provide at least an order of magnitude speedup,

and in combination with parellization, we strongly believe that real-time performance is

possible. Furthermore, the integration with the VT&R software system would enable the

pose estimates from the MI-based image registration to be used in the existing bundle

adjustment. Second, the estimation would greatly benefit with proper uncertainty quan-

tification. The uncertainty could then be used to constrain the search radius for map

image selection and reject registrations outside the three standard deviation uncertainty

bounds. Third, GE opens the door to perform path planning for good localizability in

advance of flight. Images generated in GE along potential flight paths could be used

to design a path that maximizes the chance of localization. Fourth, the performance

of the estimator needs to be evaluated in more scenarios (lower altitudes, over mulitple

seasons, in different locations, etc.) to compare its reliability with GPS. Finally, it needs

to be integrated with a vision-based flight controller to show closed-loop vision-based

autnomous navigation. Ultimately, we envision this technique will enable any time, any

place flights.
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