
Distributed Trajectory Generation for Multiagent Systems

by

Carlos E. Luis

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

University of Toronto Institute for Aerospace Studies
University of Toronto

c© Copyright 2019 by Carlos E. Luis

Abstract

Distributed Trajectory Generation for Multiagent Systems

Carlos E. Luis

Master of Applied Science

University of Toronto Institute for Aerospace Studies

University of Toronto

2019

Collision-free trajectory generation is a fundamental functionality of multiagent sys-

tems. As the number of agents increases, scalable algorithms are required to efficiently

compute motion plans. In this thesis we developed a multiagent trajectory generation

framework based on distributed model predictive control (DMPC). First, we introduced

on-demand collision avoidance to solve the planning problem completely offline. We

then extended the approach to online generation of the trajectories, and presented an

event-triggered replanning strategy. The framework is validated through a wide variety

of simulation tests and experiments with a swarm of up to 25 quadrotors flying in an

indoor environment.

ii

Acknowledgements

Looking back at the past two years, I am left with a deep sense of gratitude towards

many people that supported me throughout this journey. I would like to start with my

biggest supporters: thank you Mom for always being there for me, either to give me life

advice or the ingredients of your famous bolognese sauce. Thank you Dad for teaching

me how to be an adult and fend for myself. Thank you Adri for the laughs and the “big

sis” advice. And special thanks to Maŕıa, for your constant love and support. Gracias

por tanto, los amo.

I want to express my gratitude to my supervisor, Professor Angela Schoellig. First,

for seeing the potential in me and accepting me as her student. Second, for allowing me

to explore my own ideas and push me in the right direction when needed. Lastly, for all

the advise and support on finding my career path. The biggest lesson Angela taught me

was to never lose sight of the big picture, and push the boundaries of what is currently

possible. Needless to say, the time spent in Angela’s lab has been the most academically

enriching experience of my life. Everything was well worth the effort.

The Dynamic Systems Lab provided a friendly environment to do my research and

develop this thesis. I am glad I met such an incredibly talented group of roboticists

from all over the world. Beyond academic discussions, I was able to learn a lot from

the different cultural backgrounds of my labmates. Thank you all: Karime, Chris, SiQi,

Melissa, Adam, Bhavit, Sep, Michael, Mario, Wenda, Ke, Jeremy and Keenan. I will

miss the interesting lunch-time conversations.

I would like to acknowledge the ever-growing robotics community at the University

of Toronto, specifically at UTIAS. Special mention goes to the members of STARS lab

and ASRL, with whom I share my love for this field. I would also like to thank Professor

Hugh Liu, who agreed to review my thesis. I hope to read amazing work being published

by the UTIAS robotics community.

“The true lover of knowledge naturally strives for truth, and is not content with

common opinion, but soars with undimmed and unwearied passion till he grasps the

essential nature of things.”

– Plato

iii

Contents

1 Introduction 1

1.1 Background & Motivation . 1

1.2 Related Work . 2

1.3 Contributions . 5

1.4 Thesis Overview . 5

2 Multiagent Offline Trajectory Generation 6

2.1 Introduction . 6

2.2 Problem Statement . 7

2.2.1 The Agents . 7

2.2.2 Constraints . 8

2.2.3 Collision Avoidance . 8

2.3 Distributed Model Predictive Control . 8

2.3.1 The Synchronous Algorithm . 9

2.3.2 The Agent Prediction Model . 9

2.3.3 Objective Function . 10

2.3.4 Physical Limits . 12

2.3.5 Convex Optimization Problem, No Collision Case 12

2.3.6 On-Demand Collision Avoidance with Soft Constraints 12

2.4 The Algorithm . 15

2.4.1 Example Scenario . 16

2.4.2 Limitations and Associated Mitigation Strategies 16

2.5 Simulations . 18

2.5.1 Comparison of Collision Avoidance Strategies in DMPC 18

2.5.2 Comparison to SCP-Based Approaches 20

2.6 Experiments . 20

2.6.1 Parallel DMPC . 21

2.6.2 Swarm Transition . 21

iv

2.7 Summary . 24

3 Multiagent Online Trajectory Generation 25

3.1 Introduction . 25

3.2 Problem Statement . 26

3.2.1 The Agents . 26

3.3 Online Distributed Model Predictive Control 27

3.3.1 Trajectory Parameterization . 27

3.3.2 The Agent Prediction Model . 29

3.3.3 Input Continuity . 30

3.3.4 Dynamic Feasibility . 31

3.3.5 Optimization-Based Collision Avoidance 31

3.3.6 Cost Function . 34

3.4 Event-Triggered Replanning . 35

3.5 Algorithm . 37

3.6 Simulation Results . 38

3.6.1 Comparison of Collision Avoidance Methods 39

3.6.2 Runtime Benchmark . 40

3.7 Experimental Results . 41

3.7.1 Obstacle-Free Transitions . 42

3.7.2 Transition Tasks With Static Obstacles 43

3.8 Summary . 44

4 Conclusions and Future Work 46

4.1 Summary of Contributions . 46

4.2 Future Work . 47

Bibliography 47

v

List of Tables

3.1 Experimental results summary for random transition tasks involving in-

creasing number of agents. 42

vi

List of Figures

1.1 A group of 25 quadrotors Crazyflie 2.0 flying in close proximity in an

indoor flying arena. 2

2.1 A group of 25 Crazyflie 2.0 quadrotors performing a point-to-point tran-

sition using our distributed model predictive control (DMPC) algorithm.

A video of the performance is found at http://tiny.cc/dmpc-swarm. . . 7

2.2 Four-agent position exchange scenario in 2D solved using Alg. 1. Circles

and diamonds represent initial and final locations, respectively. Dotted

lines in (a) - (c) represent the predicted positions over a 3-second hori-

zon, solid lines are the generated trajectories and dashed lines in (d) are

the trajectories generated by the centralized approach in [1]. Using the

optimality criteria of the sum of travelled distances by all agents, the dis-

tributed plan is only slightly suboptimal when compared to the centralized

approach. 17

2.3 Performance comparison of different collision avoidance strategies in DMPC,

for an increasing number of agents within a workspace with a fixed agent

density of 1 agent/m3. For every swarm size considered, 50 different ran-

dom test cases were generated. 18

2.4 Performance comparison of DMPC against SCP-based approaches, in a

fixed 4m3 volume. For every density considered, 50 different random test

cases were generated. 19

2.5 Average computation time for different numbers of clusters. For each

swarm size, we gathered data of 30 successful transitions and reported the

mean and standard deviation (vertical bars) of the runtime. 21

vii

http://tiny.cc/dmpc-swarm

2.6 A 25-agent transition scenario: (a) initial grid configuration, (b) target

‘DSL’ configuration. Circles and diamonds (of matching colour) represent

initial and final locations for all agents, respectively. The star in the

middle represents an agent acting as a static obstacle. The bounding box

in dashed red lines represents the workspace boundaries. Figures (c)-(d)

are the initial and final configuration snapshots from our experiments. . . 22

2.7 Experimental data from the transition depicted in Fig. 2.6, showing maxi-

mum and minimum distance values over 6 independent trials: (a) pairwise

distances, (b) distances to target locations. 23

3.1 A ten-drone transition task through a hula-hoop solved using our pro-

posed online trajectory generation method. Our distributed computation

allows for real-time multi-robot trajectory generation, enabling complex

transition tasks to be performed. A video of the performance is found at

http://tiny.cc/online-dmpc. 26

3.2 Block diagram of the control system of agent i. Here we depict the agent

as a Crazyflie 2.0 quadrotor, which is our experimental platform. 27

3.3 Two-agent transition scenario in 2D. The agents are represented by a circle

of radius rmin/2. The X marks the intended goal of each agent. In (a)

the dashed lines represent the nominal (colliding) trajectories, where the

translucent circles represent the position of each agent at time step kc,i

in which the first collision is predicted. In (b) we show the input update

using the BVC method. The green dots represent the concatenation points

of the Bézier curves. The first segment is constrained to lie within the

coloured zone for each agent. In (c) the agents update their inputs using

on-demand collision avoidance. The star represents the sample of the input

constrained to be within the coloured zone. 32

3.4 Experimental data of a quadrotor flight when using online trajectory gen-

eration based on DMPC [2] with replanning every second. The disconti-

nuities in the reference signal causes undesired behaviour. 36

3.5 Experimental data of a quadrotor using event-triggered replanning with

the activation function in (3.23). The robot was perturbed by a human

during the highlighted segments in red. 37

viii

http://tiny.cc/online-dmpc

3.6 Simulation performance comparison of various collision avoidance strate-

gies. We considered different numbers of agents in a fixed volume of 18 m3.

For each swarm size, 50 different random test cases were generated and

the results were averaged. 39

3.7 Comparison of the average runtime per agent to update the inputs us-

ing our on-demand collision avoidance and the BVC method. The data

shown is the average over 50 randomly generated tests for each swarm size

considered. 41

3.8 A 10-drone transition scenario passing through a hula-hoop (denoted by

the black circle). The forbidden space is denoted by four ellipsoids acting

as static obstacles. The coloured dots denote the initial locations of the

agents, and the corresponding coloured lines are the followed trajectories

towards the goal (only 4 showing for clarity). 43

3.9 Distance to target envelope (minimum and maximum over time) of the

10-drone hula-hoop transition task. The light green section represents the

zone where transition success is declared: a 6 cm radius of the target

location. In this case the transition was completed in Tf = 28 s. 44

ix

Chapter 1

Introduction

1.1 Background & Motivation

Current robotic applications such as manufacturing and surveillance benefit from the use

of coordinated multiple robots. There are missions that would be too time-consuming

or even impossible for a single robot to accomplish. Cooperation is regarded as the key

to exploit all the benefits of multi-agent systems, hence the motivation of studying the

algorithms that make these cooperating behaviours arise.

Researchers have tried to mimic the complex group dynamics seen in nature, such

as a flock of birds flying in formation. Observations imply that there is no central unit

coordinating these animals, instead they are driven only by their individual observations

and interactions with their neighbours. One of the first milestones achieved in the field

was replicating the behaviour of a flock of birds, by defining the local rules that drive

each member of the team [3].

The intuitive way to model these behaviours is as a distributed system, in which each

agent is self-contained both in its sensing and its actions. The general problem to be

solved is that of achieving consensus within a distributed network of agents, which means

that they are able to coordinate and achieve a common global goal, such as meeting at

a point (rendezvous problem) or to assemble a formation [4].

One fundamental functionality of any multiagent system is collision-free motion. For

instance, in warehouse management [5], we often must safely drive agents from their

current locations to a set of final positions. Solving this task, known as multiagent point-

to-point transition, is therefore an integral part of any robust multiagent system and the

core problem studied in this thesis.

As the number of agents to be controlled increases, the scalability of the algorithms

becomes a key factor for their use with real robots. Thus, the main motivation of this work

1

Chapter 1. Introduction 2

Figure 1.1: A group of 25 quadrotors Crazyflie 2.0 flying in close proximity in an indoor
flying arena.

is to develop a scalable trajectory generation framework that solves the point-to-point

transition problem for general multiagent systems. The algorithms are demonstrated

with a swarm of small-sized quadrotors flying indoors, as depicted in Fig. 1.1.

Our first approach to tackle the problem was to solve it completely offline, designing

an algorithm that outputs full trajectories for the robot team to complete the transition.

With scalability in mind, we explored distributed optimization-based approaches to solve

the problem in a few seconds for dozens of agents.

In an effort to add robustness to the trajectory execution, we adapted the offline

approach to instead work as an online trajectory generator. This new approach replans

the trajectories of the agents based on the current sensed states, allowing the agents to

adapt whenever disturbances occur along the execution of the motion plans.

1.2 Related Work

There are two main variations of the multiagent point-to-point transition problem: the

labelled and the unlabelled agent problem. In the former, each agent has a fixed final

position that cannot be exchanged with another agent [1,6]; in the latter, the algorithm

is free to assign the goals to the agents, as to ease the complexity of the transition

problem [7]. This thesis focuses on the labelled agent problem.

A common approach is to formulate an optimization problem. One of the first tech-

niques developed relied on Mixed Integer Linear Programming (MILP), modelling colli-

sion constraints with binary variables [6]. This method is computationally expensive and

Chapter 1. Introduction 3

not suited for large groups of agents.

More recently, Sequential Convex Programming (SCP) [8] has been used to achieve

faster computation compared to MILP. In [1], SCP is used to compute optimal-energy

trajectories for quadrotor teams. Although useful for small teams, the algorithm does

not scale well with the number of agents. A decoupled version of that algorithm was

proposed in [9,10], which provides better scalability at the cost of suboptimal solutions.

However, the required decoupling leads to a sequential greedy strategy (i.e., turning agent

trajectories previously solved for into obstacles for subsequent agents) with decreased

success rate as the number of agents increases.

Discrete approaches divide the space into a grid and use known discrete search algo-

rithms [11], limiting the initial and final locations to be vertices of the underlying grid.

Other discrete planning strategies like Rapidly-exploring Random Trees (RRT) [12] have

been extended to the multi-agent case. Also, a combination of discrete planning and

continuous optimization has been developed to coordinate multiple robots in cluttered

environments [13]. GPU-accelerated approaches can drastically reduce the runtime of

these offline motion planners [14].

Other approaches combine optimization techniques and predefined behaviours to man-

age collisions in 2D [15]. Lyapunov barrier functions have also been used to compute

multiagent collision-free trajectories [16].

Distributed optimization approaches can effectively include pair-wise distance con-

straints [17]. Furthermore, the computational effort is distributed among the agents

and therefore reduced compared to centralized approaches. Optimal reciprocal collision

avoidance (ORCA) leverages velocity obstacles to guarantee collision-free trajectories for

holonomic [18] and non-holonomic [19] agents. While provably safe, the method may be

overly conservative by assuming a constant velocity profile over the time horizon. Tech-

niques based on potential fields have been used for decentralized collision avoidance [20],

but they are susceptible to deadlocks.

Distributed model predictive control (DMPC) [21] has been used in coordination

tasks such as formation control [22, 23], but not explicitly for point-to-point transitions.

Particularly interesting are synchronous implementations of DMPC [24], where the agents

simultaneously update their predictions, reducing runtime by parallel computing.

Previous DMPC approaches achieved collision avoidance by either (1) using com-

patibility constraints that limit the position deviation of agents between prediction up-

dates [25] or (2) imposing separating hyperplane constraints between the agents at every

time step of the prediction horizon [22]. Both strategies are not well suited for transition

tasks: strategy (1) drastically reduces the mobility of agents, especially in cluttered envi-

Chapter 1. Introduction 4

ronments, while strategy (2) lacks scalability and is overly conservative, as demonstrated

in Ch. 2. In contrast, inspired by the incremental inclusion of all collision constraints

over an infinite horizon proposed in [9], in Ch. 2 we introduce on-demand collision avoid-

ance in a DMPC framework, where we detect and resolve only the first collision in the

finite prediction horizon, reducing computation time and increasing the success rate for

transition tasks. Our method is further enhanced by the use of soft collision constraints,

as in [26].

Despite the advances in scalability and safety of the algorithms, online trajectory

generation for large groups of robots remains a challenge. ORCA and all its variants have

pushed towards real-time trajectory generation, with convincing results in various robotic

platforms in planar environments [27]. A similar approach achieves collision avoidance

through the concept of Buffered Voronoi Cells (BVC) [28], showing initial results of online

trajectory generation in 2D with multiple quadrotors operating at a fixed height. The

BVC concept has been recently used in tandem with discrete planners [29], primarily to

avoid deadlocks in scenarios where plain BVC would get trapped and fail the task.

Some work has also considered uncertain robot location and sensing. In [30], a

probabilistic collision avoidance method is considered using a chance-constrained non-

linear MPC framework, with successful results in experiments with quadrotors sharing a

workspace with a human. Other robust MPC frameworks such as tube MPC have been

developed for distributed multi-agent systems, both with linear [31] and nonlinear [32]

dynamics. Although both approaches provide proofs and simulation results, they are

not real-time implementable with current hardware and solver capabilities. More re-

cently, [33] developed a reciprocal collision avoidance method under sensing uncertainty

for single-integrator agents.

In Ch. 3 we extend the method in Ch. 2 (publication [2]) to include online replanning

of the trajectories. As such, our framework provides an essential functionality for higher

level planners that specify complex team missions in terms of goal locations to be visited

by the agents.

Our approach contrasts from current online methods (e.g., [29]) in that:

• It is purely optimization-based, in the form of a standard QP. No discrete planner

is running in the background, which reduces the computation time.

• It uses on-demand collision avoidance instead of the BVC (or ORCA) method

for partitioning the free space, resulting in less conservative movement and faster

transition times.

Our results suggest that the proposed method is well-suited for online trajectory

Chapter 1. Introduction 5

generation, with average computation times of 28 ms for 20 quadrotors, all from a single

offboard computer. Moreover, we demonstrate how our method creates less conservative

plans than BVC, which ultimately leads to faster completion of the task and higher

probability of solving scenarios with high agent density.

1.3 Contributions

The main contributions of this thesis are now listed:

• An offline trajectory generation method based on distributed model predictive con-

trol. The work on this topic resulted in the publication in [2]. A video demonstrat-

ing the results is found at http://tiny.cc/dmpc-swarm.

• An online trajectory generation method using real-time distributed model predic-

tive control. The work on this topic resulted in the paper in [34]. A video of the

performance is found at http://tiny.cc/online-dmpc.

1.4 Thesis Overview

The thesis is organized as follows: Ch. 2 presents the offline trajectory generation frame-

work. In Ch. 3 we develop a framework for real-time trajectory generation. In Ch. 4 we

summarize our results, give concluding remarks and propose future research directions.

http://tiny.cc/dmpc-swarm
http://tiny.cc/online-dmpc

Chapter 2

Multiagent Offline Trajectory

Generation

2.1 Introduction

This chapter proposes a novel approach to solve the point-to-point transition problem

offline. In the context of this work, offline means that the whole transition trajectories

are computed prior to their execution. The two main assumptions are as follows: i) the

environment is static and known in advance and ii) the agents will not suffer distur-

bances while executing their trajectories. In Ch. 3 we relax assumption ii) by replanning

trajectories online.

Despite these assumptions, offline trajectory generation is still useful and commonly

used in a wide variety of tasks. In particular, in structured environments where the agents

are guaranteed to remain unperturbed, then offline trajectory generation is enough to

solve the point-to-point transition problem.

The key contributions of this chapter are three-fold: we introduce a novel on-demand

collision avoidance strategy for DMPC, present a fast DMPC algorithm for multiagent

point-to-point transitions, and provide a thorough empirical analysis of our method

via simulations and real quadrotor experiments, as well as comparisons to existing ap-

proaches. To the best of our knowledge, our method is the first to be fast enough for

midflight trajectory generation with 25 drones (computations are done upon request

during flight).

The rest of the chapter is organized as follows: Sec. 2.2 states the problem. Sec. 2.3

introduces the optimization formulation to solve it. The algorithm is presented in Sec. 2.4

and demonstrated in simulation (Sec. 2.5) and experiments with a swarm of quadrotors

6

Chapter 2. Multiagent Offline Trajectory Generation 7

Figure 2.1: A group of 25 Crazyflie 2.0 quadrotors performing a point-to-point transi-
tion using our distributed model predictive control (DMPC) algorithm. A video of the
performance is found at http://tiny.cc/dmpc-swarm.

(Sec. 2.6). A picture of our 25-drone swarm testbed is shown in Fig. 2.1, along with an

accompanying video showcasing our method and results.

2.2 Problem Statement

The goal is to generate collision-free trajectories that drive N agents from initial to final

locations within a given amount of time, subject to state and actuation constraints.

We aim to generate such trajectories offline and execute them with our experimental

platform, the Crazyflie 2.0 quadrotor.

2.2.1 The Agents

The agents are modeled as unit masses in R3, with double integrator dynamics. This

simplified model of a quadrotor with an underlying position controller is used to achieve

faster computations. Higher-order models can be accommodated with minimum modi-

fications in what follows. We use pi[k], vi[k], ai[k] to represent the discretized x, y, z

position, velocity and accelerations of agent i at time step k, where accelerations are the

inputs. With a discretization step h, the dynamic equations are given by

pi[k + 1] = pi[k] + hvi[k] +
h2

2
ai[k], (2.1)

vi[k + 1] = vi[k] + hai[k]. (2.2)

http://tiny.cc/dmpc-swarm

Chapter 2. Multiagent Offline Trajectory Generation 8

2.2.2 Constraints

We constrain the motion of the agents to match the physics of the vehicle. First, the

agents have limited actuation, which bounds its minimum and maximum acceleration,

amin ≤ ai[k] ≤ amax. (2.3)

Secondly, the agents must remain within a volume (e.g., an indoor flying arena). We

impose:

pmin ≤ pi[k] ≤ pmax. (2.4)

2.2.3 Collision Avoidance

The collision avoidance constraint is designed such that the agents safely traverse the

environment. In the case of quadrotors, aerodynamic effects from neighbouring agents

may lead to crashes. Thus, we model the collision boundary for each agent as an ellipsoid

elongated along the vertical axis to capture the downwash effect of the agents’ propellers,

similar to [11]. The collision constraint between agents i and j is defined using a scaling

matrix Θ, ∥∥Θ−1
(
pi[k]− pj[k]

)∥∥
n
≥ rmin, (2.5)

where n is the degree of the ellipsoid (n = 2 is a usual choice) and rmin is the min-

imum distance between agents in the xy plane. The scaling matrix Θ is defined as

Θ = diag(a, b, c). We choose a = b = 1 and c > 1. Thus, the required minimum distance

in the vertical axis is rz,min = crmin. Note that the constraint in (2.5) checks whether

agent j (or i), modelled as a 3D point, is inside an ellipsoid centered around agent i (or

j).

2.3 Distributed Model Predictive Control

The problem formulated in Sec. 2.2 can be translated into an optimization problem. In

single-agent standard model predictive control (MPC), an optimization problem is solved

at each time step, which finds an optimal input sequence over a given prediction horizon

based on a model that describes the agent’s dynamics. The first input of that sequence

is applied to the real system and the resulting state is measured, which is the starting

point for the next optimization problem. In an offline planning scenario such as ours,

we do not measure the agent’s state after applying an input (since there is no physical

agent yet), instead we apply the input directly to the model to compute the next step of

Chapter 2. Multiagent Offline Trajectory Generation 9

the generated trajectory. The same procedure is repeated until the whole trajectory is

generated. This methodology can be applied in a distributed fashion, where each agent

executes the iterative optimization to generate trajectories, but with the possibility of

sharing information with neighbouring agents.

2.3.1 The Synchronous Algorithm

Our approach is based on synchronous DMPC, where the agents share their previously

predicted state sequence with their neighbours before simultaneously solving the next

optimization problems. At every discrete-time index kt, each agent simultaneously com-

putes a new input sequence over the horizon following these steps:

1. Check for future collisions using the latest predicted states of the neighbours, com-

puted at time step kt − 1.

2. Build the optimization problem, including state and actuation constraints, and colli-

sion constraints only if required.

3. After obtaining the next optimal sequence, the first element is applied to the model

and the agents move one step ahead. Future states are predicted over the horizon and

shared with the other agents.

Predicting collisions and including constraints only if needed is the basic idea behind

on-demand collision avoidance. We only include those constraints associated with the

first predicted collisions. The process is repeated until all agents reach their desired goals.

Below we derive the mathematical setup of the optimization problem.

2.3.2 The Agent Prediction Model

Using the dynamics in (2.1) and (2.2), we can develop a linear model to express the

agents’ states over a horizon of fixed length K. First we introduce the notation (̂·)[k|kt],
which represents the predicted value of (·)[kt + k] with the information available at kt.

In what follows, k ∈ {0, . . . , K − 1} is the discrete-time index of the prediction horizon.

The dynamic model of agent i is given by[
p̂i[k + 1|kt]
v̂i[k + 1|kt]

]
=

[
I3 hI3

03 I3

][
p̂i[k|kt]
v̂i[k|kt]

]
+

[
(h2/2)I3

hI3

]
âi[k|kt], (2.6)

with I3 being a 3 × 3 identity matrix and 03 a 3 × 3 matrix of zeros. We select the

acceleration as the model’s input (and variable to optimize). A compact representation

Chapter 2. Multiagent Offline Trajectory Generation 10

is

x̂i[k + 1|kt] = Ax̂i[k|kt] + Bûi[k|kt], (2.7)

where x̂i ∈ R6, A ∈ R6×6, B ∈ R6×3 and ûi ∈ R3 (model input). Define the initial state

at instant kt, X0,i = xi[kt]. Then we can write the position sequence Pi ∈ R3K as an

affine function of the input sequence Ui ∈ R3K ,

Pi = A0X0,i + ΛUi, (2.8)

where Λ ∈ R3K×3K is defined as

Λ =


ΨB 03 . . . 03

ΨAB ΨB . . . 03

...
.

...

ΨAK−1B ΨAK−2B . . . ΨB

 , (2.9)

with matrix Ψ =
[
I3 03

]
selecting the first three rows of the matrix products (those

corresponding to the position states). Lastly, A0 ∈ R3K×6 reflects the propagation of the

initial state,

A0 =
[
(ΨA)ᵀ (ΨA2)ᵀ . . . (ΨAK)ᵀ

]ᵀ
. (2.10)

2.3.3 Objective Function

The objective function that is minimized to compute the optimal input sequence has

three main components: trajectory error, control effort and input variation. A similar

formulation can be found in [35].

Trajectory error penalty

This term drives the agents to their goals. We aim to minimize the sum of errors between

the positions at the last κ time steps of the horizon and the desired final position pd,i.

The error term is defined as

ei =
K∑

k=K−κ

∥∥p̂i[k|kt]− pd,i
∥∥
2
. (2.11)

This term can be turned into a quadratic cost function in terms of the input sequence

using (2.8),

Je,i = Uᵀ
i (Λ

ᵀQ̃Λ)Ui − 2(Pᵀ
d,iQ̃Λ− (A0X0,i)

ᵀ Q̃Λ)Ui, (2.12)

Chapter 2. Multiagent Offline Trajectory Generation 11

where Q̃ ∈ R3K×3K is a positive definite and block-diagonal matrix that weights the

error at each time step. A value of κ = 1 leads to Q̃ = diag(03, . . . ,Q) with matrix

Q ∈ R3×3 chosen as a diagonal positive definite matrix. Higher values of κ lead to more

aggressive agent behaviour with agents moving faster towards their goals, but may also

lead to overshooting at the target location.

Control effort penalty

We also aim to minimize the control effort using the quadratic cost function

Ju,i = Uᵀ
i R̃Ui. (2.13)

Similarly, R̃ ∈ R3K×3K is positive definite and block-diagonal, R̃ = diag(R, . . . ,R),

where R ∈ R3×3 weights the penalty on the control effort.

Input variation penalty

This term is used to minimize variations of the acceleration, leading to smooth input

trajectories. We define the quadratic cost

δi =
K−1∑
k=0

‖ûi[k|kt]− ûi[k − 1|kt]‖2 . (2.14)

To transform (2.14) into a quadratic form, first we define a matrix ∆ ∈ R3K×3K ,

∆ =



I3 03 03 . . . 03 03

−I3 I3 03 . . . 03 03

03 −I3 I3 . . . 03 03

...
.

...
...

03 03 03 . . . −I3 I3


, (2.15)

and introduce the vector Ui∗ ∈ R3K to include the term ui[kt − 1] (previously applied

input),

Ui∗ =
[
ui[kt − 1]ᵀ 0ᵀ

3×1 . . . 0ᵀ
3×1

]ᵀ
. (2.16)

Finally, we write (2.14) in quadratic form as

Jδ,i = Uᵀ
i (∆

ᵀS̃∆)Ui − 2(Uᵀ
i∗S̃∆)Ui, (2.17)

Chapter 2. Multiagent Offline Trajectory Generation 12

where S̃ ∈ R3K×3K is positive definite and block-diagonal, defined as S̃ = diag(S, . . . ,S),

where S ∈ R3×3 weights the penalty on control variation. The cost function Ji is obtained

by adding together (2.12), (2.13) and (2.17),

Ji(Ui) = Uᵀ
i (Λ

ᵀQ̃Λ + R̃ + ∆ᵀS̃∆)Ui

− 2(Pᵀ
d,iQ̃Λ− (A0X0,i)

ᵀ Q̃Λ + Uᵀ
i∗S̃∆)Ui.

(2.18)

2.3.4 Physical Limits

When computing the input sequence over the horizon, the agents must satisfy constraints

(2.3) and (2.4). Define Pmin,Pmax,Umin,Umax ∈ R3K to be

Pmin = [pᵀ
min . . .p

ᵀ
min]ᵀ; Pmax = [pᵀ

max . . .p
ᵀ
max]

ᵀ

Umin = [aᵀ
min . . . a

ᵀ
min]ᵀ; Umax = [aᵀ

max . . . a
ᵀ
max]

ᵀ.
(2.19)

The physical limits are formulated as

Pmin −A0X0,i ≤ ΛUi ≤ Pmax −A0X0,i

Umin ≤ Ui ≤ Umax.
(2.20)

Lastly, we can vertically stack both inequality constraints in (2.20) to obtain a single

expression: AinUi ≤ bin.

2.3.5 Convex Optimization Problem, No Collision Case

If agent i does not detect any future collisions, then it updates its input sequence by

solving:

minimize
Ui

Ji(Ui)

subject to AinUi ≤ bin.

(2.21)

The formulation in (2.21) results in a quadratic programming problem with 3K de-

cision variables and 12K inequality constraints, which scales independently of N .

2.3.6 On-Demand Collision Avoidance with Soft Constraints

The previous formulation is useful for scenarios where the agents can follow straight lines

to their goals without colliding. In a more general setting, agents must avoid each other

constantly to reach their goals. To implement on-demand collision avoidance, we leverage

the predictive nature of DMPC to detect colliding trajectories and impose constraints to

Chapter 2. Multiagent Offline Trajectory Generation 13

avoid the first predicted collision. This strategy differs from [9] since we do not attempt

to incrementally resolve all predicted collisions, only the most relevant one.

Agent i detects a collision at time step kc,i of the previously considered horizon when-

ever the inequality

ξij =
∥∥Θ−1

(
p̂i[kc,i|kt − 1]− p̂j[kc,i|kt − 1]

)∥∥
n
≥ rmin (2.22)

does not hold with a neighbour j. Note that at solving time kt, the agents only have

information of the other agents computed at kt−1, meaning that the collision is predicted

to happen at time kc,i + kt − 1. In what follows, kc,i represents the first time step of

the horizon where agent i predicts a collision with any neighbour. We include collision

constraints with the subset of agents Ωi defined as

Ωi = {j ∈ {1, . . . , N} | ξij < f(rmin), i 6= j},

where f(rmin) models the radius around the agent, which defines the neighbours to be

considered as obstacles when solving the problem. For example, we may include all

agents within a radius 3 times bigger than the collision boundary, then f(rmin) = 3rmin.

Limiting Ωi to be the subset of neighbours within a radius of agent i intends to safely

reduce the amount of collision constraints in the optimization.

If the agent detects collisions, it must include collision constraints to compute the

new input sequence. To account for infeasibility issues while solving the optimization

problem, we formulate the following relaxed collision constraint:

∥∥Θ−1
(
p̂i[kc,i − 1|kt]− p̂j[kc,i|kt − 1]

)∥∥
n
≥ rmin + εij, (2.23)

where εij < 0 is a new decision variable that relaxes the constraint. Note that at kt, we

aim to optimize the value of p̂i[kc,i − 1|kt] to satisfy (2.23). The constraint is linearized

using a Taylor series expansion about the previous predicted position of agent i at time

kc,i + kt − 1, namely p̂i[kc,i|kt − 1],

νᵀ
ijp̂i[kc,i|kt]− εijξij ≥ ρij (2.24)

with νij = Θ−n(p̂i[kc,i|kt−1]−p̂j[kc,i|kt−1])n−1 and ρij = rminξ
n−1
ij −ξnij+νᵀ

ijp̂i[kc,i|kt−1].

On the left-hand side of (2.24), we note that the constraint is imposed on the position at

time kt +kc,i (p̂i[kc,i|kt]), which is one time step after the predicted collision. This choice

was made based on an empirical assessment of the algorithm’s performance on a wide

Chapter 2. Multiagent Offline Trajectory Generation 14

range of transition scenarios. It was found that by imposing the constraint one time step

after the predicted collision, the agents exhibited more preemptive collision avoidance

capabilities and were able to complete the transitions faster on average.

To turn the collision constraint into an affine function of the decision variables, first

we augment the previous formulation to include the relaxation variables. Consider Ei ∈
Rnc,i , with nc,i = dim(Ωi), defined as the stacked vector of all εij. We now introduce

the augmented decision vector U i ∈ R3K+nc,i , obtained by concatenating vectors Ui and

Ei. The matrices derived above can be easily augmented to account for the augmented

decision vector, by completing them with zeros where multiplied with the vector Ei. We

turn (2.24) into an affine function of the decision variables,

µᵀ
ijΛUi − εijξij ≥ ρij − µᵀ

ijA0X0,i, (2.25)

where µij ∈ R3K is defined as

µij =
[
0ᵀ
3(kc,i−1)×1 νᵀ

ij 0ᵀ
3(K−kc,i)×1

]ᵀ
. (2.26)

By stacking the inequalities in (2.25) for the nc,i colliding neighbours, we obtain the

complete collision constraint,

AcollU i ≤ bcoll. (2.27)

Additionally, we impose −εmax ≤ εij ≤ 0 in order to bound the amount of relaxation

allowed. We also consider the following linear and quadratic cost terms to penalize the

relaxation on the collision constraint:

fε,i = %
[
0ᵀ
3K×1 1ᵀ

nc,i×1

]ᵀ
,Hε,i = ζ

[
03K×3K 03K×nc,i

0nc,i×3K Inc,i

]

where %, ζ > 0 are scalar tuning parameters, measuring how much the relaxation is

penalized. The augmented cost function in the collision avoidance case is defined as

Jaug,i(U i) = J (Ui) + Uᵀ
iHε,iU i − fᵀ

ε,iU i. (2.28)

Finally, the convex optimization problem with collision avoidance for agent i is for-

mulated as
minimize

U i

Jaug,i(U i)

subject to Ain,augU i ≤ bin,aug.

(2.29)

The subscript ‘aug’ indicates the use of augmented state matrices, as outlined before.

Chapter 2. Multiagent Offline Trajectory Generation 15

The inequality tuple (Ain,aug,bin,aug) is obtained by vertically stacking the physical limits,

the collision constraint and the relaxation variable bounds. The augmented problem has

3K + nc,i decision variables and 12K + 3nc,i inequality constraints.

2.4 The Algorithm

The proposed DMPC algorithm for point-to-point transitions is outlined in Alg. 1. It

requires as input the initial and desired final locations for N agents (p0,pf), and outputs

the trajectories that complete the transition. Variables p,v and a are defined as the

concatenation of the transition trajectories for every agent, while Π is the concatenation

of the latest predicted positions for all agents.

In line 1, every Πi is initialized as a line from initial to final location with a constant

velocity profile. Each agent’s states are initialized to be at the corresponding initial

position with zero velocity. The main loop (lines 3-11) repeatedly solves optimization

problems for the N agents, building the transition trajectory until they arrive at their

goals or a maximum number of time steps is exceeded. Convergence of the transition

(line 10) is declared once all the agents are within a small radius of their goals. Note

that for kt = 0, we consider ai[−1] = 03×1. The inner loop (lines 4-9) can be solved either

sequentially or in parallel, since there is no data dependency between the problems.

To build and solve the corresponding QP (line 5), first we check for predicted collisions

over the horizon, as described in Sec. 2.3.6. If no collisions are detected, we solve the

reduced problem in (2.21), otherwise we solve the collision avoidance problem in (3.22).

If the optimizer finds a solution to the QP, then we can propagate the states using (2.7)

and obtain the predicted position and velocity over the horizon (lines 6-9). Lastly, if

a solution for the transition was found, we interpolate the solution with time step Ts

to obtain a higher resolution trajectory. An optional step is to scale the solution, as

suggested in [9], to push the accelerations to the maximum allowed. Finally, in line

15 we perform a collision check by verifying that
∥∥Θ−1

(
pi[kt]− pj[kt]

)∥∥
n
≥ rmin − εcheck

holds for every i, j and kt of the interpolated solution. The value of εcheck ≥ εmax is user-

defined and must reflect the safety limit of the physical agents, such that the algorithm

can decide whether the solution is safe to execute or not. If the solution passes all sanity

checks, then the algorithm is deemed successful, otherwise an empty solution is returned.

Chapter 2. Multiagent Offline Trajectory Generation 16

Algorithm 1: DMPC for Point-to-Point Transitions

Input : Initial and final positions
Output: Position, velocity and acceleration trajectories

1 [Π,x[0]]← initAllPredictions (p0,pf)

2 kt ← 0, AtGoal ← false
3 while not AtGoal and kt < Kmax do
4 foreach agent i = 1, ..., N do
5 âi[k|kt]← build&SolveQP (xi[kt], ai[kt − 1],Π)
6 if QP feasible then
7 x̂i[k + 1|kt]← getStates (xi[kt], âi[k|kt])
8 Πi ← p̂i[k + 1|kt]
9 xi[kt + 1], ai[kt]← x̂i[1|kt], âi[0|kt]

10 AtGoal ← checkGoal (p[kt],pf)

11 kt ← kt + 1

12 if AtGoal then
13 [p,v, a]← scaleTrajectory (p,v, a, ‖amax‖)
14 [p,v, a]← interpolate (p,v, a, Ts)
15 checkCollisions (p, rmin − εcheck)
16 return [p,v, a]

2.4.1 Example Scenario

To illustrate how DMPC manages colliding trajectories, Fig. 2.2 shows a transition prob-

lem for four agents in the plane. Initially, as shown in Fig. 2.2a, the agents follow a

direct path towards their desired final locations. In Fig. 2.2b, collisions are detected and

considered in the optimization problem. After a few time steps, the agents obtain the

non-colliding plan seen in Fig. 2.2c. The trajectories generated with a centralized ap-

proach are quite different than the DMPC trajectories, as shown in Fig. 2.2d. However,

the sum of travelled distance of all agents is fairly similar in both cases, with only a 1.7%

increase for the distributed approach.

2.4.2 Limitations and Associated Mitigation Strategies

We now discuss the limitations of the proposed algorithm, along with associated mitiga-

tion strategies to overcome them.

1. Infeasibility: the optimization problem becomes infeasible when the constraint (2.27)

cannot be satisfied given the acceleration and relaxation limits. Feasibility of the problem

can be guaranteed, however, by locally increasing the relaxation bound εmax until the

constraint is satisfied. In line 5 of Alg. 1 we apply this technique to ensure recursive

Chapter 2. Multiagent Offline Trajectory Generation 17

-2 2x [m]

-2

2
y
 [

m
]

(a) t = 0s

-2 2x [m]

-2

2

y
 [

m
]

(b) t = 1s

-2 2x [m]

-2

2

y
 [

m
]

(c) t = 2s

-2 2x [m]

-2

2

y
 [

m
]

(d) t = 8.2s

Figure 2.2: Four-agent position exchange scenario in 2D solved using Alg. 1. Circles
and diamonds represent initial and final locations, respectively. Dotted lines in (a) - (c)
represent the predicted positions over a 3-second horizon, solid lines are the generated
trajectories and dashed lines in (d) are the trajectories generated by the centralized
approach in [1]. Using the optimality criteria of the sum of travelled distances by all
agents, the distributed plan is only slightly suboptimal when compared to the centralized
approach.

feasibility of the problem. The variable εmax is reset to its original value once a solution

is found.

2. Collisions: the use of on-demand collision avoidance with soft constraints does not

guarantee collision-free trajectories. The use of soft constraints may lead to partial

violations of the collision constraints along the trajectory. Moreover, since the trajectory

is specified in discrete-time, there may be collisions occurring between time steps [1].

Higher values of % and ζ penalize the violation of the collision constraint more, rendering

the agents more wary of avoiding collisions.

3. Oscillations and deadlocks: oscillations occur due to a lack of central coordination,

where agents oscillate between possible trajectories to avoid a collision. An agent may

get trapped in a local minima where it oscillates indefinitely and never reaches its goal

(deadlock). Higher values of κ and Q encourage aggressiveness towards reaching the

goal.

We observed that oscillations are often present in the predictions of agents, but vanish

after a few MPC cycles and do not appear in the generated trajectories. Failure to avoid

collisions can be minimized by tuning the cost function appropriately, achieved by a good

compromise between aggressiveness towards the goal and penalization of the constraint

relaxation.

Chapter 2. Multiagent Offline Trajectory Generation 18

20 60 100 150 200

Number of agents

0

20

40

60

80

100
S

u
c
c
e
s
s
 P

ro
b
a
b
ili

ty
 [
%

]

Hard

Hard On-Demand

Soft On-Demand

(a)

20 60 100 150 200

Number of agents

0

100

200

300

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
]

Successful

trials

only

Successful

trials

only

Hard

Hard On-Demand

Soft On-Demand

(b)

Figure 2.3: Performance comparison of different collision avoidance strategies in DMPC,
for an increasing number of agents within a workspace with a fixed agent density of
1 agent/m3. For every swarm size considered, 50 different random test cases were gen-
erated.

2.5 Simulations

This section provides a simulation analysis of the DMPC algorithm. Implementation

was done in MATLAB 2017a (using a sequential implementation of Alg. 1) and executed

on a PC with an Intel Xeon CPU with 8 cores and 16GB of RAM, running at 3GHz.

The agents were modelled based on the Crazyflie 2.0 platform, using rmin = 0.35 m,

amax = −amin = 1 m/s2, and c = 2 (to avoid downwash).

2.5.1 Comparison of Collision Avoidance Strategies in DMPC

To validate our on-demand collision avoidance scheme with soft constraints, we compared

the performance to two other methods: (1) using hard collision constraints in every time

step of the horizon (as in [22]) and (2) implementing our on-demand collision avoidance

with hard constraints (i.e., constraint (2.23) without the relaxation variable). All meth-

ods were tested in scenarios with random sets of initial and final positions. We kept

the density of the workspace (defined as agent/m3) constant and varied the amount of

agents from 20 to 200. All three approaches shared the time step parameters h = 0.2 s

and Ts = 0.01 s. We used a horizon length K = 15, parameter κ = 1, a maximum re-

laxation of εmax = 0.05 m for the optimizer, a maximum relaxation of εcheck = 0.05 m for

the safety check and a maximum time to complete the transition Tmax = 20 s. Fig. 2.3a

shows the success rate of DMPC for point-to-point transitions using the different collision

Chapter 2. Multiagent Offline Trajectory Generation 19

1 2 3 4 5

 Workspace Density [agents/m³]

0

20

40

60

80

100
S

u
c
c
e
s
s
 P

ro
b
a
b
ili

ty
 [
%

]

Centralized

Decoupled

DMPC

(a)

1 2 3 4 5

 Workspace Density [agents/m³]

0

200

400

600

C
o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
]

Successful

trials

only

Centralized

Decoupled

DMPC

(b)

1 2 3 4 5

 Workspace Density [agents/m³]

0

10

20

30

40

T
o
ta

l
D

is
ta

n
c
e
 [
m

]

Successful

trials

only

Centralized

Decoupled

DMPC

(c)

1 2 3 4 5

 Workspace Density [agents/m³]

0

5

10

15

T
ra

n
s
it
io

n
 T

im
e
 [
s
]

Successful

trials

only

DMPC

(d)

Figure 2.4: Performance comparison of DMPC against SCP-based approaches, in a fixed
4m3 volume. For every density considered, 50 different random test cases were generated.

avoidance schemes. If we use hard constraints at every time step (blue lines), the success

rate suffers due to the inability of the agents to arrive at their final locations. The agents

display conservative behaviour to maintain collision-free updates along their predictions,

which may preclude progress towards the goal. On the other hand, the use of on-demand

collision avoidance with hard constraints may lead to infeasible optimization problems,

since the agents may be unable to avoid collisions within their acceleration limits. Our

soft constraint strategy resolves the problem and achieves more than 75% success rate

with up to 150 agents, clearly outperforming the other two methods. The decrease in

success rate for 200 agents is partially due to insufficient time to complete the transition

leading to 55% of the failures; with more agents and a fixed agent density (i.e., a larger

Chapter 2. Multiagent Offline Trajectory Generation 20

environment) the average time to complete a random transition increases. This may

mean that 55% of the transitions are infeasible independent of the algorithm used. In

addition, the introduction of more decision-making agents leads to more collisions (45%

of the failures). In Fig. 2.3b we highlight the reduction in computation time with our

on-demand collision avoidance strategy.

2.5.2 Comparison to SCP-Based Approaches

We compared the performance of our proposed DMPC scheme with two state-of-the-

art algorithms: centralized [1] and decoupled [9] SCP. We used the same simulation

parameters as in Sec. 2.5.1, but the volume of the workspace was kept fixed at 4 m3,

and the number of agents ranged from 4 to 20. We increased the value of κ to 2 to

encourage agents to move to their goals, which showed better performance for high-

density environments. Since the centralized and decoupled approaches require a fixed

arrival time, we first solved each test using DMPC and determined the

Fig. 2.4a shows the probability of success as the density of agents increases. The

proposed DMPC algorithm was able to find a solution in more than 95% of the trials, for

every density scenario considered. The centralized approach was able to find a solution

in every case, while the decoupled approach failed increasingly with increasing density.

As for the computation time, Fig. 2.4b shows a reduction of up to 97% in computation

time with respect to centralized SCP and of 85% with decoupled SCP. The runtime

variance observed in the other two approaches is due to the test-by-test variance in

arrival time, as seen in Fig. 2.4d. Note that this DMPC implementation does not exploit

the parallelizable nature of the algorithm yet and already achieves significantly lower

runtimes.

To measure the optimality of the generated trajectories we analysed the sum of trav-

elled distances by the agents, as highlighted in Fig. 2.4c. Our distributed approach

produces longer paths on average, with respect to both the centralized and decoupled

SCP. The suboptimality increases with workspace density, since the agents actively ad-

just their trajectories to avoid collisions, and oftentimes those adjustments lead to non-

optimal paths towards their goals.

2.6 Experiments

In this section we present experimental results using Alg. 1 as an offline trajectory planner

for a swarm of Crazyflies 2.0. The algorithm was implemented in C++ using OOQP as

Chapter 2. Multiagent Offline Trajectory Generation 21

0 50 100

Number of Agents

0

5

10

15

C
o

m
p

u
ta

ti
o

n
 T

im
e

 [
s
]

1 cluster(s)

2 cluster(s)

4 cluster(s)

8 cluster(s)

Figure 2.5: Average computation time for different numbers of clusters. For each swarm
size, we gathered data of 30 successful transitions and reported the mean and standard
deviation (vertical bars) of the runtime.

the solver. A video of the performance is found at http://tiny.cc/dmpc-swarm.

2.6.1 Parallel DMPC

Leveraging the parallel nature of the inner loop of Alg. 1, we can design a strategy that

parallelizes the computation. The idea is to equally split the N agents into smaller

clusters to be solved in parallel using a multicore processor. The optimization problems

of the agents inside a cluster are solved sequentially, but with the advantage of iterating

through fewer agents. After all the clusters finish solving their QPs, they exchange the

updated predictions and repeat the process.

In Fig. 2.5 we compare different numbers of clusters tested on a wide variety of

transition scenarios. It was found that 8 clusters led to the best result for our computing

hardware (CPU with 8 cores). This parallel strategy (8 clusters) reduced the computation

time by more than 60% compared to using a purely sequential execution (1 cluster).

2.6.2 Swarm Transition

To perform the pre-computed transition motion on the quadrotors, we communicated

via radio link with each drone and sent the following information at 100 Hz: (1) position

setpoints and (2) position estimates from an overhead motion capture system. The

setpoints were tracked using an on-board position controller based on [36]. One transition

scenario is depicted in Fig. 2.6, in which the swarm was to transition from a 5 × 5 grid

http://tiny.cc/dmpc-swarm

Chapter 2. Multiagent Offline Trajectory Generation 22

-1.5 1.5x [m]

-1.5

1.5

y
 [
m

]

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

(a)

-1.5 1.5x [m]

-1.5

1.5

y
 [
m

]

123
4

5

6
7

89

10

11
12

13

14

15

16

17

1819
2021

22

23

24

25

(b)

(c) (d)

Figure 2.6: A 25-agent transition scenario: (a) initial grid configuration, (b) target ‘DSL’
configuration. Circles and diamonds (of matching colour) represent initial and final
locations for all agents, respectively. The star in the middle represents an agent acting
as a static obstacle. The bounding box in dashed red lines represents the workspace
boundaries. Figures (c)-(d) are the initial and final configuration snapshots from our
experiments.

Chapter 2. Multiagent Offline Trajectory Generation 23

(a)

Min(dist)(t)

Max(dist)(t)

Goal tolerance = 6cm

0 5 10 15
Time [s]

0

1

2

3

D
is

ta
nc

e
to

 T
ar

ge
t [

m
]

(b)

Figure 2.7: Experimental data from the transition depicted in Fig. 2.6, showing maxi-
mum and minimum distance values over 6 independent trials: (a) pairwise distances, (b)
distances to target locations.

to a ‘DSL’ configuration. The difficulty of this particular scenario was increased by the

central agent acting as a static obstacle (i.e., obstacle with fixed position).

We required rmin = 0.25 m with εcheck = 0.03 m. The DMPC algorithm was able to

find a solution for this scenario in 1.8 seconds. In Fig. 2.7a, the curves delimiting the gray

area correspond to the minimum and maximum inter-agent distance at each time instant

for six independent executions of the transition. Although trajectories are planned such

that any inter-agent distance must remain above the warning zone (yellow band), the

experimental curve goes slightly below that value. The warning zone is, in practice, a

safety margin to compensate for unmodelled phenomena in our planning algorithm, such

as imperfect trajectory tracking, time delays, and aerodynamics. Taking all these factors

into account, it is natural for the minimum distance curve to go farther below than

planned; however, it still remains above the collision zone. It is critical for the warning

zone to be large enough, as to absorb any mismatch between the idealized planning and

Chapter 2. Multiagent Offline Trajectory Generation 24

the real world. Its size is directly controlled by rmin, which must be carefully chosen for

robust trajectory executions.

Finally, Fig. 2.7b shows that the agents’ progress towards their goal and are able to

complete the transition up to some small tolerance. Once the agents enter the tolerance

region below the dashed red line, they were commanded to hover in place. The on-

board position controller reported a maximum error of close to 3 cm during hover, which

explains why the maximum distance curve remains slightly above the tolerance region

after all agents reached their goals.

In addition to the showcased scenario, the system has been tested on many randomly

generated transitions, as can be seen in this video http://tiny.cc/dmpc-swarm.

2.7 Summary

The DMPC algorithm developed in this chapter enables fast multiagent point-to-point

trajectory generation. Using model-based predictions, the agents detect and avoid future

collisions while moving to their goal locations. We introduced on-demand collision avoid-

ance with soft constraints in a DMPC framework to enhance the scalability and success

rate over previous approaches. As compared to SCP-based methods, we drastically re-

duce computational complexity, with only a small impact on the optimality of the plans.

Our formulation allows for parallel computing, which further reduces the runtime.

We validated our method through an extensive empirical analysis using randomly

generated transition tasks. Experimental results further validate our approach, which

can be used to quickly calculate and execute transition trajectories for large teams of

quadrotors, enabling new capabilities in applications such as drone shows.

http://tiny.cc/dmpc-swarm

Chapter 3

Multiagent Online Trajectory

Generation

3.1 Introduction

Online trajectory generation is key to execute missions in dynamic or unknown environ-

ments. In particular, multi-robot tasks are especially challenging due to a high number of

decision-making agents sharing the same space. In such settings, the planning algorithms

must compute collision-free and goal-oriented trajectories, taking into account the state

of the environment and neighbouring agents.

In this chapter we extend the approach presented in Ch. 2 to allow for online re-

planning of the transition trajectories. As such, our framework adds robustness to the

trajectory execution by recomputing trajectories in real-time using the sensed states of

the agents. Essentially, we propose a closed-loop motion planning scheme, whereas the

framework in Ch. 2 was open-loop.

The main contributions of this chapter are threefold: (i) a multiagent motion plan-

ning framework based on distributed model predictive control, which allows for real-time

trajectory generation, (ii) an event-triggered replanning strategy for robust execution

of plans and (iii) a thorough empirical evaluation of the method. To the best of our

knowledge, this chapter presents the first results on real-time motion planning for drone

swarms of up to 20 drones, executed from a single off-board computer.

The rest of the chapter is organized as follows: Sec. 3.2 introduces the problem at

hand. Sec. 3.3 formalizes the optimization behind DMPC and Sec. 3.4 introduces the

trajectory replanning strategy. The algorithm for input updates is presented in Sec. 3.5.

Finally, Sec. 3.6 and Sec. 3.7 provide simulation and experimental results of our approach

25

Chapter 3. Multiagent Online Trajectory Generation 26

Figure 3.1: A ten-drone transition task through a hula-hoop solved using our proposed
online trajectory generation method. Our distributed computation allows for real-time
multi-robot trajectory generation, enabling complex transition tasks to be performed. A
video of the performance is found at http://tiny.cc/online-dmpc.

with teams of drones.

3.2 Problem Statement

Given N agents with known linear dynamics, a finite 3-dimensional workspace W ⊂ R3,

desired end positions pd,i ∈ W for each agent i and static obstacle set E ⊂ W , compute

inputs ui[k] ∈ R3 for each agent such that:

• the agents do not collide with each other or with the obstacles;

• the agents remain within W for all time;

• there exists a time Tf after which the agents remain sufficiently close to their desired

positions.

3.2.1 The Agents

We assume every agent i is equipped with a controller for position trajectory tracking

and ui is a position reference, as shown in Fig. 3.2.

http://tiny.cc/online-dmpc

Chapter 3. Multiagent Online Trajectory Generation 27

Controller

Tracking Dynamics

Figure 3.2: Block diagram of the control system of agent i. Here we depict the agent as
a Crazyflie 2.0 quadrotor, which is our experimental platform.

Furthermore, assume each agent i obeys some known trajectory tracking dynamics

given by a discrete linear system:

xi[k + 1] = Aixi[k] + Biui[k]. (3.1)

For example, in this chapter we will consider the system (3.1) to represent a quadrotor

with an underlying position controller [36], for which the input (ui[k] ∈ R3) is a position

reference signal, and the states (xi[k] ∈ R6) are the position and velocity of the vehicle,

i.e., xi[k] = (pi[k], vi[k]). This derives in a second order system defining the dynamics,

with Ai ∈ R6×6, Bi ∈ R6×3.

Note that system (3.1) differs conceptually to the one presented in the previous chap-

ter (see (2.7)) since now we consider the state xi[k] to represent the measured state of

the agent, whereas in Ch. 2 the state represented the position and velocity profiles of the

reference trajectory.

3.3 Online Distributed Model Predictive Control

In this section we formalize the optimization problem solved in real-time within a receding

horizon control framework. The approach is based on the offline method presented in

Sec. 2.3, now accommodating the new input parameterization and the trajectory tracking

dynamics.

3.3.1 Trajectory Parameterization

Our approach is based on receding horizon control, meaning that at the time step kt,

corresponding to the time instant t0, we recompute the input sequence to be applied

over a finite horizon of K time steps. Given a desired time step duration h, we get the

continuous time horizon duration th = (K−1)/h. We parameterize the continuous input

Chapter 3. Multiagent Online Trajectory Generation 28

signal ui(t) for t ∈ [t0, t0 + th] as a concatenation of l Bézier curves, similar to [13]. For

a summary on Bézier curves and Bernstein polynomials we refer the reader to [37].

We select Bézier curves since we can impose smoothness requirements in the input

and can easily represent its derivatives. In order to define a Bézier curve in Rn of degree

p and duration T , first we must construct the p+ 1 Bernstein polynomials of degree p:

Bm,p(t) =

(
p

m

)
(1− t/T)p−m(t/T)m ∀t ∈ (0, T), (3.2)

with m = 0, 1, . . . , p. Now, an n-dimensional Bézier curve of degree p is defined as:

B(t) =

p∑
m=0

PmBm,p(t) (3.3)

with Pm ∈ Rn. The set P = {P0,P1, . . . ,Pp} represents the p + 1 control points that

uniquely characterize the curve. Since the control points are a finite parameterization

of the continuous curve, they serve as an optimization variable to compute the agents’

trajectories.

Note that (3.3) implies that the individual components of a Bézier curve in Rn are

decoupled. This means that a Bézier curve in Rn can be seen as n Bézier curves in R. In

what follows, the matrix products and derivations are thought for Bézier curves in R, but

they are immediately applicable for curves in higher dimensions as per their decoupling

principle.

Expressing the Bézier curve in the power basis {1, t, . . . , tp} is useful to obtain samples

of the curve. Consider the power basis representation of the Bernstein polynomials in

(3.2):

B̄k,p(t) =

p∑
m=k

(−1)m−k

(
p

m

)(
m

k

)
(t/T)m. (3.4)

with k = 0, 1, . . . , p. Then we can write the equivalence

B(t) =

p∑
i=0

PmBm,p(t) =

p∑
k=0

SkB̄k,p(t) (3.5)

with Sk ∈ Rn, and the set S = {S0,S1, . . . ,Sp} representing the p + 1 polynomial

coefficients of the power basis. We can then define a transformation matrix β such that

Chapter 3. Multiagent Online Trajectory Generation 29

S = βP , allowing us to easily change between polynomial bases. Define

β[m,k] =


(−1)m−k

 p

m

m
k

 , if m ≤ k, k = 0, 1, . . . , p

0, otherwise

, (3.6)

where β[m,k] represents the element at the mth row and kth column of matrix β.

By definition, the derivative of a Bézier curve of degree p is another Bézier curve of

degree p − 1 [37]. The derivative of the Bernstein polynomials is given by the linear

equation
d

dt
Bm,p(t) = p(Bm−1,p−1 −Bm,p−1). (3.7)

Using (3.7) we can define a set of matrices {Σ,Σ(1), . . . ,Σ(r)} that map the original

control points (P) to the control points of the rth derivative of B(t) (P(r)). To obtain

the power basis coefficients of B(r)(t), first define the transformation matrix β(r) using

(3.6) with k = 0, 1, . . . , p− r. Then, we can represent the set S(r) = {S(r)
0 ,S

(r)
1 , . . . ,S

(r)
p−r}

of p− r + 1 power basis coefficients of B(r)(t) with S(r) = β(r)Σ(r)P .

One last important aspect of Bézier curves is they can be sampled for any t ∈ [0, T],

and such samples are a linear combination of the polynomial coefficients (and thus, of

the control points). Suppose we want to compute K samples of the curve, represented

by the set B = {B(t0),B(t1), . . . ,B(tK−1)}. The set can be computed as:
B(t0)

B(t1)
...

B(tK−1)

 =


1 t0 . . . tp0

1 t1 . . . tp1
...

...
...

...

1 tK−1 . . . tpK−1




S0

S1

...

Sp

 , (3.8)

with the relationship B = TS = TβP . The same procedure applies for sampling deriva-

tives of the curve, using the relationship B(r) = TS(r).

3.3.2 The Agent Prediction Model

Using the linear trajectory tracking model of (3.1) and a series of inputs, we can compute

the agents’ states over a horizon of fixed length K. We introduce the notation (̂·)[k|kt],
which represents the predicted value of (·)[kt + k] with the information available at kt

Chapter 3. Multiagent Online Trajectory Generation 30

and k ∈ {0, . . . , K − 1}. The prediction model of agent i is given by

x̂i[k + 1|kt] = Aix̂i[k|kt] + Biûi[k|kt]. (3.9)

Using (3.9) we can represent the (stacked) predicted state sequence over the horizon,

Xi ∈ R6K , as

Xi = A0,ix̄i[kt] + ΛiUi, (3.10)

where Ui ∈ R3K is the stacked input sequence, x̄i[kt] is the measured state at time step

kt, and Λi ∈ R3K×3K is defined as

Λi =


Bi 03 . . . 03

AiBi Bi . . . 03

...
.

...

AK−1
i Bi AK−2

i Bi . . . Bi

 . (3.11)

Lastly, the matrix A0,i ∈ R6K×6 is defined as

A0,i =
[
(Ai)

ᵀ (A2
i)

ᵀ . . . (AK
i)ᵀ
]ᵀ
. (3.12)

We note that Ui is a sampled representation of the input, and it can be obtained

from a linear combination of the control points of a continuous Bézier curve. We define

U i ∈ R3l(p+1) as the decision vector of the optimization, which represents the control

points of the l Bézier curves of degree p.

3.3.3 Input Continuity

Trajectory smoothness is enforced through equality constraints. First, the initial control

point of the input is chosen to be equal to a constant vector; the way this constant vector

is constructed is the subject of Sec. 3.4. Second, continuity between the l Bézier curves

is guaranteed up to a certain derivative by forcing the endpoint of a curve to match the

beginning of the next curve, i.e., the difference between control points must be equal to

zero [29].

Using linear relationships between the control points of the Bézier curve and the

control points of its derivatives, we build a tuple (Aeq,beq) that represents the input

continuity constraints of the form AeqU i = beq for each agent i.

Chapter 3. Multiagent Online Trajectory Generation 31

3.3.4 Dynamic Feasibility

Since the agents have limited actuation and the environment may have limited dimen-

sions, we must encode such limitations within the optimization. It is natural to pose

these constraints as inequalities that must be satisfied at every input update. For dy-

namic feasibility we impose the following constraints

γ
(c)
min ≤

dc

dtc
ûi(t) ≤ γ(c)

max, c = {0, 1, . . . , r}, (3.13)

where γ
(c)
min and γ

(c)
max are the given maximum and minimum values of the cth derivative

of the input.

One option proposed in the literature to implement these constraints is to exploit the

convex hull property of Bézier curves. If we limit the control points of the curve to lie

within a convex region, the curve will be entirely contained within that region. This may,

however, impose overly conservative bounds [38]. A second option, as suggested in [29], is

to not impose the constraints at all and check afterwards for dynamic feasibility; if it does

not, the problem needs to be resolved one more time to guarantee constraint satisfaction.

In this work we propose a third alternative, in which we leverage the derivations in

Sec. 3.3.1 to obtain samples of the input and its derivatives, and limit those appropriately

through linear inequality constraints of the form AinU i = bin. This method avoids the

conservativeness of using the convex hull property (since we apply the constraints over

the actual curve) and the potential need to resolve the problem as in [29].

3.3.5 Optimization-Based Collision Avoidance

For collision avoidance we require the following inequality to hold throughout trajectory

execution ∥∥Θ−1(pi[kt]− pj[kt])
∥∥
2
≥ rmin, ∀j 6= i, (3.14)

where Θ is a scaling matrix to obtain general ellipsoid safety boundaries, and rmin is the

minimum distance between two agents before collision.

We explored two approaches: buffered Voronoi cells (BVC) [28, 29] and on-demand

collision avoidance [2]. Both methods rely on the same principle of imposing hyperplane

constraints that limit the available free space over which the agent is allowed to optimize

its future inputs. In Fig. 3.3a we present a simple collision avoidance scenario with two

agents in 2D. Would the agents continue on their intended trajectories, they would collide

at a certain timestep indicated by the translucent circles.

Chapter 3. Multiagent Online Trajectory Generation 32

(a) Colliding scenario (b) BVC collision avoidance (c) On-demand collision avoid-
ance

Figure 3.3: Two-agent transition scenario in 2D. The agents are represented by a circle
of radius rmin/2. The X marks the intended goal of each agent. In (a) the dashed lines
represent the nominal (colliding) trajectories, where the translucent circles represent
the position of each agent at time step kc,i in which the first collision is predicted. In
(b) we show the input update using the BVC method. The green dots represent the
concatenation points of the Bézier curves. The first segment is constrained to lie within
the coloured zone for each agent. In (c) the agents update their inputs using on-demand
collision avoidance. The star represents the sample of the input constrained to be within
the coloured zone.

Buffered Voronoi Cells

In the BVC method, the agents are restricted to remain within their own Voronoi cell,

Vi, for a time τ of their horizon. In this work, we define a Buffered Voronoi Cell similar

to [28] but including the scaling matrix:

Vi =

{
p ∈ R3

∣∣∣∣ Θ−2(pi − pj)
ᵀ(p− pi)

di,j
≥ rmin − di,j

2

}
,∀j 6= i, (3.15)

where di,j =
∥∥Θ−1(pi − pj)

∥∥
2
, and pi, pj are the measured positions of agents i and

j at time step kt. Fig. 3.3b shows the BVCs calculated (shaded areas) for our two-

agent example. The condition in (3.15) defines a linear constraint in the position of the

agents to achieve collision avoidance. Let Pi,1 be the set of control points of agent i

corresponding to the first Bézier curve of the input. To achieve collision avoidance we

impose the constraint Pi,1 ∈ Vi, which translates to p+1 constraints on the control points.

This constraint exploits the convex hull property of Bézier curves, which guarantees that

the first segment of the input will lie within Vi if the optimization problem is feasible.

Collision-free updates are achieved with this method, as shown in Fig. 3.3b.

On-demand Collision Avoidance

On the other hand, the on-demand collision avoidance methodology presented in Sec. 2.3.6

relies on a predict-avoid paradigm for collision avoidance. It assumes communicative

Chapter 3. Multiagent Online Trajectory Generation 33

agents that share with the team a representation of their future actions. In this case,

since we are considering the tracking dynamics into our formulation, we have two options

for collision avoidance:

• State space: constraints are imposed on the predicted states Xi of the agents,

which can be obtained as a linear combination of the optimal inputs using (3.10).

This results in collision-free predicted positions over the horizon.

• Input space: constraints are imposed on the inputs Ui directly, resulting in

collision-free reference positions over the horizon.

Agent i detects the first predicted collision (in the state space) with any neighbour j

at time step kc,i whenever

ξij =
∥∥Θ−1

(
p̂i[kc,i|kt − 1]− p̂j[kc,i|kt − 1]

)∥∥
2
≥ rmin, (3.16)

does not hold. For input space detection it suffices to replace predicted positions with

predicted inputs (position reference). We define a subset Ωi of neighbours of agent i for

which collision constraints are constructed, defined as:

Ωi = {j ∈ {1, . . . , N} | ξij < g(rmin), j 6= i},

where g(rmin) models the area around the agent for which collision avoidance is required.

In this work we used g(rmin) = 2rmin.

Leveraging this information, the agents predict future collisions (in the input or state

space, depending on which modality we use) and include separating hyperplane con-

straints on the first time step with a predicted collision (marked with a yellow star in

Fig. 3.3c). Let kc,i be the time step in which agent i predicts the first collision with a

neighbour j (translucent circles in Fig. 3.3c). We can procure collision avoidance in the

state space by enforcing a first-order approximation of the constraint

∥∥Θ−1
(
p̂i[kc,i − 1|kt]− p̂j[kc,i|kt − 1]

)∥∥
2
≥ rmin + εij, ∀j ∈ Ωi, (3.17)

where εij < 0 are slack decision variables that relax the constraints (refer to Sec. 2.3.6

for details on the linearization). A similar constraint can be used for collision avoidance

in the input space:

∥∥Θ−1 (ûi[kc,i − 1|kt]− ûj[kc,i|kt − 1])
∥∥
2
≥ rmin + εij, ∀j ∈ Ωi. (3.18)

Chapter 3. Multiagent Online Trajectory Generation 34

Note that on-demand avoidance only constrains a specific sample of the curve to lie

within a partition of the space, whereas BVC constrains a complete segment of the curve.

Comparing the resulting trajectories in Fig. 3.3b and Fig. 3.3c, it is clear that on-demand

avoidance leads to less conservative maneuvers than the BVC method. In Sec. 3.6 we

analyze how these insights impact the ability to complete multi-agent transition tasks.

In both cases, to implement collision avoidance we need only add an inequality con-

straint tuple (Acoll, bcoll) that satisfies AcollU i ≤ bcoll.

3.3.6 Cost Function

We search to minimize a cost function which results from the sum of various terms. In

this section we omit the subindex i for the tuning parameters of each term of the cost

function, but each agent could have different values.

Error to goal

This term drives the agent to its goal location. We aim to minimize the sum of errors

between the positions at the last κ < K time steps of the horizon and the goal location

pd,i. The quadratic cost function is defined as

Ji,error =
K∑

k=K−κ

qk
∥∥p̂i[k|kt]− pd,i

∥∥2
2
, (3.19)

where qk > 0 are the positive weights of each time step.

Energy

We minimize a weighted combination of the sum of squared derivatives, as in [13, 39].

The cost is defined as

Ji,energy =
r∑
c=0

αc

∫ th

0

∥∥∥∥ dcdtc ûi(t)
∥∥∥∥2
2

dt, (3.20)

where αc > 0 is a scalar weight for each derivative of the input, until the rth derivative.

This term can be evaluated in closed form to get a quadratic form in terms of U i [39].

Collision constraint violation

We implement on-demand collision avoidance as soft constraints, which requires a penalty

term to be added in the cost function to limit the amount of relaxation of the constraints.

Chapter 3. Multiagent Online Trajectory Generation 35

For that we consider both quadratic and linear penalty costs

Ji,violation = ζ ‖εij‖22 + ξεij, (3.21)

where ζ and ξ are the weights of each term.

A similar approach can be used to relax the constraints in the BVC method, with the

difference that for each pair of agents i, j we add penalty terms for the p+ 1 constraints

on the control points of the first Bézier curve segment.

All the element previously mentioned compose the following standard QP problem,

for which efficient solvers exist:

minimize
U i, εij

Ji,error + Ji,energy + Ji,violation

subject to AeqU i = beq,

AinU i ≤ bin,

AcollU i ≤ bcoll,

εij ≤ 0 ∀j ∈ Ωi.

(3.22)

3.4 Event-Triggered Replanning

Choosing the initial condition for the input to be equal to the current state of the robot

was proposed in [29], but it has certain limitations. First, if we require Cr-continuity on

the inputs, then we need to reliably measure the rth derivative of the robot’s position.

Second, for imperfect trajectory tracking or systems with slow dynamics, this replanning

strategy constantly causes (potentially big) discontinuities of the input to match the state

of the robot, as shown in Fig. 3.4. Such discontinuities cause undesired jittering in the

robot and slow down its progress to complete the task.

To address these concerns, we propose an event-triggered replanning strategy, in which

we reset the input to match the states of the agent only whenever we detect the agent

has been perturbed. To detect such an event, we designed a heuristic activation function

that we threshold to detect disturbances to the agent. An example of such an activation

function for second-order tracking dynamics is:

fn[kt] =
(pi,n[kt]− ui,n[kt])

5

−(vi,n[kt] + sgn(vi,n[kt])ε)
, n = 1, 2, 3 (3.23)

where the subscript n represents the spatial component ([x, y, z]) of the vectors associated

with agent i. The term (pi,n[k] − ui,n[k]) is the trajectory tracking error, and the term

Chapter 3. Multiagent Online Trajectory Generation 36

0 10 20 30 40
Time [s]

-1

-0.5

0

0.5

Y
Po

si
tio

n
[m

]

State
Reference

8 10 12
Time [s]

0

0.2

0.4

0.6

Y
Po

si
tio

n
[m

]
Figure 3.4: Experimental data of a quadrotor flight when using online trajectory gen-
eration based on DMPC [2] with replanning every second. The discontinuities in the
reference signal causes undesired behaviour.

sgn(vi,n[k])ε with a small scalar ε� 1 is used to avoid singularities in fn[k]. We assume

|vi,n[k]| > 0, which is realistic in real-world operation due to noise in state estimation.

The intuition behind (3.23) is that we want to reset our reference signal whenever

the tracking error grows large. However, designing an appropriate threshold value for

the tracking error is tricky due to its high variability during execution. Instead, fn[k]

is designed to detect whenever the error is growing but the velocity is either small or

growing in the opposite direction of the error. To detect these scenarios, we define the

robot is operating normally if the inequality

fmin < fn[k] < fmax (3.24)

holds for every element of fn[k]. The values of fmin and fmax must be chosen by extracting

the extrema of fn[k] under normal operation. If (3.24) does not hold, then the agent is

being disturbed and we set the initial position and velocity of the Bézier curve to match

the states of the vehicle, while setting higher-order derivatives to zero. In summary,

u0,i[kt] =

ûi[1|kt − 1], if fmin < fn[k] < fmax.

(xi[kt],0), else
(3.25)

In order to validate the proposed replanning strategy, we conducted an experiment

with our quadrotor platform while a human operator perturbed it along its path. The

Chapter 3. Multiagent Online Trajectory Generation 37

0 20 40 60 80
Time [s]

-2

-1

0

1

2

Y
Po

si
tio

n
[m

]

State
Reference

0 20 40 60 80
Time [s]

-2

-1

0

1

2

Y
Po

si
tio

n
[m

]

State
Reference

Figure 3.5: Experimental data of a quadrotor using event-triggered replanning with the
activation function in (3.23). The robot was perturbed by a human during the highlighted
segments in red.

task of the quadrotor was to reach a y-coordinate of -1 m. The reference signal and

state of the quadrotor are shown in Fig. 3.5, where the red segments mean the agent

was being disturbed. During these disturbed stages we observe how the reference signal

is constantly reset to match the state of the robot. The replanning helps the quadrotor

continue its task whenever it stops being disturbed. Under normal operation (white

segments) the replanning is not required, which leads to a smooth reference signal that

avoids the shortcomings observed in Fig. 3.4.

3.5 Algorithm

In this section we describe the core algorithm used to update the optimal input sequence

for all the agents, outlined in Alg. 2. As stated, the algorithm is conceived to be exe-

cuted from a single offboard computer, which then communicates the commands to each

agent. It takes as inputs the measured state of each agent, the desired locations and the

previously computed prediction horizons of each agent. For execution we consider two

different time bases: one with a coarse time step h, used for the MPC planning, and one

with a refined time step Ts used for commanding the agents at a higher rate. With this

definition, the output of Algorithm 1 is the set of inputs for each agent in the time frame

in-between planning cycles, i.e., t ∈ [t0, t0 + h] with sample rate Ts. This is equivalent

to obtaining subsamples of the input between ûi[0|kt] and ûi[1|kt].

Chapter 3. Multiagent Online Trajectory Generation 38

Algorithm 2: Multi-agent Online Planner Input Updates

Input : Current states of all agents (x[kt]), target locations (pd), prediction
horizon of all agents (Π[kt − 1])

Output: Commands to be applied from t0 to t0 + h with sampling of Ts (ū)
17 setTargetLocations (pd)
18 foreach agent i = 1, ..., N do
19 u0,i[kt] ← getInitRef (xi[kt], ûi[1|kt − 1])
20 (Acoll, bcoll) ← getCollision (x[kt], Π[kt − 1])
21 QP ← buildQP (Acoll, bcoll, u0,i[kt], xi[kt])
22 U i ← solve (QP)
23 Πi[kt] ← updateHorizon (U i, xi[kt])
24 ûi[1|kt] ← updateInitialReference (U i)
25 ūi ← getSampledInput (U i)

26 return ū

In line 1 we build the error penalties given by (3.19), which is only required if the

setpoint pd,i of the agents change. The loop in lines 2-9 updates the input sequence

of each agent, and can be executed in parallel since there are no data dependencies

between the individual optimization problem of each agent. First, in line 3 we apply

the event-triggered replanning strategy to decide the value of the initial condition of

the input. The collision avoidance constraint (either BVC or on-demand) is constructed

in line 4. Note that BVC would not require the prediction information, but instead

would require the measured state of the agents. Conversely, on-demand avoidance only

requires the predictions and not the measured states. Lines 5-6 build and solve the

standard quadratic programming problem outlined in (3.22). Once the solution vector

U i is obtained from the QP solver, we can then sample the resulting Bezier curves to

obtain a sampled representation of the input (or the state). Note that the updated

information is not used by subsequent agents, which allows for parallelization of the

input updates of each agent. Line 8 updates the initial condition of the reference to be

used in the next planning cycle, in the case where replanning is not required. Lastly, line

9 samples the resulting Bezier curve with period Ts to obtain the sequence to be applied

for t ∈ [t0, t0 + h].

3.6 Simulation Results

We created a simulation environment in MATLAB 2017a and executed on a PC with

Intel Xeon CPU with 8 cores and 16 GB of RAM, running at 3 GHz. The agents were

modeled after the Crazyflie 2.0 quadrotor, using rmin = 0.3 m and Θ = diag([1, 1, 2]), but

Chapter 3. Multiagent Online Trajectory Generation 39

10 20 30 40 50 60

Number of Agents

0

20

40

60

80

100

S
u

c
c
e

s
s
 P

ro
b

a
b

ili
ty

 [
%

]
BVC

Soft BVC

On-demand (state)

On-demand (input)

(a)

10 20 30 40 50 60

Number of Agents

0

5

10

15

20

25

T
ra

n
s
it
io

n
 T

im
e
 [
s
]

BVC

Soft BVC

On-demand (state)

On-demand (input)

(b)

Figure 3.6: Simulation performance comparison of various collision avoidance strategies.
We considered different numbers of agents in a fixed volume of 18 m3. For each swarm
size, 50 different random test cases were generated and the results were averaged.

a collision was declared using rcoll = 0.2 m (closer to the physical size of the quadrotor)

and Θcoll = diag([1, 1, 2.25]). The trajectory tracking dynamics were identified by fitting

a second-order model to experimental data from the step response of the system depicted

in Fig. 3.2. We selected a step of h = 0.2 s, which means that trajectories are replanned

at 5 Hz.

For the input sequence we chose Bézier curves with p = 5, l = 3 and th = 3 s, where

each segment had a fixed duration of 1 second. Additionally, we imposed actuation limits

with γ
(2)
max = −γ(2)min = 1 m/s2. After tuning the cost function, we selected κ = 3, qk = 100,

α2 = 0.008, ζ = 1 and ξ = −5 × 104. For the replanning function in (3.23) we chose

ε = 0.01, fmin = −0.01, and fmax = 0.8. Additionally, we added noise in the measured

state x̄i[kt] based on empirical data gathered from an overhead motion capture system,

to simulate a more realistic scenario.

3.6.1 Comparison of Collision Avoidance Methods

We compared four different optimization-based collision avoidance methods in random

transition scenarios: 1) BVC as proposed in [29] (without the discrete planner compo-

nent), 2) BVC using soft constraints, 3) On-demand collision avoidance applied in the

state space and 4) On-demand collision avoidance in the input space.

We considered a fixed-volume, obstacle-free workspace of 18 m3 (roughly the size of

our indoor flight arena), with randomly generated initial and final locations for all agents.

The number of agents varied from 10 to 60, in order to test the algorithms as the agent

density increased. A trial was considered successful if all agents were able to reach their

goals without collisions and within 20 seconds. More specifically, after each simulation

Chapter 3. Multiagent Online Trajectory Generation 40

we ran a collision check (using rcoll and Θcoll) and a goal check (allowing 10 cm distance

from the target location) to determine if the test was successful.

In Fig. 3.6 we show the performance obtained using each method. The success prob-

ability for each swarm size considered is highlighted in Fig. 3.6a. We notice that as

the number of agents increases (ergo, a denser workspace) the effectiveness of the BVC

methods decay drastically. Using soft constraints helps to some extent, but ultimately

the approach is too conservative to resolve transition scenarios with a high density of

agents.

On the other hand, the on-demand collision avoidance strategy shows better per-

formance when applied in the input space, especially in high agent density workspaces.

Input-space collision avoidance achieved more than 90% success rate with swarm sizes

up to 30 agents. We observe a significant decline in performance after 30 agents in all

the tested methods. This is a weakness of our approach given the need to relax collision

constraints in order to find solutions. As the density grows, then higher relaxations will

be required to solve the transitions, which may result in collisions.

One explanation to the performance difference between state and input space avoid-

ance resides on the agent model. In the identified dynamics, the position of the agents

is, essentially, a delayed version of the input signal (with some overshoot). Thus, by

doing collision avoidance in the input space, the agents are preemptively avoiding each

other, which ultimately leads to less collisions during execution. Also, by using the in-

puts as opposed to predicted states, the collision avoidance is less sensitive to the model’s

accuracy.

In the same order of ideas, Fig. 3.6b shows that, on average, using on-demand collision

avoidance leads to faster transition times than the BVC methods, averaging around 50%

transition time reductions. These numbers match the analysis made on Sec. 3.3.5 using

Fig. 3.3.

3.6.2 Runtime Benchmark

We compared the computation time per agent to update their input sequence. In Fig. 3.7

the results are presented, where we specifically show the average time per agent to solve

the associated QP problem.

To formally analyze the scaling of both algorithms, define Ni,kt to be the number of

nearby neighbours of agent i to be considered for collision avoidance at time step kt.

The amount of inequality constraints on both BVC and on-demand methods scale with

O(Ni,kt). The soft BVC method adds additional (p + 1) × Ni,kt slack variables to relax

Chapter 3. Multiagent Online Trajectory Generation 41

10 20 30 40 50 60

Number of Agents

5

10

15

20

25

30

R
u
n
ti
m

e
 p

e
r

A
g
e
n
t
[m

s
] BVC

Soft BVC

On-demand (state)

On-demand (input)

Figure 3.7: Comparison of the average runtime per agent to update the inputs using our
on-demand collision avoidance and the BVC method. The data shown is the average
over 50 randomly generated tests for each swarm size considered.

the constraints, while the on-demand methods add only Ni,kt new decision variables to

the problem. In Fig. 3.7 we observe the empirical runtime of the considered methods.

The soft BVC method incurs in the slowest runtime, due to the added slack variables

and overall bigger problems to be solved. For the other three methods the runtime is

fairly similar, with a slight advantage to the BVC method.

3.7 Experimental Results

The online generation method outlined in this paper (with on-demand avoidance) was

implemented in C++, using ROS to manage the drone swarm and qpOASES [40] as

the QP solver. We parallelized the input updates for the agents by dividing them in

clusters that were solved in separate CPUs of the host machine [2]. In this section we

provide experimental results using our Crazyflie 2.0 swarm testbed. All the inputs were

computed from a single computer and broadcasted to the swarm through a radiolink,

alongside the estimated position of each individual agent given by a motion capture

system. The computer specs and algorithm parameters are the same as Sec. 3.6, with

the exception of ξ = −1× 103 and the addition of Ts = 0.05 s, meaning that trajectories

were being sent to the swarm at 20 Hz.

A video summarizing the experimental results can be found at http://tiny.cc/online-dmpc.

http://tiny.cc/online-dmpc

Chapter 3. Multiagent Online Trajectory Generation 42

Table 3.1: Experimental results summary for random transition tasks involving increasing
number of agents.

Agents 2 4 6 8 10 12 14 16 18 20

Avg. solve time of Alg. 1 [ms] 3.3 6.2 9.9 13.8 16.9 17.6 20.3 20.5 23.4 28.3
Std. solve time of Alg. 1 [ms] 0.4 0.9 1.7 3.3 5.1 7.6 8.0 8.9 10.2 11.4
Min. distance [cm] 36.2 32.2 31.1 30.0 29.2 28.6 29.1 26.0 26.1 25.3

3.7.1 Obstacle-Free Transitions

The method was tested in several randomly generated transition tasks in an indoor flight

arena. We considered different swarm sizes, ranging from 2 to 20 drones. For each swarm

size, three independent flights were executed, where each flight consisted of 30 seconds of

randomly generated transitions (the setpoint of each agent was changed every 5 seconds

to obtain a continuous movement of the swarm). The agents were restricted to move in

a 3× 3× 2 m3 volume, and we used rmin = 0.35 m as the safety distance during planning.

For each test, we recorded the average time required to update the inputs of all the

agents of the swarm, as well as the minimum inter-agent distance during the flight. The

results are summarized in Tab. 3.1. As expected, the average computation time increases

as we add more agents to the problem, since all computations are being executed by a

single computer. We should note here that there are other sources of overhead in the

system when adding more drones: state estimation and communication, for instance.

The interesting result is that the scaling we obtain in runtime is better than linear, since

we are able to parallelize the computation due to the distributed nature of the approach.

Also noteworthy is that the standard deviation of the computation increases with the

number of vehicles; there is a significant variability in the sizes and complexity of the

QPs being solved for each agent, depending on how close they are to other agents and

to the boundaries of the workspace.

The minimum inter-agent distance decreases as we increase the number of agents, i.e.,

there is less available space to move collision-free. Since the optimizer is allowed to violate

the collision constraint, the original margin of rmin = 0.35 m is violated if required. Such

scenarios of violation appear more often the higher the agent density in the workspace.

Although this is suboptimal from a safety perspective, experiments show that as long as

a sufficiently large rmin is chosen, the amount of violation incurred while optimizing will

still allow the agents to move collision-free.

Chapter 3. Multiagent Online Trajectory Generation 43

1

x [m]

0

1z
[m

]

1

y [m]

2

-10 -1

Figure 3.8: A 10-drone transition scenario passing through a hula-hoop (denoted by the
black circle). The forbidden space is denoted by four ellipsoids acting as static obsta-
cles. The coloured dots denote the initial locations of the agents, and the corresponding
coloured lines are the followed trajectories towards the goal (only 4 showing for clarity).

3.7.2 Transition Tasks With Static Obstacles

To showcase the versatility of our approach to solve complex transition scenarios in a

workspace with static obstacles, we tasked a group of drones to exchange positions with

each other by passing through a hula-hoop with a 85 cm diameter. The environment was

divided by an invisible wall with a passage-way defined by the hula-hoop. In Fig. 3.8 we

show the 10-drone transition scenario solved in experiments. Note that static obstacles

are added to the problem as new “neighbours” for each agent, with their own robs and

Θobs, which means that the runtime complexity scales linearly with the number of static

obstacles.

The restricted zone was modeled as the union of four ellipsoids. They are shaped

in such a way that they are intersecting and provide a small gap of 30 x 30 cm for

the agents to pass through. With this window size, at most two Crazyflie quadrotors

were able to pass at the same time through the opening. In the tracked trajectories

we observe that some of the agents were able to fly directly through the circle, while

others took detours in order to let other agents pass first. This phenomenon is quite

interesting since there is no explicit priority encoded in the agents, but collaboration still

arises from within the distributed optimization. The distance-to-goal envelope shown in

Fig. 3.9 demonstrates how the agents make progress over time to decrease the distance

Chapter 3. Multiagent Online Trajectory Generation 44

0 5 10 15 20 25 30
Time [s]

0

1

2

3

4

D
is

ta
nc

e
to

 T
ar

ge
t [

m
]

Figure 3.9: Distance to target envelope (minimum and maximum over time) of the
10-drone hula-hoop transition task. The light green section represents the zone where
transition success is declared: a 6 cm radius of the target location. In this case the
transition was completed in Tf = 28 s.

towards their goal, eventually converging to it within some tolerance region. Note that,

in general, the envelope is not monotonically decreasing, which means that oftentimes

the agents deviate from the direct path to the goal in order to avoid collisions.

Several different tuning parameters were tried while solving this particular task. While

using input space collision avoidance, a wide range of penalty gains and maximum ac-

celerations worked well to solve the task; the completion time varied from 20.1 to 48.4

seconds in 18 different trials. On the other hand, the success rate using state space col-

lision avoidance was much lower. The agents tended to have oscillatory behaviour when

approaching the obstacles and were able to complete the transition only a fraction of the

trials. One hypothesis is that adding the tracking dynamics into the collision avoidance

constraints leads to less preemptive maneuvers. Since in our case the state of the agents

is basically a delayed version of the input, then the optimizer naturally delays the eva-

sive maneuvers, which ends up being counterproductive towards efficiently completing

the transition.

3.8 Summary

In this chapter we presented a framework for multi-robot online trajectory generation

based on distributed model predictive control (DMPC). In transition tasks, our method

has a higher success rate and lower travel times than using the Buffered Voronoi Cells

Chapter 3. Multiagent Online Trajectory Generation 45

method. The simulations indicated more than 90% success rate with up to 30 palm-sized

quadrotor agents in a 18 m3 arena.

The parallelization of the method and its formulation as a simple Quadratic Program

(QP) leads to high scalability. In experiments we were able to generate trajectories in

real-time (20 Hz) for a swarm of 20 drones, where all computations regarding the motion

planning were executed from a single off-board computer.

Aside from testing thoroughly with swarms of varying sizes in obstacle-free envi-

ronments, our approach showed satisfactory results in a complicated transition scenario

passing through a hula-hoop and robust replanning in the presence of unmodeled distur-

bances.

Chapter 4

Conclusions and Future Work

4.1 Summary of Contributions

As a first contribution, a multiagent offline trajectory generation framework was pre-

sented in Ch. 2. Using concepts from distributed receding horizon control, the proposed

algorithm produces smooth and collision-free motion plans that can be easily tracked by

off-the-shelf controllers. On-demand collision avoidance was introduced as an efficient

way of including collision constraints in a distributed way, achieving convincing colli-

sion avoidance while not limiting the motion of the agents. When compared to similar

optimization-based approaches, our method achieves a significant (85%) runtime reduc-

tion while maintaining a high success rate. To the best of our knowledge, at the time

of publication of this thesis, our framework is the only that has demonstrated trajectory

generation for swarms of 25 quadrotors with runtimes below 2 seconds. The contents of

this chapter were published in [2].

In Ch. 3 we adapted the offline framework presented in Ch. 2 for real-time trajec-

tory generation, which is the second main contribution of this thesis. By combining

the concepts of Bezier curves and on-demand collision avoidance, our method is able

to produce smooth motion plans that are collision-free, while not being too conserva-

tive. Event-triggered replanning was introduced to overcome jittering effects incurred by

the constant replanning of trajectories. A comparison with the Buffered Voronoi Cells

method shows that our method has a higher success rate in random transition tasks,

while keeping real-time tractability. Experiments proved that our method is able to re-

solve complicated transition scenarios, such as groups of quadrotors passing through a

hula-hoop. The scalability test shows that the runtime of updating the inputs for the

robot teams scales sub-linearly with the number of agents. The algorithm scalability was

proven flying a team of 20 quadrotors, where all the motion plans where computed from

46

Chapter 4. Conclusions and Future Work 47

a single off-board computer.

4.2 Future Work

A possible extension for both offline and online trajectory generation is to add GPU-

accelerated computations, as initially proposed in [14].

On-demand collision avoidance has proven to be effective empirically, by testing sev-

eral random transition scenarios. A future research direction would be a rigorous study

to determine the best time step(s) to impose collision constraints. In this work we con-

sidered the first time step with collisions to be the most safety critical and thus the one

to be included in the optimization. While it has an intuitive explanation, at any given

point it may be more desirable to include multiple time steps into the optimization.

In the results presented, the robot-to-robot communication was considered to be

instantaneous and without loss of information. A more realistic scenario where the robots

are equipped with a communication network will require to model more accurately their

communication channel. Studying the impact of delays and lack of information is an

interesting future research direction. The work in [7] considered real communication

between robots and it may serve as inspiration.

An interesting research direction is to use trajectory prediction of nearby agents

whenever communication is lost or unreliable. That is, each agent predicts a possible

trajectory of the dynamic objects within its sensing range, which then informs the motion

planning algorithm. We refer the reader to [41] for a recent survey on motion prediction.

In these order of ideas, probabilistic optimization frameworks are well-suited to include

uncertainties about neighbouring agents positions and/or intentions [30].

This thesis presents interesting future venues for multi-robot applications. From

drone entertainment shows to multi-drone cooperative sensing, the algorithms presented

in this work may serve as the low-level motion planning framework required for more

complicated coordination tasks.

Even though we have shown real-time motion planning is currently possible for several

quadrotors, the implementation in more realistic scenarios can be challenging. The mo-

tion planning algorithms will have to evolve to account for local sensing of static/dynamic

obstacles and local communication (as opposed to centralizing the communications on

an off-board computer). These considerations will likely result in more complicated op-

timization problems to be solved, but hopefully the advances in computing power and

optimization solvers efficiency will still allow for real-time implementations.

Bibliography

[1] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of collision-free tra-

jectories for a quadrocopter fleet: A sequential convex programming approach,”

in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2012, pp. 1917–1922.

[2] C. E. Luis and A. P. Schoellig, “Trajectory generation for multiagent point-to-point

transitions via distributed model predictive control,” IEEE Robotics and Automation

Letters, vol. 4, no. 2, pp. 375–382, 2019.

[3] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” ACM

SIGGRAPH computer graphics, vol. 21, no. 4, pp. 25–34, 1987.

[4] K. Oh, M. Park, and H. Ahn, “A survey of multi-agent formation control,” Auto-

matica, vol. 53, pp. 424–440, 2015.

[5] E. Guizzo, “Three engineers, hundreds of robots, one warehouse,” IEEE Spectrum,

vol. 45, no. 7, pp. 26–34, 2008.

[6] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed integer programming

for multi-vehicle path planning,” in European Control Conference (ECC), 2001, pp.

2603–2608.

[7] M. Turpin, N. Michael, and V. Kumar, “Decentralized formation control with vari-

able shapes for aerial robots,” in IEEE International Conference on Robotics and

Automation (ICRA), 2012, pp. 23–30.

[8] S. Boyd, “Sequential convex programming,” Lecture Notes, Stanford University,

2008.

[9] Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path planning via in-

cremental sequential convex programming,” in IEEE International Conference on

Robotics and Automation (ICRA), 2015, pp. 5954–5961.

48

Bibliography 49

[10] D. R. Robinson, R. T. Mar, K. Estabridis, and G. Hewer, “An efficient algorithm for

optimal trajectory generation for heterogeneous multi-agent systems in non-convex

environments,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1215–1222,

2018.

[11] J. A. Preiss, W. Hönig, N. Ayanian, and G. S. Sukhatme, “Downwash-aware trajec-

tory planning for large quadrotor teams,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2017, pp. 250–257.

[12] M. Čáp, P. Novák, J. Vokŕınek, and M. Pěchouček, “Multi-agent rrt: sampling-

based cooperative pathfinding,” in Proceedings of the 2013 international conference

on Autonomous agents and multi-agent systems. International Foundation for Au-

tonomous Agents and Multiagent Systems, 2013, pp. 1263–1264.

[13] W. Hönig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and N. Ayanian, “Trajectory

planning for quadrotor swarms,” IEEE Transactions on Robotics, vol. 34, no. 4, pp.

856–869, 2018.

[14] M. Hamer, L. Widmer, and R. D’Andrea, “Fast generation of collision-free trajecto-

ries for robot swarms using GPU acceleration,” IEEE Access, vol. 7, pp. 6679–6690,

2018.

[15] S. Tang and V. Kumar, “A complete algorithm for generating safe trajectories for

multi-robot teams,” in Robotics Research. Springer, 2018, pp. 599–616.

[16] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for collisions-free

multirobot systems,” IEEE Transactions on Robotics, 2017.

[17] S. Bhattacharya and V. Kumar, “Distributed optimization with pairwise constraints

and its application to multi-robot path planning,” in Robotics: Science and Systems

VI, vol. 177. MIT Press, 2011.

[18] J. Van Den Berg, J. Snape, S. J. Guy, and D. Manocha, “Reciprocal collision avoid-

ance with acceleration-velocity obstacles,” in IEEE International Conference on

Robotics and Automation (ICRA), 2011, pp. 3475–3482.

[19] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Siegwart, “Opti-

mal reciprocal collision avoidance for multiple non-holonomic robots,” in Distributed

Autonomous Robotic Systems. Springer, 2013, pp. 203–216.

Bibliography 50

[20] H. Rezaee and F. Abdollahi, “A decentralized cooperative control scheme with ob-

stacle avoidance for a team of mobile robots,” IEEE Transactions on Industrial

Electronics, vol. 61, no. 1, pp. 347–354, 2014.

[21] E. Camponogara, D. Jia, B. H. Krogh, and S. Talukdar, “Distributed model predic-

tive control,” IEEE Control Systems, vol. 22, no. 1, pp. 44–52, 2002.

[22] R. Van Parys and G. Pipeleers, “Distributed model predictive formation control

with inter-vehicle collision avoidance,” in Asian Control Conference (ACC), 2017.

[23] H. Sayyaadi and A. Soltani, “Decentralized polynomial trajectory generation for

flight formation of quadrotors,” Proceedings of the Institution of Mechanical Engi-

neers, Part K: Journal of Multi-body Dynamics, vol. 231, no. 4, pp. 690–707, 2017.

[24] L. Dai, Q. Cao, Y. Xia, and Y. Gao, “Distributed mpc for formation of multi-agent

systems with collision avoidance and obstacle avoidance,” Journal of the Franklin

Institute, vol. 354, no. 4, pp. 2068–2085, 2017.

[25] P. Wang and B. Ding, “A synthesis approach of distributed model predictive control

for homogeneous multi-agent system with collision avoidance,” International Journal

of Control, vol. 87, no. 1, pp. 52–63, 2014.

[26] A. Papen, R. Vandenhoeck, J. Bolting, and F. Defay, “Collision-free rendezvous ma-

neuvers for formations of unmanned aerial vehicles,” IFAC-PapersOnLine, vol. 50,

no. 1, pp. 282–289, 2017.

[27] J. Alonso-Mora, P. Beardsley, and R. Siegwart, “Cooperative collision avoidance for

nonholonomic robots,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 404–420,

2018.

[28] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager, “Fast, on-line collision

avoidance for dynamic vehicles using buffered voronoi cells,” IEEE Robotics and

Automation Letters, vol. 2, no. 2, pp. 1047–1054, 2017.

[29] B. Şenbaşlar, W. Hönig, and N. Ayanian, “Robust trajectory execution for multi-

robot teams using distributed real-time replanning,” in Distributed Autonomous

Robotic Systems. Springer, 2019, pp. 167–181.

[30] H. Zhu and J. Alonso-Mora, “Chance-constrained collision avoidance for mavs in

dynamic environments,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.

776–783, 2019.

Bibliography 51

[31] B. Hernandez and P. Trodden, “Distributed model predictive control using a chain

of tubes,” in UKACC 11th International Conference on Control (CONTROL), 2016,

pp. 1–6.

[32] A. Nikou and D. V. Dimarogonas, “Decentralized tube-based model predictive con-

trol of uncertain nonlinear multiagent systems,” International Journal of Robust and

Nonlinear Control, vol. 29, no. 10, pp. 2799–2818, 2019.

[33] G. Angeris, K. Shah, and M. Schwager, “Fast reciprocal collision avoidance under

measurement uncertainty,” arXiv preprint arXiv:1905.12875, 2019.

[34] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory generation

with distributed model predictive control for multi-robot motion planning,” arXiv

preprint arXiv:1909.05150, 2019.

[35] P. Ru, “Nonlinear model predictive control for cooperative control and estimation,”

Ph.D. dissertation, 2017.

[36] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control

for quadrotors,” in IEEE International Conference on Robotics and Automation

(ICRA), 2011, pp. 2520–2525.

[37] K. I. Joy, “Bernstein polynomials,” On-Line Geometric Modeling Notes, vol. 13,

2000.

[38] T. Mercy, R. Van Parys, and G. Pipeleers, “Spline-based motion planning for au-

tonomous guided vehicles in a dynamic environment,” IEEE Transactions on Control

Systems Technology, no. 99, pp. 1–8, 2017.

[39] R. Charles, A. Bry, and N. Roy, “Polynomial trajectory planning for quadrotor

flight,” in Proceedings of the IEEE International Conference on Robotics and Au-

tomation, ICRA, 2013.

[40] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES: A para-

metric active-set algorithm for quadratic programming,” Mathematical Programming

Computation, vol. 6, no. 4, pp. 327–363, 2014.

[41] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and K. O. Arras,

“Human motion trajectory prediction: A survey,” arXiv preprint arXiv:1905.06113,

2019.

	Introduction
	Background & Motivation
	Related Work
	Contributions
	Thesis Overview

	Multiagent Offline Trajectory Generation
	Introduction
	Problem Statement
	The Agents
	Constraints
	Collision Avoidance

	Distributed Model Predictive Control
	The Synchronous Algorithm
	The Agent Prediction Model
	Objective Function
	Physical Limits
	Convex Optimization Problem, No Collision Case
	On-Demand Collision Avoidance with Soft Constraints

	The Algorithm
	Example Scenario
	Limitations and Associated Mitigation Strategies

	Simulations
	Comparison of Collision Avoidance Strategies in DMPC
	Comparison to SCP-Based Approaches

	Experiments
	Parallel DMPC
	Swarm Transition

	Summary

	Multiagent Online Trajectory Generation
	Introduction
	Problem Statement
	The Agents

	Online Distributed Model Predictive Control
	Trajectory Parameterization
	The Agent Prediction Model
	Input Continuity
	Dynamic Feasibility
	Optimization-Based Collision Avoidance
	Cost Function

	Event-Triggered Replanning
	Algorithm
	Simulation Results
	Comparison of Collision Avoidance Methods
	Runtime Benchmark

	Experimental Results
	Obstacle-Free Transitions
	Transition Tasks With Static Obstacles

	Summary

	Conclusions and Future Work
	Summary of Contributions
	Future Work

	Bibliography

