

# Stabilitätsanalyse von vernetzten Systemen mit Verzögerungen in der Datenübertragung

- Studienarbeit -



26.07.2006





ω  $\Sigma_1$ 













- $\tau_{31}$
- $\tau_{13}$
- $\tau_{23}$









 $f_R, f_L$ 











- $\tau_{13}$
- $\tau_{23}$ 
  - τ









 $f_R, f_L$ 

















- $\tau_{31}$
- $\tau_{13}$
- $\tau_{23}$

τ







| <u>ist</u> ? | Modell des Netzwerks<br>Verschiedene Analyse-Methoden<br>Frequency-Sweeping-Test<br>Zusammenfassung und Ausblick | $	au_{21}$<br>$	au_{31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Probl        | emstellung                                                                                                       | τ <sub>13</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | • Menge von dynamischen Systen<br>$\Sigma_i$ : $\dot{x}_i(t) = f_i(x_i(t), u_i)$                                 | $\begin{array}{c} \tau_{12} \\ \tau_{21} \\ \tau_{31} \\ \tau_{13} \\ \tau_{13} \\ \tau_{22} \\ \tau_{23} \\ \tau_{23$ |
|              | $y_i = h_i(x_i)$<br>• Verknüpfung:<br>$u_i(t) = g_i(y_{j_1}(t), \dots, y_{j_{m_i}}(t))$                          | t))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| ict <sup>0</sup> | Modell des Netzwerks<br>Verschiedene Analyse-Methoden   | τ <sub>21</sub>        |
|------------------|---------------------------------------------------------|------------------------|
|                  | Frequency-Sweeping-Test<br>Zusammenfassung und Ausblick | τ <sub>31</sub>        |
| Problemstell     | ung                                                     | т <sub>13</sub><br>773 |

Menge von dynamischen Systemen:

$$\Sigma_i: \quad \dot{x}_i(t) = f_i(x_i(t), u_i(t))$$
$$y_i = h_i(x_i)$$



Verknüpfung:

 $u_i(t) = g_i(y_{j_1}(t - \tau_{i,j_1}), \dots, y_{j_{m_i}}(t - \tau_{i,j_{m_i}}))$ 

| ict <sup>0</sup> | Modell des Netzwerks<br>Verschiedene Analyse-Methoden   | τ <sub>21</sub>        |
|------------------|---------------------------------------------------------|------------------------|
|                  | Frequency-Sweeping-Test<br>Zusammenfassung und Ausblick | τ <sub>31</sub>        |
| Problemstell     | ung                                                     | т <sub>13</sub><br>773 |

Menge von dynamischen Systemen:

$$\Sigma_i: \quad \dot{x}_i(t) = f_i(x_i(t), u_i(t))$$
$$y_i = h_i(x_i)$$



Verknüpfung:

$$u_i(t) = g_i(y_{j_1}(t - \tau_{i,j_1}), \ldots, y_{j_{m_i}}(t - \tau_{i,j_{m_i}}))$$

### ⇒ Totzeit-System

| ict <sup>0</sup> | Modell des Netzwerks<br>Verschiedene Analyse-Methoden   | τ <sub>21</sub>        |
|------------------|---------------------------------------------------------|------------------------|
|                  | Frequency-Sweeping-Test<br>Zusammenfassung und Ausblick | τ <sub>31</sub>        |
| Problemstell     | ung                                                     | т <sub>13</sub><br>773 |

Menge von dynamischen Systemen:

$$\Sigma_i: \quad \dot{x}_i(t) = f_i(x_i(t), u_i(t))$$
$$y_i = h_i(x_i)$$



Verknüpfung:

$$u_i(t) = g_i(y_{j_1}(t - \tau_{i,j_1}), \dots, y_{j_{m_i}}(t - \tau_{i,j_{m_i}}))$$

### ⇒ Totzeit-System

Ist das vernetzte System mit Zeitverzögerungen stabil?



### Inhaltsverzeichnis



### Modell des Netzwerks



Verschiedene Analyse-Methoden



4 Zusammenfassung und Ausblick





Vereinfachungen Verknüpfungsstruktur Modell des Netzwerks

# Übersicht



2 Verschiedene Analyse-Methoden

- Frequency-Sweeping-Test
- 4 Zusammenfassung und Ausblick





Vereinfachungen Verknüpfungsstruktur Modell des Netzwerks

### Vereinfachungen



Institut für Systemtheorie und Regelungstechnik Stabilitätsanalyse von vernetzten Systemen



Vereinfachungen Verknüpfungsstruktur Modell des Netzwerks

 $\tau_{23}$ 

### Vereinfachungen

Zeitverzögerungen:

$$\tau_{i,j_k} = \tau = const.$$





Vereinfachungen Verknüpfungsstruktur Modell des Neizwerks

 $\tau_{23}$ 

## Vereinfachungen

Zeitverzögerungen:

$$z_{i,j_k} = \tau = const.$$

• Dynamik der Systeme:

1

$$\Sigma_1: \quad \dot{x}_i(t) = ax_i(t) + bu_i(t)$$

mit  $a, b, x, u \in \mathbb{R}$ 





Vereinfachungen Verknüpfungsstruktur Modell des Netzwerks

> $τ_{23}$  $τ_{12}$

 $\tau_{21}$ 

 $\tau_{31}$ 

## Vereinfachungen



$$\tau_{i,j_k} = \tau = const.$$

• Dynamik der Systeme:

1

$$\Sigma_1: \quad \dot{x}_i(t) = ax_i(t) + bu_i(t)$$

mit  $a, b, x, u \in \mathbb{R}$ 

### Welchen Einfluss hat die Verknüpfungsstruktur auf die Stabilität?



 $\Sigma_1$ 



Vereinfachungen Verknüpfungsstruktur Modell des Netzwerks

# Verknüpfungsstruktur





<u>ist</u>

Modell des Netzwerks Verschiedene Analyse-Methoden Frequency-Sweeping-Test Zusammenfassung und Ausblick

Vereinfachungen Verknüpfungsstruktur Modell des Netzwerks

# Verknüpfungsstruktur



Abbildung der Verknüpfungsstruktur  $\rightarrow$  Verknüpfungsmatrix C

<u>ist</u>

Modell des Netzwerks Verschiedene Analyse-Methoden Frequency-Sweeping-Test Zusammenfassung und Ausblick

Vereinfachungen Verknüpfungsstruktur Modell des Netzwerks

# Verknüpfungsstruktur



Abbildung der Verknüpfungsstruktur  $\rightarrow$  Verknüpfungsmatrix C

Gewichtsfaktoren:

$$c_{ij} \in \{-1, 1, 0\}$$

• Eingang:

$$u_i(t) = \sum_{j \neq i} c_{ij} x_j(t-\tau)$$



Vereinfachungen Verknüpfungsstruktur Modell des Netzwerks

### Modell des Netzwerks

Oynamik der Systeme:

$$\dot{x}_i(t) = ax_i(t) + bu_i(t)$$

Eingang:

$$u_i(t) = \sum_{j \neq i} c_{ij} x_j(t - \tau)$$

Gewichtsfaktoren:

 $c_{ij} \in \{-1,1,0\}$ 



Vereinfachungen Verknüpfungsstruktur Modell des Netzwerks

### Modell des Netzwerks

Oynamik der Systeme:

$$\dot{x}_i(t) = ax_i(t) + bu_i(t)$$

Eingang:

$$u_i(t) = \sum_{j \neq i} c_{ij} x_j(t - \tau)$$

Gewichtsfaktoren:

$$c_{ij} \in \{-1,1,0\}$$

Gesamt-System: 
$$\dot{x}(t) = a x(t) + b C x(t - \tau)$$

 $\text{mit Anfangsbedingung} \quad x(t_0+\theta)=\phi(\theta), \ -\tau\leq\theta\leq 0 \quad \text{und} \quad x\in\mathbb{R}^n, \ C\in\mathbb{R}^{n\times n}, \ a,b,\tau\in\mathbb{R} \\ \label{eq:alpha}$ 



# Übersicht





### Verschiedene Analyse-Methoden

- 3 Frequency-Sweeping-Test
- 4 Zusammenfassung und Ausblick



| <u>ist</u> | Modell des Netzwerks<br>Verschiedene Analyse-Methoden<br>Frequency-Sweeping-Test<br>Zusammenfassung und Ausblick | $\overline{\tau}_0$<br>$\delta^*$ |  |
|------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
| Verschie   | edene Analyse-Methoden                                                                                           | JR, JL<br>W                       |  |
|            |                                                                                                                  | $\Sigma_1$                        |  |
| Frequ      | ienzbereich                                                                                                      | $\Sigma_2 \\ \Sigma_3$            |  |
|            | klassische Stabilitätstests                                                                                      | $\tau_{12}$                       |  |
|            | Frequency-Sweeping-Test                                                                                          | $\tau_{21}$                       |  |
|            | Test über konstante Matrizen                                                                                     | $\tau_{31}$                       |  |
|            | Small-Gain-Ansätze                                                                                               | τ <sub>13</sub>                   |  |
|            |                                                                                                                  | τ <sub>12</sub>                   |  |
| Zeitb      | ereich                                                                                                           | $\tau_{21}$                       |  |
|            | Theorem von Ljapunow-Krasov                                                                                      | vskii <sup>τ</sup> <sup>31</sup>  |  |
|            | Theorem von Razumikhin                                                                                           | τ <sub>13</sub>                   |  |
|            | Matrix-Norm                                                                                                      | $\tau_{23}$                       |  |

| isto     | Modell des Netzwerks<br>Verschiedene Analyse-Methoden<br>Frequency-Sweeping-Test<br>Zusammerfassung und Ausblick | $\overline{\tau}_0$ $\delta^*$     |       |
|----------|------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|
| Verschie | edene Analyse-Methode                                                                                            | en ω                               |       |
|          |                                                                                                                  | $\Sigma_1$                         |       |
| Frequ    | ienzbereich                                                                                                      | $rac{\Sigma_2}{\Sigma_3}$         |       |
|          | klassische Stabilitätstests                                                                                      | $\tau_{12}$                        |       |
|          | Frequency-Sweeping-Tes                                                                                           | t τ <sub>21</sub>                  |       |
|          | Test über konstante Matrize                                                                                      | τ <sub>31</sub> τ <sub>31</sub>    |       |
|          | Small-Gain-Ansätze                                                                                               | $\tau_{13}$                        |       |
|          |                                                                                                                  | t <sub>23</sub>                    |       |
| Zeitbe   | ereich                                                                                                           | τ <sub>12</sub><br>τ <sub>21</sub> |       |
|          | Theorem von Ljapunow-Kra                                                                                         | asovskii <sup>v</sup> 31           |       |
|          | Theorem von Razumikhin                                                                                           | $\tau_{13}$                        |       |
|          | Matrix-Norm                                                                                                      | τ <sub>23</sub> -<br>τ             | y y X |

| t9 | Modell des Netzwerks<br>Verschiedene Analyse-Methoden<br>Frequency-Sweeping-Test<br>Zusammenfassung und Ausblick | Stabilität im Frequenzbereich<br>Idee<br>Ergebnisse für das Netzwerk<br>Beispiel |
|----|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|    |                                                                                                                  |                                                                                  |

# Übersicht

IS



2) Verschiedene Analyse-Methoden



4 Zusammenfassung und Ausblick





Stabilität im Frequenzbereich Idee Ergebnisse für das Netzwerk Beispiel

### Stabilität im Frequenzbereich

Netzwerk-Modell:

$$M: \dot{x}(t) = a x(t) + b C x(t-\tau), \quad \tau = const.$$

• charakteristisches Quasipolynom:

$$p(s, e^{-\tau s}) = \det\left(sI - aI - bCe^{-\tau s}\right) = 0$$



Stabilität im Frequenzbereich Idee Ergebnisse für das Netzwerk Beispiel

### Stabilität im Frequenzbereich

Netzwerk-Modell:

$$M: \dot{x}(t) = a x(t) + b C x(t-\tau), \quad \tau = const.$$

• charakteristisches Quasipolynom:

$$p(s, e^{-\tau s}) = \det\left(sI - aI - bCe^{-\tau s}\right) = 0$$

M ist asymptotisch stabil.  $\Leftrightarrow$   $\operatorname{Re}(s^*) < 0, \ \forall s^* : \ p(s^*, e^{-\tau s^*}) = 0$ 

| ist <sup>o</sup> | Modell des Netzwerks<br>Verschiedene Analyse-Methoden<br>Frequency-Sweeping-Test<br>Zusammenfassung und Ausblick | Stabilität im Frequenzbereich<br>Idee<br>Ergebnisse für das Netzwerk<br>Beispiel |  |
|------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| ldee             |                                                                                                                  |                                                                                  |  |

### Annahme:

### M stabil für $\tau = 0$

| <u>ist</u> o | Modell des Netzwerks<br>Verschiedene Analyse-Methoden<br>Frequency-Sweeping-Test<br>Zusammenfassung und Ausblick | Stabilität im Frequenzbereich<br><b>Idee</b><br>Ergebnisse für das Netzwerk<br>Belspiel |
|--------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Idee         |                                                                                                                  |                                                                                         |

Annahme: M stabil für  $\tau = 0$ 

Stabilitätsbereich: *M* stabil für  $\tau \in [0, \overline{\tau})$ 

$$\overline{\tau} := \min\left\{\tau \ge 0 \mid p(j\omega, e^{-j\omega\tau}) = 0, \ \omega > 0\right\}$$

| isto | Modell des Netzwerks<br>Verschiedene Analyse-Methoden<br>Frequency-Sweeping-Test<br>Zusammenfassung und Ausblick | Stabilität im Frequenzbereich<br>Idee<br>Ergebnisse für das Netzwerk<br>Beispiel |  |
|------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Idee |                                                                                                                  |                                                                                  |  |

Annahme: M stabil für  $\tau = 0$ 

Stabilitätsbereich: *M* stabil für  $\tau \in [0, \overline{\tau})$ 

$$\overline{\tau} := \min\left\{\tau \ge 0 \mid p(j\omega, e^{-j\omega\tau}) = 0, \ \omega > 0\right\}$$

totzeitunabhängig stabil:M ist stabil für alle  $\tau > 0$ .totzeitabhängig stabil:M ist stabil für alle  $\tau \in [0, \overline{\tau}), \ \overline{\tau} < \infty$ .



Stabilität im Frequenzbereich Idee Ergebnisse für das Netzwerk Beispiel

# Frequency-Sweeping-Test

$$\overline{\tau} := \min\left\{\tau \ge 0 \mid p(j\omega, e^{-j\omega\tau}) = 0, \ \omega > 0\right\}$$

gesucht: 
$$(\omega^*, \tau^*): p(j\omega^*, e^{-j\omega^*\tau^*}) = 0$$



Stabilität im Frequenzbereich Idee Ergebnisse für das Netzwerk Beispiel

# Frequency-Sweeping-Test

$$\overline{\tau} := \min\left\{\tau \ge 0 \mid p(j\omega, e^{-j\omega\tau}) = 0, \ \omega > 0\right\}$$

| gesucht: | $(\omega^*,\tau^*)$ : | $p(j\omega^*, e^{-j\omega^*\tau^*}) = 0$ |
|----------|-----------------------|------------------------------------------|
|          |                       |                                          |

### Berechnung:



Bestimmung von ω\*:

$$\left|\lambda_{i}\left[\left(j\omega^{*}I-aI\right)^{-1}bC\right]\right|=1\,,\quad\omega^{*}>0$$

Bestimmung von τ\*:

$$\lambda_i \left[ \left( j \omega^* I - a I \right)^{-1} b C \right] = e^{j \omega^* \tau^*}, \quad \tau^* > 0$$



Stabilitä in Frequenzbereich Idee Ergebnisse für das Netzwerk Beispiel

## Ergebnisse für das Netzwerk

Das Netzwerk

$$M: \dot{x}(t) = a x(t) + b C x(t - \tau)$$

mit  $\tau = const.$  ist genau dann totzeitunabhängig stabil, wenn





Stabilitä in Frequenzbereich Idee Ergebnisse für das Netzwerk Beispiel

## Ergebnisse für das Netzwerk

Das Netzwerk

$$M: \dot{x}(t) = a x(t) + b C x(t - \tau)$$

mit  $\tau = const.$  ist genau dann totzeitunabhängig stabil, wenn (i) a < 0,





Stabilitätiß Frequenzbereich Idee Ergebnissefür das Netzwerk Beispiel

## Ergebnisse für das Netzwerk

Das Netzwerk

$$M: \dot{x}(t) = ax(t) + bCx(t - \tau)$$

mit  $\tau = const.$  ist genau dann totzeitunabhängig stabil, wenn (i) a < 0,

(*ii*) 
$$b^2 \rho^2(C) \le a^2$$
 und





Stabilitätiß Frequenzbereich Idee Ergebnissefür das Netzwerk Beispiel

## Ergebnisse für das Netzwerk

Das Netzwerk

$$M: \dot{x}(t) = a x(t) + b C x(t - \tau)$$

mit  $\tau = const.$  ist genau dann totzeitunabhängig stabil, wenn (i) a < 0, (ii)  $b^2 \rho^2 (C) \le a^2$  und (iii)  $a + b \operatorname{Re}[\lambda_i(C)] < 0.$ 





Stabilitätiß Frequenzbereich Idee Ergebnissefür das Netzwerk Beispiel

## Ergebnisse für das Netzwerk

Das Netzwerk

$$M: \dot{x}(t) = a x(t) + b C x(t - \tau)$$

mit  $\tau = const.$  ist genau dann totzeitunabhängig stabil, wenn (i) a < 0, (ii)  $b^2 \rho^2 (C) \le a^2$  und (iii)  $a + b \operatorname{Re}[\lambda_i(C)] < 0.$ 



### $\Rightarrow$ Stabilitätsbereich nur vom Spektralradius $\rho(C)$ abhängig



Stabilitätiß Frequenzbereich Idee Ergebnissefür das Netzwerk Beispiel

## Ergebnisse für das Netzwerk

Das Netzwerk

$$M: \dot{x}(t) = a x(t) + b C x(t - \tau)$$

mit  $\tau = const.$  ist genau dann totzeitunabhängig stabil, wenn (i) a < 0, (ii)  $b^2 \rho^2 (C) \le a^2$  und (iii)  $a + b \operatorname{Re} [\lambda_i (C)] < 0.$ 



### $\Rightarrow$ Stabilitätsbereich nur vom Spektralradius ho(C) abhängig



Stabilität im Frequenzbereich Idee Ergebnisse für das Netzwerk Beispiel

## Ergebnisse für das Netzwerk

### totzeitabhängige Stabilität:

$$\overline{\tau} = \min_{k} \left\{ \frac{1}{\omega_{k}} \arccos\left( \frac{\omega_{k} \ln\left(\lambda_{k}\left(C\right)\right) - a \operatorname{Re}\left(\lambda_{k}\left(C\right)\right)}{b \left|\lambda_{k}(C)\right|^{2}} \right) \right\}$$

mit

$$\omega_k = \sqrt{b^2 |\lambda_k(C)|^2 - a^2}, \quad b^2 |\lambda_k(C)|^2 - a^2 > 0, \ k \in \{1, \dots, n\}$$



Stabilität im Frequenzbereich Idee Ergebnisse für das Netzwerk Beispiel

## Ergebnisse für das Netzwerk

### totzeitabhängige Stabilität:

$$\overline{\tau} = \min_{k} \left\{ \frac{1}{\omega_{k}} \arccos\left( \frac{\omega_{k} \ln\left(\lambda_{k}\left(C\right)\right) - a \operatorname{Re}\left(\lambda_{k}\left(C\right)\right)}{b \left|\lambda_{k}(C)\right|^{2}} \right) \right\}$$

mit

$$\omega_k = \sqrt{b^2 |\lambda_k(C)|^2 - a^2}, \quad b^2 |\lambda_k(C)|^2 - a^2 > 0, \ k \in \{1, \dots, n\}$$

- Stabilitätsverhalten nur von den Eigenwerten der Verknüpfungsmatrix λ<sub>i</sub>(C) abhängig.
- Parameterabhängige Stabilitätsaussagen für *beliebiges n*-Knoten-Netzwerk möglich.







# Übersicht



2) Verschiedene Analyse-Methoden

- 3 Frequency-Sweeping-Test
- 4 Zusammenfassung und Ausblick



| Modell des Netzw<br>Verschiedene Analyse-Meth<br>Frequency-Sweeping<br>Zusammenfassung und Aug                      | rerks X1<br>oden<br>-Test X2<br>bildk 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zusammenfassung und A                                                                                               | usblick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                     | $f_{R}, f_{L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zusammenfassung:                                                                                                    | $\sum_{1}^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>vernetzte dynamische Syste</li> <li>Datenübertragung</li> </ul>                                            | eme <i>mit Verzögerungen</i> in der $2_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>Fokus auf Netzwerk-Topolog</li> </ul>                                                                      | gie $	au_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>notwendige und hinreichence</li> <li><i>n</i>-Knoten-Netzwerk</li> <li>→ nur von den Eigenwerte</li> </ul> | de Stabilitätsbedingungen für beliebiges<br>$\tau_{13}$ en $\lambda_i(C)$ abhängig $\tau_{23}$ $\tau_{12}$ $\tau_{21}$ $\tau_{31}$ $\tau_{13}$ $\tau_{13}$ $\tau_{23}$ $\tau_{12}$ $\tau_{21}$ $\tau_{31}$ $\tau_{32}$ $\tau_{31}$ $\tau_{32}$ $\tau_{31}$ $\tau_{31}$ $\tau_{32}$ $\tau_{31}$ $\tau_{31}$ $\tau_{32}$ $\tau_{32}$ $\tau_{33}$ $\tau$ |

| isto                         | Modell des Netzwerks<br>Verschiedene Analyse-Methoden<br>Frequency-Sweeping-Test<br>Zusammenfassung und Ausblick | $\begin{array}{c} x_1 \\ x_2 \\ \overline{x}_2 \end{array}$                                                                  |
|------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Zusammenfassung und Ausblick |                                                                                                                  |                                                                                                                              |
|                              |                                                                                                                  | $f_R, f_L$                                                                                                                   |
| Zus                          | ammenfassung:                                                                                                    | $\Sigma_1$                                                                                                                   |
| ٥                            | vernetzte dynamische Systeme m<br>Datenübertragung                                                               | nit Verzögerungen in der $\frac{\Sigma_2}{\Sigma_3}$                                                                         |
| ۲                            | Fokus auf Netzwerk-Topologie                                                                                     | τ <sub>21</sub>                                                                                                              |
| ٩                            | notwendige und hinreichende Sta $n$ -Knoten-Netzwerk $\rightarrow$ nur von den Eigenwerten $\lambda_i$           | abilitätsbedingungen für beliebiges $	au_{	au_{13}}^{	au_{31}}$ en für beliebiges $(C)$ abhängig $	au_{	au_{23}}^{	au_{23}}$ |
| Aus<br>•                     | blick:<br>Verallgemeinerung des Modells                                                                          | τ <sub>21</sub><br>τ <sub>31</sub><br>τ <sub>13</sub><br>τ <sub>23</sub>                                                     |



### Angela Schöllig

![](_page_43_Figure_2.jpeg)

![](_page_44_Picture_0.jpeg)

# Spezialfälle

$$\begin{split} \overline{\tau} &= \min_{k} \left\{ \frac{1}{\omega_{k}} \arccos\left( \frac{\omega_{k} \operatorname{Im}\left(\lambda_{k}\left(C\right)\right) - a \operatorname{Re}\left(\lambda_{k}\left(C\right)\right)}{b \left|\lambda_{k}(C)\right|^{2}} \right) \right\} \\ \omega_{k} &= \sqrt{b^{2} \left|\lambda_{k}(C)\right|^{2} - a^{2}}, \quad b^{2} \left|\lambda_{k}(C)\right|^{2} - a^{2} > 0, \ k \in \{1, \dots, n\} \end{split}$$

### symmetrische Verknüpfungsstruktur $C = C^T$ :

reelle Eigenwerte

• 
$$\overline{\tau} = \frac{1}{\sqrt{b^2 \lambda_{max}^2 - a^2}} \arccos\left(\frac{-a}{b \lambda_{max}}\right)$$

schiefsymmetrische Verknüpfungsstruktur  $C = -C^T$ :

• rein imaginäre, konjungiert komplexe Eigenwerte

• 
$$\overline{\tau} = \frac{1}{2\sqrt{b^2\rho^2 - a^2}} \arccos\left(1 - \frac{2a^2}{b^2\rho^2}\right)$$