

A Platform for Dance Performances with Multiple Quadrocopters Angela Schöllig, Federico Augugliaro, and Raffaello D'Andrea

Institute for Dynamic Systems and Control ETH Zurich, Switzerland

B

Vision

 Dance performances featuring multiple quadrocopters at the Flight Machine Arena, ETH Zurich

The Flight Machine Arena

Dancing Performance with Two Vehicles

Pirates of the Caribbean

Fidgenössische Technische Hochso

Dancing performances

- Current status
 - Beat time information from music
 - Manual composition of the choreography

Goal

- Multiscale analysis of any piece of music
- Automatic composition of a choreography that reflects the music's character

Dancing quadrocopter an introduction

- Our work focused on:
 - design
 - control
 - and synchronization of the rythmic quadrocopter motion
- Major challenges include:
 - Motion Design
 - Motion Control
 - Motion Synchronization

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Major challenges some issues

- Motion Design
 - Translate music into suitable motion patterns
 - Cannot just replicate human movements
 - Motion has to meet vehicles' constraints
- Motion Control
 - Quadrocopters are unstable and highly nonlinear systems
 - Following precise path needs sophisticated controller
- Motion Synchronization
 - Motion must be timed to the music beat

Motion design moving with the beat

- Design a periodic motion
- Choose the period to match the music beat (or multiple of it)
- Example
 - A side-to-side motion

 $x_d(t) = A_d \, \cos\left(\omega_d t\right)$

Motion control based on a first principles model

Start with 2D model

$$\begin{split} \ddot{z}(t) &= f(t)\cos\theta(t) - g\\ \ddot{x}(t) &= f(t)\sin\theta(t)\\ \dot{\theta}(t) &= u(t), \end{split}$$

• Input-output linearization leads to $\ddot{x}(t) = g \theta(t) \quad \Leftrightarrow \quad \dddot{x}(t) = g u(t)$

Motion synchronization motion has to be timed to music

 Phase error between reference trajectory and actual quadrocopter's trajectory

****The synchronization problem** Phase error detection

- Phase Comparator
 - ωd : Desired frequency
 - φt : Phase error

$$\eta_1(t) = \frac{1}{T_d} \int_{t-T_d}^t x(t) \cos(\omega_d t) dt = \frac{A}{2} \cos\varphi_t$$
$$\eta_2(t) = \frac{1}{T_d} \int_{t-T_d}^t x(t) \sin(\omega_d t) dt = -\frac{A}{2} \sin\varphi_t,$$

$$\varphi_t = -\arctan\left(\frac{\eta_2(t)}{\eta_1(t)}\right)$$

The synchronization problem Phase error correction

Compensate for the constant phase error with an integral term

A. Schöllig, F. Augugliaro, S. Lupashin, and R. D'Andrea, "Synchronizing the motion of a quadrocopter to music," in *Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)*, 2010, pp. 3355–3360

The synchronization problem Further results

Define periodic motion primitives as Fourier Series

$$s_d(t) = a_0 + \sum_{k=1}^N a_k \cos(k\,\Omega t) + b_k \sin(k\,\Omega t)$$

• A framework to establish feasibility has been developed

Angela Schöllig, Markus Hehn, Sergei Lupashin, Raffaello D'Andrea *Feasible Periodic Motion Primitives for Choreographed Quadrocopter Flight* American Control Conference (ACC), 2011, submitted.

- Synchronized Motion
 - Must be precisely synchronized to the beat (or multiple of it)
 - e.g: Side-to-side motion
- Triggered Motion
 - Not strictly linked to the rhythm of the music
 - Used as transition between two synchronized motions or to reflect a particular music section (e.g. intro, transitions)

Institute for

IDSC

Dynamic Systems and Control

Aggressive trajectories like flips, eights, circles,...

Towards a dance performance the concept

Music analysis emulating human perception

- Beat times can be readily extracted, but human comprehension of music is not limited to rhythm
- Dancing movements are also a reaction to the emotions transmitted by the music
- Can a mathematical analysis of music emulate human perception?

Music analysis extracting useful features from music

- Technical Features
 - Beat times
 - Dynamic Range
 - Pitch
 - Measure
 - ••••
- Human-related Features
 - Emotions
 - Mood
 - ...

To describe music sequences

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Music analysis a basic description of music

Section: 2 BPM: 100 Adjectives: Fast, Funny Section: refrain BPM: 100 Adjectives: Fast, Happy Section: 1 BPM: 80 Adjectives: Slow, Sad, Intense

Average BPM: 100 BPM
Genre: 80's
Mood: Party

Towards a dance performance the concept

Motion choreography combine music analysis with the motion library

- Humans just need some artistic skills to create a nice choreography
- How can be *beauty* evaluated by a machine?

**Motion choreography choreographer's parameters for human dance

- Space
 - how the dancer moves through the area
 - characterized by the path of a movement, its size, level, and shape
- Time
 - rhythm, tempo, duration, and phrasing of movements
 - e.g. quick-quick, slow or stop movements
- Energy
 - Relates to the quality of the movement (e.g. ballet vs. tap dance)
 - Soft and smooth, or sharp and energic
- Structure
 - organization of movement sequences into larger concepts
 - combination and variation of movements using recurring elements, contrast, and repetition

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motion choreography how to compose a pretty dance performance?

- Characterize motion primitives with respect to
 - Time
 - Space
 - Energy
 - Structure
- Combine them with music information in a *meaningful* way
- Creativity and aesthetic judgment is required to achieve artistic quality

Supervised learning

What is *nice*? Human rating will guide the process

Towards a dance performance the concept

Current status Dance performances

Motion library

- Basic side-to-side motion
- Theoretical results and software/hardware framework for readily evaluating the feasibility of a movement
- Currently expanding the library with other synchronized and triggered motions
- Music analysis
 - Currently using a beat extractor tool (rhythm)
 - Exploring music analysis methods
- Motion choreography
 - Brainstorming
 - Project starting in the group in February 2011

Current status where we are

- Dance performances
 - 2 quadrocopters dance: Pirates of the Caribbean
 - 3 quadrocopters dance: Rise Up

Dynamic Systems and Control

Long Video Here (~2 minutes)

Recap

- Goal
 - A system able to process any kind of music and compose a choreography for it in a reasonable time (minutes).

What we have

- A reliable platform consisting of various quadrocopters and an expanding motion library
- What we need
 - A collaboration with experts from the MIR Community
 - Know-how, ideas
 - A tool which can provide a description of a music piece

Contacts

 Institute for Dynamic Systems and Control ETH Zurich, Switzerland

Angela Schöllig - aschoellig@ethz.ch Federico Augugliaro - faugugli@student.ethz.ch Prof. Raffaello D'Andrea

www.idsc.ethz.ch >> Research D'Andrea >> Music in motion