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The Future of Automation
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Large prior uncertainties.
Active decision making.

Expect safe and high-performance behavior.



Robots in My Lab

Model uncertainties that limit performance:
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Learning from data can improve performance.
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Learning from data can improve performance.
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Learned Triple Flip  [ICRA10]  https://youtu.be/bWExDW9J9sA
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https://youtu.be/bWExDW9J9sA


Learning from data can improve performance.

Learning a single task through repetition

[ECC’09, IROS’12, AURO’12]
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[ICRA’16, CDC’17, RAL’18, ECC’19]
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Mobile Manipulator Control [IROS’20]  http://tiny.cc/ball_catch
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http://tiny.cc/ball_catch


Learning from data can improve performance.
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Input-output stability 
if baseline system is stable

Acausal corrections possible

Baseline controller required

Training phase

State constraints not considered

Learning a single task through repetition

[ECC’09, IROS’12, AURO’12]
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Considered system dynamics: Compare to (simplified view):  

Problem Statement

Angela Schoellig 10

Design a controller for systems with prior uncertainty that learns online and 
continuously improves performance while satisfying safety constraints.

Key features:
• Nonparametric model
• Improved performance with more 

data

with a-priori given sets 

• Robust control:  finds controller that achieves 
stability and performance for all possible 

• Adaptive control: estimates                   and 
uses estimate in controller  



Approach
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Nonparametric model for 
unknown model error

Defining and analyzing
closed-loop safety

Algorithm to safely acquire 
data and optimize task

Gaussian processes

reliable confidence intervals

stability & performance 
under uncertainty

= safe model-based reinforcement learning

Lyapunov analysis

stability of learned models
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Approach
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Gaussian Process
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Theorem (informally):
The function                  is contained in the 
scaled Gaussian process confidence intervals
with probability at least            .

Gaussian Process Optimization in the Bandit Setting: 
No Regret and Experimental Design
N. Srinivas, A. Krause, S. Kakade, M.Seeger, ICML 2010



Gaussian Process

• Can model arbitrary smooth functions.

• For a given input, it provides an interval in which the function value lies with 
high probability.

• As more data is gathered, the uncertainty is reduced.
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Our model framework for 
developing reinforcement 
learning algorithms with 

safety guarantees.



Approach
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Nonparametric model for 
unknown model error

Defining and analyzing
closed-loop safety

Algorithm to safely acquire 
data and optimize task

Gaussian processes

reliable confidence intervals

stability & performance 
under uncertainty

= safe model-based reinforcement learning

Lyapunov analysis

stability of learned models

Robust control

1. Linear

2. Nonlinear

3. Nonlinear, predictive



Linear Robust Control  [ECC’15]

• Gaussian Process Model

• Linear Robust Control
• Task: stabilization of an operating point

• Linear robust control: 

• linearization about operating point

• Local Stability Guarantees
• Local asymptotic stability around true 

operating point with high probability
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Linear Robust Control [ECC’15] https://youtu.be/YqhLnCm0KXY
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https://youtu.be/YqhLnCm0KXY


Linear Robust Control [ECC’15] https://youtu.be/YqhLnCm0KXY
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https://youtu.be/YqhLnCm0KXY


Nonlinear Robust Control for Differentially Flat Systems [L-CSS’20]
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• Model / Assumptions
• Differentially flat, control-affine real 

dynamics and prior model

• Gaussian Process models inverse 

nonlinear mismatch

• Linear Robust Control
• Task: high-performance tracking

• Linear robust control for feedback-

linearized system

• Global Tracking Guarantees
• Tracking error is uniformly ultimately 

bounded with high probability



Nonlinear Robust Control for Differentially Flat Systems [L-CSS’20]
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Nonlinear Robust Control for Differentially Flat Systems [L-CSS’20]

Cart-pendulum example with model parameter uncertainties:
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Robust, online learning control with global 
guarantees on tracking error.

Predictive capabilities

State constraints



Robust Predictive Control  [IJRR’16, JFR’16]

• Gaussian Process Model

• Nonlinear, Robust Model 
Predictive Control
• Task: high-performance tracking
• Approximations in prediction and 

nonlinear optimization step

• Guarantees [e.g., Tomlin’13, 
Krause’18, Zeilinger’18]
• Robustly asymptotically stable
• Robust constraint satisfaction
• Recursively guaranteeing the existence of 

safe control actions
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Unscented Transform for prediction



Robust Predictive Control  [IJRR’16, JFR’16]

Example: Mobile robot path following

• Problem setup:

• Learning:
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Driving too fast Slow down for safety Faster driving after 
learning



Robust Predictive Control  [IJRR’16, JFR’16] https://youtu.be/3xRNmNv5Efk
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https://youtu.be/3xRNmNv5Efk


Summary
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Nonparametric model for 
unknown model error

Defining and analyzing
closed-loop safety

Algorithm to safely acquire 
data and optimize task

Gaussian processes

reliable confidence intervals

stability & performance 
under uncertainty

Lyapunov stability

stability of learned models

Robust control

1. Linear
• Local stability 

guarantees

2. Nonlinear
• Global tracking error 

guarantees

3. Nonlinear, predictive
• Probabilistic constraint 

satisfaction and stability

Design a controller for systems with prior uncertainty that learns online and 
continuously improves performance while satisfying safety constraints.
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Other Learning Control Results from My Lab

• Systems with changing dynamics 
[ICRA’17, IROS’18, RAL’18, JACSP’19, RAL’19]

• Transfer learning between similar 
systems (similarity metric from robust 
control)
[IROS’17, ICRA’17, RAL’18, ACSP’18]

• Collaborative learning of interconnected 
systems 
[AURO’19]

• Active learning 
[ICRA’16, NeurIPS’17, CDC’19]
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M. Paton, “Expanding the Limits of Vision-Based Autonomous Path Following,”, 2017.


