Sensitivity of Joint Estimation in Multi-Agent Iterative Learning Control

Angela Schoellig and Raffaello D'Andrea Institute for Dynamic Systems and Control ETH Zurich, Switzerland

OUR FOCUS

- Group of similar agents
- Individual agents learn to perform a single-agent task
- The task: learn to follow a trajectory
- Does sharing information speed up simultaneous learning?

AGENTS ARE ABLE TO LEARN...

Trajectory tracking with a quadrocopter.

Full-length video. www.tiny.cc/QuadroLearnsTrajectory

[Schoellig and D'Andrea, ECC 2009] [Schoellig, Mueller and D'Andrea, submitted to Autonomous Robots]

CAN AGENTS BENEFIT FROM EACH OTHER...

...when learning the same task?

PROBLEM STATEMENT

Group of similar agents.

Same nominal dynamics

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$$

$$y(t) = x(t)$$

Performing the same task.

$$(u^*(t), x^*(t), y^*(t))$$
 $t \in [0, t_f]$

Physical model of real-world system.

GOAL OF LEARNING: Follow the desired trajectory.

Repeated and simultaneous operation.

LEARNING OF OPEN-LOOP CONTROL CORRECTIONS.

Q1: Is an individual agent able to learn faster when performing a task simultaneously with a group of similar agents?

LIFTED-DOMAIN REPRESENTATION

Linearize. Small deviations from nominal trajectory.

$$\tilde{u}(t) = u(t) - u^*(t), \ \tilde{x}(t) = x(t) - x^*(t), \ \tilde{y}(t) = y(t) - y^*(t),$$

Discretize. Linear, time-varying difference equations.

$$\tilde{x}(k+1) = A_D(k)\tilde{x}(k) + B_D(k)\tilde{u}(k), \qquad k \in \{0, \dots, N\}$$
$$\tilde{y}(k) = \tilde{x}(k)$$

Lifted-system representation. Static mapping representing one execution.

$$\underbrace{\begin{bmatrix} \tilde{x}(0) \\ \tilde{x}(1) \\ \tilde{x}(2) \\ \vdots \\ \tilde{x}(N) \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ B_{D}(0) & 0 & \cdots & 0 & 0 \\ \Phi_{(1,1)}B_{D}(0) & B_{D}(1) & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \Phi_{(N-1,1)}B_{D}(0) & \Phi_{(N-1,2)}B_{D}(1) & \cdots & B_{D}(N) & 0 \end{bmatrix}}_{F} \underbrace{\begin{bmatrix} \tilde{u}(0) \\ \tilde{u}(1) \\ \tilde{u}(2) \\ \vdots \\ \tilde{u}(N) \end{bmatrix}}_{u}$$

With
$$\Phi_{(l,m)} = A_D(l)A_D(l+1)\cdots A_D(m), \quad l < m$$
 and $\tilde{x}(0) = 0$

SIMILAR BUT NOT IDENTICAL...

For *trial* $j, j \in \{1, 2, ...\}$, and *agent* $i, i \in \{1, 2, ..., N\}$,

$$x_j^i = F u_j^i + d^i + \xi_j^i$$

$$y_j^i = x_j^i + \mu_j^i$$

Repetitive disturbance. Unknown. Constant over iterations.

$$d^i = d^{\text{common}} + d^{i,\text{ind}}$$

$$d^{\text{common}} \sim \mathcal{N}(0, \Sigma^{\text{common}})$$

 $d^{i,\text{ind}} \sim \mathcal{N}(0, \Sigma^{\text{ind}})$

Agents differ in the unknown part. SIMILARITY ASSUMPTION.

Noise. Unknown. Uncorrelated between iterations.

Over iterations our knowledge on d^{common} and $d^{i,\mathrm{ind}}$ changes...

HOW DOES A SINGLE AGENT LEARN?

$$x_j^i = F u_j^i + d^i + \xi_j^i$$

$$y_j^i = x_j^i + \mu_j^i$$

- (1) Estimate the repetitive disturbance d^i by taking into account all past measurements. Obtain \widehat{d}^i_j .
- (2) Correct for \widehat{d}^i_j by updating the input. "Minimize" $x^i_{j+1} \approx F u^i_{j+1} + \widehat{d}^i_j$. For example, $\boxed{ u^i_{j+1} = \operatorname*{argmin}_u \, \left\| \, F u + \widehat{d}^i_j \, \right\| }$

Can the disturbance estimate be improved by taking into account the measurements of the other agents?

FOCUS: ESTIMATION PROBLEM

INDEPENDENT ESTIMATION

vs. Jo

JOINT ESTIMATION

REDUCE MODEL

DYNAMICS

$$x_j^i = x_j^i + d^i + \xi_j^i$$

$$y_j^i = x_j^i + \mu_j^i$$

- neglect deterministic part
- assume independence of vector entries

$$y_j^i = d^{\text{common}} + d^{i, \text{ind}} + v_j^i \in \mathbb{R}$$

with $d^{ ext{common}} \sim \mathcal{N}(0, \sigma^{ ext{common}})$ $d^{i, ext{ind}} \sim \mathcal{N}(0, \sigma^{ ext{ind}})$ $v^i_i \sim \mathcal{N}(0, 1)$

MEASUREMENT AND PROCESS NOISE

$$v_j^i = \xi_j^i + \mu_j^i$$

with
$$\xi_j^i \sim \mathcal{N}(0, \sigma^{\text{proc}}), \qquad 0 \le \sigma^{\text{proc}} \le 1$$

$$\mu_j^i \sim \mathcal{N}(0, 1 - \sigma^{\text{proc}})$$

JOINT ESTIMATION

Kalman filter for the joint problem.

Estimation objective:
$$D = [d^{\text{common}}, d^1, \dots, d^N]^T \in \mathbb{R}^{N+1}$$

System equation:
$$D_j = D_{j-1}$$

$$Y_j = [\mathbf{0}, I] D_j + V_j$$

Initial condition:
$$\widehat{D}_0 = \mathbf{0}, \quad P_0 = \begin{bmatrix} p_0^{(k,l)} \end{bmatrix}, \quad p_0^{(k,l)} = \begin{cases} \sigma^{\text{common}} + \sigma^{\text{ind}} & \text{for } k = l \geq 1 \\ \sigma^{\text{common}} & \text{otherwise.} \end{cases}$$

SIMILARITY ASSUMPTION.

LEMMA: We obtain covariance matrix in closed form. (Proof by induction)

$$P_j = \left[p_j^{(k,l)} \right] = \text{FUNCTION}\left(j, N, \sigma^{\text{common}}, \sigma^{\text{ind}} \right)$$

Special case: independent estimation $P_j|_{N=1}$

COMPARISON

JOINT LEARNING BENEFIT METRIC:

ratio of state covariances of independent vs. joint estimation

$$R = \frac{p_j^{(1,1)} \big|_{N=1} + \sigma^{\text{proc}}}{p_j^{(1,1)} + \sigma^{\text{proc}}}$$

If R > 1, joint learning is beneficial.

The VARIANCE OF THE STATE ESTIMATE is a measure for the learning performance (=experimental outcome).

$$\begin{split} E\Big[(x^i_j-\widehat{x}^i_j)^2\Big] &= E\Big[(d^i+\xi^i_j-\widehat{d}^{\,i}_{\,j})^2\Big] \qquad \text{with} \quad \widehat{x}^i_j = \widehat{d}^{\,i}_{\,j} \\ &= p^{(1,1)}_j + \sigma^{\text{proc}} \end{split}$$

RESULT

Performance increase due to joint estimation:

$x_j^i = F u_j^i + d^i + \xi_j^i$ $y_j^i = x_j^i + \mu_j^i$

THEOREM 1: Pure Process Noise

$$1 \le R^{\text{proc}} \le \frac{1+j}{j}$$

limit case for $N \to \infty$, $\sigma^{\text{common}} \to \infty$, $\sigma^{\text{ind}} \to 0$

THEOREM 2: Pure Measurement Noise

$$1 \leq R^{\text{meas}} \leq N$$

limit case for $\sigma^{\text{common}} \to \infty$, $\sigma^{\text{ind}} \to 0$

[Schoellig, Alonso-Mora and D'Andrea; CDC 2010, accepted AJC]

SUMMARY

Under the given assumptions, joint estimation...

- improves the performance of an individual agent
- the benefit is only significant if

(1) agents are highly similar

(2) process noise is negligible AND

(3) common disturbance large compared to the measurement noise

Q2: How critical is the underlying similarity assumption?

AND

SIMILARITY ASSUMPTION

True values. For $d^i = d^{\text{common}} + d^{i,\text{ind}}$

$$d^{\text{common}} \sim \mathcal{N}(0, \, \sigma^{\text{common}})$$
$$d^{i, \text{ind}} \sim \mathcal{N}(0, \, \sigma^{\text{ind}})$$

$$d^{i} \sim \mathcal{N}(0, \sigma)$$
 $\sigma^{\text{common}} = \epsilon \sigma$

$$\sigma^{\text{ind}} = (1 - \epsilon)\sigma$$

Defines degree of similarity.

ASSUME THAT DEGREE OF SIMILARITY IS UNKNOWN.

Nominal values ("our best guess").

$$d^{i} \sim \mathcal{N}(0, \sigma) \qquad \bar{\sigma}^{\text{common}} = \bar{\epsilon} \, \sigma$$
$$\bar{\sigma}^{\text{ind}} = (1 - \bar{\epsilon}) \sigma$$

SOLVE KALMAN FILTER EQUATIONS UNDER NEW ASSUMPTIONS

SENSITIVITY ANALYSIS - RESULTS

JOINT ESTIMATION PERFORMANCE IS DEGRADED.

LEMMA: Sufficient condition

$$\epsilon \geq \overline{\epsilon} \quad \Rightarrow \quad R \geq 1$$

Underestimate similarity→ Joint estimation remains beneficial.

Worst case. Assume agents are identical and they are not, then joint estimation does NOT converge.

CONCLUSION

In the proposed framework, where we learn open-loop input corrections...

TAKE HOME MESSAGE:

- (1) Joint learning good only if high similarity of unknown disturbance can be guaranteed
- (2) For joint learning, it's always safer to underestimate similarity.

Choose independent learning as default since benefit of joint learning is minor for most cases.

Sensitivity of Joint Estimation in Multi-Agent Iterative Learning Control

Angela Schoellig and Raffaello D'Andrea Institute for Dynamic Systems and Control ETH Zurich, Switzerland

