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OUR FOCUS

 Group of similar agents

* |ndividual agents learn to perform a single-agent task

e The task: learn to follow a trajectory

 Does sharing information speed up simultaneous learning?
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AGENTS ARE ABLE TO LEARN...

Trajectory tracking with a quadrocopter.

Full-length video. www.tiny.cc/QuadrolLearnsTrajectory

[Schoellig and D'Andrea, ECC 2009]
[Schoellig, Mueller and D'Andrea, submitted to Autonomous Robots]



CAN AGENTS BENEFIT FROM EACH OTHER...

...when learning the same task?
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PROBLEM STATEMENT =P

Group of similar agents.

Same nominal dynamics [Physical model of real-world system. ]
x(t) = f(x(t), u(?))
y(t) = x(t)
Performing the same task. [GOAL OF LEARNING: Follow the desired trajectory. ]

(u™(t), (1), y*(t)) t€0,ty]

Repeated and simultaneous operation.

I:> LEARNING OF OPEN-LOOP CONTROL CORRECTIONS.

Q1: Is an individual agent able to learn faster when performing a task
simultaneously with a group of similar agents?
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LIFTED-DOMAIN REPRESENTATION

Linearize. Small deviations from nominal trajectory.
ut)=u(t) —u”(t), £(t)=x(t) —2"(t), g(t)=y(t) —y" (1),

Discretize. Linear, time-varying difference equations.

T(k+1) = Ap(k)z(k) + Bp(k)u(k), ke{0,...,N}
y(k) = (k)
Lifted-system representation. Static mapping representing one execution
Z2(0)] T 0 0 0 07 [a(0)]
#(1) Bp(0) 0 0 0 | a(1)
#2) | = | ®0.1)Bo(0) Bp(1) 0 0|
Z(N)|  |[Pw-1,1)Bp(0) @(n_12Bp(1) Bp(N) 0] [a(N)]
x F u

Wlth (D(l,m) :AD(Z)AD(Z—l—l)"'AD(m), l<m
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SIMILAR BUT NOT IDENTICAL...

For trial j, j€{1,2,...}, andagent i, i € {1, 2, ..., N},
ri = Fu; +d +&;
T 1 )
Yj = T H;

Repetitive disturbance. Unknown. Constant over iterations.

Jeommon N(O, Ecommon)
di,ind ~ N(O, Zind)

di — Jeommon dz’,ind

Agents differ in the unknown part. SIMILARITY ASSUMPTION.,

Noise. Unknown. Uncorrelated between iterations.

[ Over iterations our knowledge on d®°™™°® and d*™¢ changes... ]
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HOW DOES A SINGLE AGENT LEARN?

:1:; = Fu; —I—di—l—fﬁ
- =Ty

Z

O |

|<_E (1) Estimate the repetitive disturbance d' by taking into
% account all past measurements.

= Obtain c@”

= N

> CORREC ] (2) Correct for d; by updating the input.

g Uy “Minimize” =, ~ Ful 4 +d; .

For example, | : ~;
P uj, = argmin H Fu+d;
u

|

[ Can the disturbance estimate be improved by taking into ]

account the measurements of the other agents?
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FOCUS: ESTIMATION PROBLEM
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REDUCE MODEL

/DYNAMICS )
T —><7 +d'+¢
v, +

— neglect deterministic part
— assume independence of vector entries

- /
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4 )
y;'_ — Jcommon + dz’,ind E R

with (Jcommon ~ N(O, acommon)
dz’,ind -~ N(O, O_ind)
v} ~ N(0, 1)

\- /

MEASUREMENT AND PROCESS NOISE

v =&+ i

with &5 ~ N(0, 0,
ph ~ N(0,1 = oP™°)

OS gpI’OC g 1
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3 3

JOINT ESTIMATION
<+ L I I
estimate
) ¥ ¥ I}
correct correct
Kalman filter for the joint problem. <L 4
Estimation objective: ) = [geommon gl N }T c RN+1 ¥ ¥
System equation: Dj — Dj_1 .
Y:f — [0: I] Dj + ‘/J
common ind
Initial condition: Do = — (k’”] (kD _ ) @ + o for k=021
Do =0, F [p 0 » o greommon otherwise .

SIMILARITY ASSUMPTION.,

-
LEMMA: We obtain covariance matrix in closed form. (Proof by induction)

Pj = {pgk,l)} — FUNCTION (], N’ O.COmmon’ O_ind)
.

Special case: independent estimation Pj|
N=1
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COMPARISON

/JOINT LEARNING BENEFIT METRIC: )
ratio of state covariances of independent vs. joint estimation

(1,1) proc
R— P; ’N:l +o If R> 1, joint learning is

- pgl’l) + gProc beneficial.

N\ /

The VARIANCE OF THE STATE ESTIMATE is a measure for the
learning performance (=experimental outcome).

E[(x; —55;)2] _ E[(di +& - Eij,’,)Q] with 7% =d’

J

— pglal) 4 gProc

Angela Schoellig - ETH Zurich 12



RESULT

Performance increase due to joint estimation:

4 )
THEOREM 1: Pure Process Noise
1 < RP[’OC < 1 +]
- )
\__ _J

limit case for N — oo, gtommon _ o Hind

r N
THEOREM 2: Pure Measurement Noise

1 SRmeas < N

\_ )
limit case for gcommon _ o sind

[Schoellig, Alonso-Mora and D'Andrea; CDC 2010, accepted AJC]
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SUMMARY

. . . . . Agent 1 AgentN
Under the given assumptions, joint estimation...

* improves the performance of an individual agent
e the benefit is only significant if = —
P
(1 3
(1) agents are highly similar AND : :
. . oo Agent 1 Agent N
(2) process noise is negligible AND
(3) common disturbance large m:” m:u
compared to the measurement noise JOINT LEARNING

Trial j+1 Trial j+1

..,.
- ‘...

[ Q2: How critical is the underlying similarity assumption?
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SIMILARITY ASSUMPTION

dCOH’lmOI'l e N(O, O_common)

True values. For d' = deommon 4 gbind N |
dz,md ~ N(O, O_md)

s

di ~ N (0’ O') geommon _ . o

ind __ L
o =(1—¢€)o )\ Defines degree of similarity.

ASSUME THAT DEGREE OF SIMILARITY IS UNKNOWN.

Nominal values (“our best guess”).

( ] )
dz ~ N (0’ O') 5_(:0mm0n — €0
7" = (1—-¢)o
L J
|:> SOLVE KALMAN FILTER EQUATIONS UNDER NEW ASSUMPTIONS
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SENSITIVITY ANALYSIS — RESULTS

JOINT ESTIMATION PERFORMANCE IS DEGRADED.

-
LEMMA: Sufficient condition

~

e>¢ = R>1 <

Underestimate similarity

- Joint estimation remains

beneficial.

J

Worst case. Assume agents are identical and they are not, then joint

estimation does NOT converge.

Angela Schoellig - ETH Zurich
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CONCLUSION

Agent 1 Agent N Agent 1 Agent N

Trial | Trial j
In the proposed framework, 3 1 3 3
Where we |earn Open_loop |nput LEARNING s LEARNING JOINT LEARNING

Trial j+1 Trial j+1 Trial j+1

corrections... Trial j+1

..._.
.
*
*

TAKE HOME MESSAGE:

(1) Joint learning good only if high similarity of unknown
disturbance can be guaranteed

(2) For joint learning, it’s always safer to underestimate similarity.

Choose independent learning as default since benefit of joint
learning is minor for most cases.
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