

# Optimal Control of Hybrid Systems with Regional Dynamics

- Presentation at the Measurement and Control Laboratory, ETH Zürich -

Angela Schöllig

January 30th, 2008





## Hybrid?

Something of mixed origin or composition.





#### Hybrid?

Something of mixed origin or composition.





#### Combining different elements.



#### Hybrid?

Something of mixed origin or composition.





Combining different elements.

#### Definition: Hybrid System

A dynamic system which exhibits both continuous and discrete dynamic behavior.



# Hybrid Systems with Regional Dynamics

#### Definition: Hybrid System with Regional Dynamics

A dynamic system, where the governing (continuous) dynamics  $\dot{x} = f_i(x, u)$  vary depending on the region  $D_i$ , the continuous state x is evolving in.



# Hybrid Systems with Regional Dynamics

#### Definition: Hybrid System with Regional Dynamics

A dynamic system, where the governing (continuous) dynamics  $\dot{x} = f_i(x, u)$  vary depending on the region  $D_i$ , the continuous state x is evolving in.





# Hybrid Systems with Regional Dynamics

#### Definition: Hybrid System with Regional Dynamics

A dynamic system, where the governing (continuous) dynamics  $\dot{x} = f_i(x, u)$  vary depending on the region  $D_i$ , the continuous state x is evolving in.







| isto    | The Multiregional Point-To-Point Problem<br>The Basic Idea<br>A Dynamic Programming Approach<br>Conclusions |  |
|---------|-------------------------------------------------------------------------------------------------------------|--|
| Outline |                                                                                                             |  |



#### The Multiregional Point-To-Point Problem

#### The Basic Idea 2

3 A Dynamic Programming Approach







Regions and Geometric Framework Dynamics and Executions The Optimization Problem



Outline

#### The Multiregional Point-To-Point Problem

#### 2 The Basic Idea

- 3 A Dynamic Programming Approach
- 4 Conclusions





Regions and Geometric Framework Dynamics and Executions The Optimization Problem

### **Regions and Geometric Framework**



• state space 
$$X \subset \mathbb{R}^n$$
:

 $X = \bigcup_{i=1}^{q} (D_i \cup \partial D_i), \quad D_i \cap D_j = \emptyset, \ i \neq j$ 



Regions and Geometric Framework Dynamics and Executions The Optimization Problem

## **Regions and Geometric Framework**



• state space 
$$X \subset \mathbb{R}^n$$
:

$$X = \bigcup_{i=1}^{q} (D_i \cup \partial D_i), \quad D_i \cap D_j = \emptyset, \ i \neq j$$

• switching manifolds  $m_{(i,j)}$ :

$$m_{(i,j)} = \partial D_i \cap \partial D_j$$



Regions and Geometric Framework Dynamics and Executions The Optimization Problem

## **Regions and Geometric Framework**



• state space 
$$X \subset \mathbb{R}^n$$
:

$$X = \bigcup_{i=1}^{q} (D_i \cup \partial D_i), \quad D_i \cap D_j = \emptyset, \ i \neq j$$

• switching manifolds  $m_{(i,j)}$ :

$$m_{(i,j)} = \partial D_i \cap \partial D_j$$

• continuous dynamics  $\Sigma_i$ :

$$\dot{x}(t) = f_i(x(t), u(t))$$
 if  $x(t) \in D_i$ 



Regions and Geometric Framework Dynamics and Executions The Optimization Problem

#### **Transition Behavior**

If  $\xi_s = \lim_{t \to t_s} x(t) \in m_{(i,j)}$ , there are two possibilities of further execution:

- (i) "passing through" the switching manifold
- (ii) "bouncing back" into the original region





Regions and Geometric Framework Dynamics and Executions The Optimization Problem

#### **Transition Behavior**

If  $\xi_s = \lim_{t \to t_s} x(t) \in m_{(i,j)}$ , there are two possibilities of further execution:

- (i) "passing through" the switching manifold
- (ii) "bouncing back" into the original region



- discrete control input  $e \in \mathcal{E}$  is needed specifying the behavior at a switching point
- mode-transitions triggered by events in the continuous state space



Conclusions

Regions and Geometric Framework Dynamics and Executions The Optimization Problem

# The Hybrid Execution



- continuous-valued state  $x(t) \in X$
- continuous dynamics within D<sub>i</sub>

 $\dot{x}(t) = f_i(x(t), u(t))$ 

continuous-valued control signal

$$u(\cdot) \in \mathcal{U}(U, L_{\infty}([0,T]))$$



ng Approach Conclusions

**Regions and Geometric Framework** 

## The Hybrid Execution





continuous dynamics within D<sub>i</sub>

 $\dot{x}(t) = f_i(x(t), u(t))$ 

continuous-valued control signal

 $u(\cdot) \in \mathcal{U}(U, L_{\infty}([0,T]))$ 



- discrete-valued state  $q(t) \in Q$
- discrete dynamics on boundaries

$$q_j = \Gamma\left(q_i, e_{ij}\right)$$

discrete input sequence

$$w = e_{i_1 j_1} e_{i_2 j_2} e_{i_3 j_3} \dots$$



Regions and Geometric Framework Dynamics and Executions The Optimization Problem

## The Optimization Problem



"Given a specific cost function  $J = \int_0^T \ell(x(t), u(t)) dt$ , determine the **optimal path**  $x^*(\cdot)$  of going from a **given initial state**  $x(0) = \xi_0$  to a **fixed final state**  $x(T) = \xi_T$  during an *a priori* **specified time horizon** T assuming an upper bound N on the number of transitions along the hybrid trajectory."







#### 2 The Basic Idea

3 A Dynamic Programming Approach

Conclusions





## The Principle of Optimality

The Principle of Optimality implicitly states that along an optimal hybrid trajectory  $x^*(\cdot)$ ...



- ... the state's **execution** between  $(t_s^m, \xi_s^m)^*$  and  $(t_s^{m+1}, \xi_s^{m+1})^*$  is optimal
- ... the part of the optimal hybrid **input**  $u^*(\cdot)$  between  $t_s^m$  and  $t_s^{m+1}$  is optimal
- ... the chosen **region** is an optimal location for this segment of the trajectory  $x^*(\cdot)$



## The Principle of Optimality

The Principle of Optimality implicitly states that along an optimal hybrid trajectory  $x^*(\cdot)$ ...



- ... the state's **execution** between  $(t_s^m, \xi_s^m)^*$  and  $(t_s^{m+1}, \xi_s^{m+1})^*$  is optimal
- ... the part of the optimal hybrid **input**  $u^*(\cdot)$  between  $t_s^m$  and  $t_s^{m+1}$  is optimal
- ... the chosen **region** is an optimal location for this segment of the trajectory  $x^*(\cdot)$

⇒ standard (non-hybrid) state-constrained optimal control problems

Dynamic Programming approach



The Hierarchic Decomposition The Transition Automaton The Hybrid Bellman Equation

#### Outline



#### 2 The Basic Idea

3 A Dynamic Programming Approach







The Hierarchic Decomposition The Transition Automaton The Hybrid Bellman Equation

#### The Hierarchic Decomposition





The Hierarchic Decomposition The Transition Automaton The Hybrid Bellman Equation

#### The Hierarchic Decomposition





The Hierarchic Decomposition The Transition Automaton The Hybrid Bellman Equation

#### The Hierarchic Decomposition





The Hierarchic Decomposition The Transition Automaton The Hybrid Bellman Equation

#### The Transition Automaton

Which sequences of transitions are possible in order to get from the initial state  $x(0) = \xi_0$  to the final point  $x(T) = \xi_T$ ?



The Hierarchic Decomposition The Transition Automaton The Hybrid Bellman Equation

#### The Transition Automaton

Which sequences of transitions are possible in order to get from the initial state  $x(0) = \xi_0$  to the final point  $x(T) = \xi_T$ ?



- discrete representation of the geometric structure
- specifies the connections between the individual regions
- contains information about initial and final region  $D_{i_0}$ ,  $\xi_0 \in D_{i_0}$  and  $D_{i_T}$ ,  $\xi_T \in D_{i_T}$



The Hierarchic Decomposition The Transition Automaton The Hybrid Bellman Equation

#### The Transition Automaton

Which sequences of transitions are possible in order to get from the initial state  $x(0) = \xi_0$  to the final point  $x(T) = \xi_T$ ?



- discrete representation of the geometric structure
- specifies the connections between the individual regions
- contains information about initial and final region  $D_{i_0}$ ,  $\xi_0 \in D_{i_0}$  and  $D_{i_T}$ ,  $\xi_T \in D_{i_T}$

⇒ associated languages provide *global accessibility relations* 



Definitions

The Multiregional Point-To-Point Problem The Basic Idea A Dynamic Programming Approach Conclusions

The Hierarchic Decomposition The Transition Automaton The Hybrid Bellman Equation

# Definition ( Cost $c(\xi_1, q_{i_1}, \xi_2, q_{i_2}, \Delta)$ )

The infimum of the costs associated with driving the system from  $\xi_1 \in D_{i_1} \cup \partial D_{i_1}$  to  $\xi_2 \in D_{i_1} \cup \partial D_{i_1}$  over a time horizon  $\Delta$  without leaving  $D_{i_1} \cup \partial D_{i_1}$  and without a switching taking place.



 $c(\xi_1, q_2, \xi_2, q_1, \Delta)$ 



The Hierarchic Decomposition The Transition Automaton The Hybrid Bellman Equation

#### Definitions

#### Definition ( Cost $c(\xi_1, q_{i_1}, \xi_2, q_{i_2}, \Delta)$ )

The infimum of the costs associated with driving the system from  $\xi_1 \in D_{i_1} \cup \partial D_{i_1}$  to  $\xi_2 \in D_{i_1} \cup \partial D_{i_1}$  over a time horizon  $\Delta$  without leaving  $D_{i_1} \cup \partial D_{i_1}$  and without a switching taking place.







 $V^1(\xi_1, q_2, \xi_2, q_1, \Delta)$ 

#### Definition ( Cost-to-go function $V^M(\xi_1, q_{i_1}, \xi_2, q_{i_2}, \Delta)$ )

The infimum of the costs of going from  $\xi_1 \in X$  to  $\xi_2 \in X$  during the time horizon  $\Delta$  using exactly M switches and starting in region  $D_{i_1}$ .



The Hierarchic Decomposition The Transition Automaton The Hybrid Bellman Equation

#### The main theorem

#### Theorem (The Hybrid Bellman Equation)

Under the appropriate assumptions and for  $0 < K \le M$ 

$$V^{K}(\xi_{1}, q_{i_{1}}, \xi_{2}, q_{i_{2}}, \tau) = \inf_{t \in (0, \tau)} \inf_{\xi \in m_{(i_{1}, j)}} \inf_{j \in I} \left\{ c(\xi_{1}, q_{i_{1}}, \xi, q_{j}, t) + V^{K-1}(\xi, q_{j}, \xi_{2}, q_{i_{2}}, \tau - t) \right\}$$

such that

$$e = e_{i_1j},$$
  $w \in F_{K-1}(M,A),$   
 $end(w) = i_2,$   $ew \in F_K(M,A).$ 



| The Multiregional Point-To-Point Problem<br>The Basic Idea<br>A Dynamic Programming Approach<br>Conclusions | The Hierarchic Decomposition<br>The Transition Automaton<br>The Hybrid Bellman Equation |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|

## Final result

<u>ist</u>

For K = 0,

$$V^{0}(\xi_{1}, q_{i_{1}}, \xi_{2}, q_{i_{2}}, \tau) = c(\xi_{1}, q_{i_{1}}, \xi_{2}, q_{i_{2}}, \tau).$$

The optimal cost associated with the original problem

$$W^{N}(\xi_{0}, q_{i_{0}}, \xi_{T}, q_{i_{T}}, T) = \min_{0 \le K \le N} V^{K}(\xi_{0}, q_{i_{0}}, \xi_{T}, q_{i_{T}}, T)$$

| The Multiregional Point-To-Point Problem<br>The Basic Idea<br>A Dynamic Programming Approach<br>Conclusions | The Hierarchic Decomposition<br>The Transition Automaton<br>The Hybrid Bellman Equation |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|

#### Final result

<u>Ist</u>9

For K = 0,

$$V^{0}(\xi_{1}, q_{i_{1}}, \xi_{2}, q_{i_{2}}, \tau) = c(\xi_{1}, q_{i_{1}}, \xi_{2}, q_{i_{2}}, \tau).$$

The optimal cost associated with the original problem

$$W^{N}(\xi_{0}, q_{i_{0}}, \xi_{T}, q_{i_{T}}, T) = \min_{0 \le K \le N} V^{K}(\xi_{0}, q_{i_{0}}, \xi_{T}, q_{i_{T}}, T)$$

- the costs  $c(\cdot, \cdot, \cdot, \cdot, \cdot)$  can be calculated in advance
- the languages associated with the transition automaton constrain the effort needed to accomplish the recursion
- $\bullet\,$  only a discretization of the switching manifolds  $m_{(i,j)}$  and the time interval [0,T] is necessary



The Hierarchic Decomposition The Transition Automaton The Hybrid Bellman Equation

## Bimodal Example (1)

#### • Transition Automaton:



#### Results:





The Hierarchic Decomposition The Transition Automaton The Hybrid Bellman Equation

## Bimodal Example (2)

Transition Automaton:



• Results for two different regional dynamics systems (N = 20):





| isto    | The Multiregional Point-To-Point Problem<br>The Basic Idea<br>A Dynamic Programming Approach<br>Conclusions |  |
|---------|-------------------------------------------------------------------------------------------------------------|--|
| Outline |                                                                                                             |  |





2 The Basic Idea

3 A Dynamic Programming Approach







#### Conclusions

- regional dynamics system
- hierarchical decomposition of the hybrid optimal control problem
- Dynamic Programming algorithm:
  - (i) theoretical characterization of the hybrid solution's structural composition
  - (ii) numerically implementable calculation rule
- further generalizations possible



#### Conclusions

- regional dynamics system
- hierarchical decomposition of the hybrid optimal control problem
- Dynamic Programming algorithm:
  - (i) theoretical characterization of the hybrid solution's structural composition
  - (ii) numerically implementable calculation rule
- further generalizations possible

⇒ global optimality conditions for a very general class of regional dynamics systems



# Optimal Control of Hybrid Systems with Regional Dynamics

- Presentation at the Measurement and Control Laboratory, ETH Zürich -

Angela Schöllig

January 30th, 2008

