

Improving tracking performance by learning from past data

Angela P. Schoellig

Doctoral examination – July 30, 2012

Advisor: Prof. Raffaello D'Andrea // Co-advisor: Prof. Andrew Alleyne

Improving tracking performance by learning from past data = experience

Angela P. Schoellig Doctoral examination – July 30, 2012

Advisor: Prof. Raffaello D'Andrea // Co-advisor: Prof. Andrew Alleyne

MOTIVATION

HUMANS learn from experience.

MOTIVATION

AUTOMATED SYSTEMS typically make the *same mistakes* over and over again when performing a task repeatedly.

Why?

Robots of a car assembly line.

MOTIVATION

AUTOMATED SYSTEMS are typically operated using feedback control:

Performance limitations:

- Causality of disturbance correction: "first detect error, then react".
- Model-based controller design; model ≠ real system.

GOAL

Improve the performance over causal, feedback control by learning from previous experiments.

SCOPE OF WORK

Learning task:

Following a predefined trajectory.

Approach:

- Model-based learning based on a priori knowledge of the system dynamics.
- Adaptation of the input.

Potential:

Acausal action, anticipating repetitive disturbances.

OVERVIEW

- I. Introduction
 - a. Testbed: The Flying Machine Arena
 - b. Motivation for learning
- II. Project A Iterative learning for precise trajectory following: single-agent and multi-agent results. FOCUS OF THIS TOUK
- III. Project B. Learning of feed-forward parameters for rhythmic flight performances
- IV. Summary

TESTBED, see www.flyingmachinearena.org

THE TEAM

Mark Müller

Markus Hehn

Sergei Lupashin

Federico Augugliaro

THE FLYING MACHINE ARENA

OPERATION

Measured position and attitude

MOTIVATION: PROJECT A

Desired motion.

MOTIVATION: PROJECT A

Performance with trajectory-following controller.

OVERVIEW

- I. Introduction
- II. Project A. Iterative learning for precise trajectory following
 - a. Learning approach
 - b. Results

- III. Project B. Learning of feed-forward parameters for rhythmic flight performances
- IV. Summary

A | PUBLICATIONS

Peer-reviewed publications

Schoellig, A. P. and R. D'Andrea (2009):

"Optimization-based iterative learning control for trajectory tracking." In *Proceedings of the European Control Conference (ECC)*.

Schoellig, A. P., F. L. Mueller, and R. D'Andrea (2012):

"Optimization-based iterative learning for precise quadrocopter trajectory tracking." *Autonomous Robots*.

Mueller, F.L., A. P. Schoellig, and R. D'Andrea (2012):

"Iterative learning of feed-forward corrections for high-performance tracking." To appear in *Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*.

Joint work with Fabian L. Mueller (Master student).

A | LEARNING APPROACH

Features: Learning through a <u>repeated operation</u>, updating full input trajectory after each trial.

A | LEARNING APPROACH

PREREQUISITES

- Dynamics model of system
 - (i) in analytical form or
 - (ii) in form of a numerical dynamics simulation
- **Desired output trajectory** $y^*(t)$, $t \in [0, t_f]$, and corresponding nominal input trajectory $u^*(t)$.
 - $\rightarrow (u^*(t), y^*(t))$ must satisfy the model equations.

RESULT

- Learned input
- Estimated disturbance vector

A | LIFTED-DOMAIN REPRESENTATION

Dynamics model of the physical system: $\dot{x}(t) = f(\dot{x}(t), \dot{u}(t)), \quad \dot{y}(t) = \dot{x}(t).$

Consider small deviations from nominal trajectory.

$$\tilde{u}(t) = \check{u}(t) - u^*(t), \quad \tilde{x}(t) = \check{x}(t) - x^*(t), \quad \tilde{y}(t) = \check{y}(t) - y^*(t)$$

Linearize and discretize. Linear, time-varying difference equation.

$$\tilde{x}(k+1) = A_D(k)\tilde{x}(k) + B_D(k)\tilde{u}(k), \quad \tilde{y}(k) = \tilde{x}(k), \quad k \in \{0, \dots, N\}.$$

Static mapping. Representing one trial.

$$\underbrace{\begin{bmatrix} \tilde{x}(0) \\ \tilde{x}(1) \\ \tilde{x}(2) \\ \vdots \\ \tilde{x}(N) \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ B_{D}(0) & 0 & \cdots & 0 & 0 \\ \Phi_{(1,1)}B_{D}(0) & B_{D}(1) & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \Phi_{(N-1,1)}B_{D}(0) & \Phi_{(N-1,2)}B_{D}(1) & \cdots & B_{D}(N) & 0 \end{bmatrix}}_{F} \underbrace{\begin{bmatrix} \tilde{u}(0) \\ \tilde{u}(1) \\ \tilde{u}(2) \\ \vdots \\ \tilde{u}(N) \end{bmatrix}}_{u}$$

With $\Phi_{(l,m)} = A_D(l)A_D(l+1)\cdots A_D(m), \quad l < m$, and $\tilde{x}(0) = 0$.

A | ITERATION-DOMAIN MODEL

For each trial $j, j \in \{1, 2, \dots\},\$

$$y_j = F u_j + d_j + \mu_j.$$

Recurring disturbance d_i .

Unknown. Only small changes between iterations:

$$d_j = d_{j-1} + \omega_{j-1}.$$

 μ_j, ω_j- trial-uncorrelated, zero-mean Gaussian noise

Noise μ_j .

Unknown. Changing from iteration to iteration.

From trial to trial our knowledge about d_j improves.

A | STEP 1: ESTIMATION

UPDATE OF DISTURBANCE ESTIMATE

via Kalman filter in the iteration domain:

estimates the repetitve disturbance $\,d_{j}\,$ by taking into account all past measurements.

Prediction step:

$$d_j = d_{j-1} + \omega_{j-1}.$$

Measurement update step:

$$y_j = F u_j + d_j + \mu_j.$$

A | STEP 2: UPDATE

INPUT UPDATE via convex optimization:

minimizes the tracking error in the next trial:

$$E[y_{j+1}|\text{all past measurements}] = F u_{j+1} + \hat{d}_{j|j}.$$

$$\min_{u_{j+1}} \left\| F u_{j+1} + \hat{d}_{j|j} \right\|_p \qquad p \in \{1, 2, \infty\}$$

subject to

$$u_{\min} \le u_{j+1} \le u_{\max}$$

 $x_{\min} \le x_{j+1} \le x_{\max}$

A | TWO EXPERIMENTAL SCENARIOS

SCENARIO 1	SCENARIO 2
No feedback from motion capture cameras during task execution	Camera information is used.
Collective thrust and turn rates Position, attitude	Position, attitude TFC Position, attitude
Analytical model	Model via numerical simulation
2D quadrocopter model	3D quadrocopter model
Constraints on single motor thrusts and turn rates.	

A | SCENARIO 1: input trajectories

A | TWO EXPERIMENTAL SCENARIOS

SCENARIO 1	SCENARIO 2
 No feedback from motion capture cameras during task execution 	Camera information is used.
Collective thrust and turn rates Position, attitude	Position, attitude TFC
Analytical model	Model via numerical simulation
2D quadrocopter model	3D quadrocopter model
 Constraints on single motor thrusts and turn rates. 	

A | SCENARIO 2: error convergence

A | SUMMARY

- Prerequisites: approximate model of system dynamics.
- Efficient learning algorithm: convergence in around 5-10 iterations.
- Acausal compensation: outperforms pure feedback control.

Powerful combination Learning applied to feedback-control systems: compensation for repetitive and non-repetitive disturbances.

VIDEO: http://tiny.cc/SlalomLearning

Quadrocopter Slalom Learning

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

OVERVIEW

- I. Introduction
- II. Project A. Iterative learning for precise trajectory following
- III. Project B. Learning of feed-forward parameters for rhythmic flight performances
 - a. Learning approach
 - b. Results
- I. Summary

B | PUBLICATIONS

Peer-reviewed publications

- Schoellig, A. P., F. Augugliaro, and R. D'Andrea (2009):

 "Synchronizing the motion of a quadrocopter to music." In *Proceedings of IEEE International Conference on Robotics and Automation (ICRA)*.
- Schoellig, A. P., F. Augugliaro, and R. D'Andrea (2010):

 "A platform for dance performances with multiple quadrocopters." In *Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)—Workshop on Robots and Musical Expressions.*
- <u>Schoellig, A. P.,</u> M. Hehn, S. Lupashin, and R. D'Andrea (2011): "Feasibility of motion primitives for choreographed quadrocopter flight." In *Proceedings of the American Control Conference (ACC)*.
- Schoellig, A. P., C. Wiltsche, and R. D'Andrea (2012): "Feed-forward parameter identification for precise periodic quadrocopter motions." In

"Feed-forward parameter identification for precise periodic quadrocopter motions." In Proceedings of the American Control Conference (ACC).

Joint work with Federico Augugliaro (Bachelor/Master student) and Clemens Wiltsche (semester project).

VIDEO: http://tiny.cc/DanceWith3

Dancing Quadrocopters Rise Up

B | LEARNING APPROACH

Task: Precise tracking of *periodic* motions.

Features:

- Learning through a <u>dedicated identification routine</u> performed prior to flight performance.
- Adaptation of only a few input parameters.

B | LEARNING APPROACH

For each directional motion component and frequency, we learn:

- (1) amplitude correction factor,
- (2) additive phase correction.

VIDEO: http://tiny.cc/Armageddon

Armageddon @ the Flying Machine Arena

April 2011

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

OVERVIEW

- I. Introduction
- II. Project A. Iterative learning for precise trajectory following
- III. Project B. Learning of feed-forward parameters for rhythmic flight performances

IV. Summary

SUMMARY

Repetitive error components can be effectively compensated for by learning from past data.

Result is an improved tracking performance.

RESEARCH SUPPORT STAFF

Igor Thommen

Hans Ulrich Honegger

Carolina Flores

wank non;

IT FOLLOWS...

Live demonstration in the Flying Machine Arena

Improving tracking performance by learning from past data

Angela P. Schoellig

Doctoral examination – July 30, 2012

Advisor: Prof. Raffaello D'Andrea // Co-advisor: Prof. Andrew Alleyne

