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MOTIVATION

HUMANS learn from experience.

We learn from mistakes and
get better through practice.

We constantly adapt to
changing environments.



MOTIVATION

AUTOMATED SYSTEMS typically make the same mistakes over

and over again when performing a task repeatedly.

Robots of a car assembly line.



MOTIVATION

AUTOMATED SYSTEMS are typically operated using feedback

control:

Disturbance l

[ CONTROLLER ]-—>[ PLANT } Output

~

Performance limitations:
e Causality of disturbance correction: “first detect error, then react”.
e Model-based controller design; model # real system.
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GOAL

Improve the performance over causal, feedback control by
learning from previous experiments.
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SCOPE OF WORK

Input \ Outp)ut

LEARNING

Learning task:
Following a predefined trajectory.

Approach:

e Model-based learning based on a priori knowledge of the system
dynamics.

e Adaptation of the input.

Potential:
Acausal action, anticipating repetitive disturbances.




OVERVIEW

l. Introduction
Testbed: The Flying Machine Arena
Motivation for learning

Il.  Project A._Iterative learning for precise trajectory following:
single-agent and multi-agent results.

Ill.  Project B. Learning of feed-forward parameters for rhythmic flight
performances

V. Summary




TESTBED, see www.flyingemachinearena.or
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THE TEAM

Federico
Augugliaro

Sergei Lupashin
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THE FLYING MACHINE ARENA

Vehicle position and attitude

2

. M\.% s -

=
wireless 3" '

Control
Algorithms

Collective thrust
and turn rates
(wireless)

————
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OPERATION

Input

Desired position

Trajectory-following
controller (TFC)

A

Collective thrust
and turn rates

Output

Measured position and attitude
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MOTIVATION: PROJECT A

Desired motion.
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MOTIVATION: PROJECT A

Performance with trajectory-following controller.

Desired
—— TFC

Different fripds
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OVERVIEW

Introduction

Project A. Iterative learning for precise trajectory following
Learning approach
Results

V.

Project B. Learning of feed-forward parameters for rhythmic flight
performances

Summary
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A | PUBLICATIONS

Peer-reviewed publications

Schoellig, A. P. and R. D’Andrea (2009):
“Optimization-based iterative learning control for trajectory tracking.” In Proceedings of the
European Control Conference (ECC).

Schoellig, A. P., F. L. Mueller, and R. D’Andrea (2012):
“Optimization-based iterative learning for precise quadrocopter trajectory tracking.” Auton-
omous Robots.

Mueller, F.L., A. P. Schoellig, and R. D’Andrea (2012):
“Iterative learning of feed-forward corrections for high-performance tracking.” To appear in
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Joint work with Fabian L. Mueller (Master student).
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A | LEARNING APPROACH

Features: Learning through a repeated operation, updating full input
trajectory after each trial.

>

[ SYSTEM 1 Output trajectory
)

W\
o0 W 0'0)0“\“.

) 4
f EDISTURBANCE ]

ESTIMATION

INPUT UPDATE

Updated input Estimated

disturbance

LEARNING
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A | LEARNING APPROACH

PREREQUISITES

e Dynamics model of system
(i) in analytical form or
(i) in form of a numerical dynamics simulation

* Desired output trajectory y*(t), t € [0,t¢], and corresponding
nominal input trajectory u*(t).
— (u™(t),y™(t)) must satisfy the model equations.

RESULT

e Learned input
e Estimated disturbance vector
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A

| LIFTED-DOMAIN REPRESENTATION

{ Dynamics model of the physical system: f(t) = f(

2(),5(2)), H(E) = B(t). ]

Consider small

u(t)=a(t) —u™(t), z(t)==z()—2"(), ¢t)=y(1) -y ()

Linearize and discretize. Linear, time-varying difference equation.
r(k+1)=Ap(k)x(k) 4+ Bp(k)u(k), y(k)=x(k), kelo,..., N}
4 Static mapping. Representing one trial. R

C20)] T 0 0 oy 0 07 [a0)
#(1) Bp(0) 0 0 0 |a()
(2) | = | ®@nBp(0) Bp(1) e 0 0] |a(2)

W) [®w-1,)Bp(0) @(n-1,2Bp(1) Bp(N) 0] [a(N)]
z F M

J

\_

With @, .., = Ap(l)Ap(l+1)---Ap(m), I <m, and #(0) =0.
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A | ITERATION-DOMAIN MODEL

Foreachtrial 7, 7 € {1, 2, ...},

yj:FUj—|—dj—|—Mj.

Recurring disturbance d;.

Unknown. Only small changes between iterations: [, w;— trial-uncorrelated,
zero-mean Gaussian
dj = dj1 +wj1. noise
Noise [i;.

Unknown. Changing from iteration to iteration.

[ From trial to trial our knowledge about d;improves. }
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A | STEP 1: ESTIMATION

U
: EXECUTE UPDATE OF DISTURBANCE ESTIMATE
l via Kalman filter in the iteration domain:
i estimates the repetitve disturbance dj
ESTIMATE by taking into account all past measurements.
l . fPrediction step: A
dj|j dj = dj—l + wj_l.

[ UPDATE ]
Measurement update step:
Uj41
— yj = Fuj+dj + .

\_ J
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A | STEP 2: UPDATE

Uj

EXECUTE INPUT UPDATE via convex optimization:
l minimizes the tracking error in the next trial:
Yi E [y;+1]all past measurements| = Fu,q1 + czj| j-
ESTIMATE
4 )
l‘ijlj %}rfll Fujyy + d; ilj H peil, 2 oo}
[ UPDATE ] subject to

4—' Uj+1 Umin < Uj+1 < Umax

Tmin < Tj41 < Tmax

\ J

‘ Obtain Ujt1.
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A | TWO EXPERIMENTAL SCENARIOS

SCENARIO 1

SCENARIO 2

* No feedback from motion capture
cameras during task execution

e Camera information is used.

Position,
attitude

= _{\
[

Position,

attitude
—_—

e Analytical model

e Model via numerical simulation

e 2D quadrocopter model

e 3D quadrocopter model

« Constraints on single motor thrusts and turn rates.
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A | SCENARIO 1: state trajectories

S-shaped trajectory.

1.5¢
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‘I L
. It 1
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N
0.5r
Or Desired o
Learned It 0-2
—1 -0.5 0 0.5
y [m]

24



A | SCENARIO 1: input trajectories

S-shaped trajectory.

Collective thrust [m/s?]
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A | SCENARIO 1: state trajectories

S-shaped trajectory.

1.5¢
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0.5r
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It 5

Desired
Learned It 0—-2
Learned It 3-9

It 3

1t 4
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-0.5
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0.5
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A | TWO EXPERIMENTAL SCENARIOS

SCENARIO 1

SCENARIO 2

* No feedback from motion capture
cameras during task execution

e (Camera information is used.

Collective thrust Position,
and turn rates attitude
—_—
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Position
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TFC
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Position,
attitude

—

* Analytical model

e Model via numerical simulation

e 2D quadrocopter model

e 3D quadrocopter model

e Constraints on single motor thrusts and turn rates.
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A | SCENARIO 2: state trajectories

S-shaped trajectory.

1.5
‘I L
E
N
0.5¢
Desired
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y [m]
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A | SCENARIO 2: state trajectories

S-shaped trajectory.

12
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Desired
— [t 0
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A | SCENARIO 2: state trajectories

S-shaped trajectory.

1.5
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A | SCENARIO 2: state trajectories

S-shaped trajectory.

1.5

z [m]

0.5r

Desired
Learned It 6—9

0.5

31



A | SCENARIO 2: error convergence

Max distance error [m]
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lteration
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A | SUMMARY

Prerequisites: approximate model of system dynamics.

Efficient learning algorithm: convergence in around 5-10 iterations

Acausal compensation: outperforms pure feedback control.
Scenario 2: without learning
1.5 T :

T

with learning

15

T

z[m]

0.5F

z[m]

1 05¢
—— Desired
Of| =—TFC

-0.5

— Desired
0.5
y [m]

i Learned It 6-9 ‘

o

0:5
y [m]

Powerful combination Learning applied to feedback-control systems:
compensation for repetitive and non-repetitive disturbances.
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VIDEO: http://tiny.cc/SlalomLearning

Quadrocopter Slalom Learning

IDSC ETH
Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich
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OVERVIEW

Introduction

Project A. Iterative learning for precise trajectory following

a Project B. Learning of feed-forward parameters for rhythmic flight )
performances
Learning approach
Results
\ J
.  Summary
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B | PUBLICATIONS

Peer-reviewed publications

Schoellig, A. P., F. Augugliaro, and R. D’Andrea (2009):
“Synchronizing the motion of a quadrocopter to music.” In Proceedings of IEEE

International Conference on Robotics and Automation (ICRA).

Schoellig, A. P., F. Augugliaro, and R. D’Andrea (2010):
“A platform for dance performances with multiple quadrocopters.” In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)-Workshop on
Robots and Musical Expressions.

Schoellig, A. P., M. Hehn, S. Lupashin, and R. D’Andrea (2011): “Feasibility of motion
primitives for choreographed quadrocopter flight.” In Proceedings of the American
Control Conference (ACC).

Schoellig, A. P., C. Wiltsche, and R. D’Andrea (2012):
“Feed-forward parameter identification for precise periodic quadrocopter motions.” In

Proceedings of the American Control Conference (ACC).

Joint work with Federico Augugliaro (Bachelor/Master student) and
Clemens Wiltsche (semester project).
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VIDEO: http://tiny.cc/DanceWith3

Dancing Quadrocopters
Rise Up

IDSC
E'H Zlirich
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B | LEARNING APPROACH

Task: Precise tracking of periodic motions.

Features:

* Learning through a dedicated identification routine performed prior to
flight performance.

e Adaptation of only a few

. POSitiOnr
Se attitude
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B | LEARNING APPROACH

Ampiitude and phase ervor

Ll
Desired
—TFC

PURE FEEDBACK 00

x [m]
o

WITH LEARNED 08
CORRECTION E o
FACTORS ol

For each directional motion component and frequency, we learn:
(1) amplitude correction factor,

(2) additive phase correction.
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Armageddon
@ the Flying Machine Arena

April 2011
e ’ ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Angela Schoellig - ETH Zurich




OVERVIEW

Introduction
Project A. Iterative learning for precise trajectory following

Project B. Learning of feed-forward parameters for rhythmic flight
performances

{IV.

Summary
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SUMMARY

\

.. : )

Repetitive error components can be effectively compensated

for by learning from past data.

Result is an improved tracking performance. P
Disturbance
[ V™) output
w u pu)
L J
SYSTEM

LEARNING
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