Distributed Iterative Learning Control for a Team of Quadrotors

Andreas Hock, Angela P. Schoellig

13 December 2016

Motivation

Learning can make multi-robot coordination more accurate or faster, and enable it to adapt to changing tasks or environment!

Distributed Control:	 No central control unit Autonomous agents Communication only between certain neighbors
Iterative Learning Control (ILC):	 Machine Learning technique Learning by repetition Updating the feedforward input based on past measurements
Team of Quadrotors:	• Goal: synchronous formation flying • Homogeneous LTI dynamics $x_1(t)$ v_2 $x_2(t)$ $x_4(t)$ v_3 $x_3(t)$

Related Work	 There exist several studies on ILC for a single agent: theoretic survey [Bristow, 2006] quadrotor vehicle [Schoellig, 2012] multi-agent ILC: [Ahn, 2009; Meng, 2012; Yang, 2012]
Open Problems	 previous stability proofs for multi-agent ILC restricted to D-type learning functions => cannot compensate for position offsets pure feedforward control => cannot compensate for non-repetitive errors no experimental validation so far

theoretical development of advanced ILC algorithms for multi-agent systems (MAS) & experimental implementation

Distributed ILC for MAS –

Combination with Consensus Feedback Control

Theorem 2:

A time domain feedback term

$$u_i^{\rm FB} = \mathbf{C} \cdot e_i,$$

with linear mapping **C**, does not affect stability of the proposed ILC system!

NEW!

Link to Video

Distributed Iterative Learning Control for a Team of Two Quadrotors

Andreas Hock, Angela P. Schoellig

Experimental Results -

Trajectories in x over time

Experimental Results -*Error Convergence Comparison*

- Generalized stability proof demonstrated that the multi-agent ILC algorithm converges if l_0 is chosen properly => many tuning options for input-update rule
- We proved that including a consensus feedback controller does not affect stability but improves performance as it compensates for non-repeating disturbances

Multi-agent ILC was successfully implemented on a **real experiment** for the first time

Link to Video

Distributed Iterative Learning Control for a Team of Four Quadrotors

Andreas Hock, Angela P. Schoellig

- Generalized stability proof demonstrated that the multi-agent ILC algorithm converges if l_0 is chosen properly => many tuning options for input-update rule
- We proved that including a consensus feedback controller does not affect stability but improves performance as it compensates for non-repeating disturbances

Multi-agent ILC was successfully implemented on a **real experiment** for the first time

Thank you!

Andreas Hock

andreas.hock@robotics.utias.utoronto.ca

www.DynSysLab.org