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Motivating Examples

Google Self-Driving Car RIBA Healthcare Robot Flying Drones

Safety is critical since these systems interact with humans.

Safety First
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Control Design for Safety-Critical Systems

Urgent need for addressing fundamental questions: When can
we fully control a dynamical system under given safety
constraints? Kalman’s controllability does not apply!
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Introduced in-block controllability (IBC) study
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Hierarchical Control of Hybrid/Nonlinear Systems

ODEs are not powerful for designing controllers satisfying
high-level objectives, expressed by temporal logic statements!

Dynamical System Hierarchy of finite state
         machines

abstraction

Logic 
Specifications

Controller

Realize: 
Translate to a low 
level controller

IBC partitions/covers ⇒ Hierarchy of finite state machines
This talk: Provide constructive guidelines for building IBC
partitions/covers
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Geometric Background

Definition
An n-dimensional polytope is the convex hull of a finite set of
points in Rn whose affine hull has dimension n.

A facet is an (n − 1)-dimensional face of the polytope.

An n-dimensional simplex is a special case of an n-dimensional
polytope that has n + 1 vertices.

A polytope is simplicial if all its facets are simplices.
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Notations

C(x) := { y ∈ Rn | hj · y ≤ 0, j ∈ {1, · · · , r } s.t. x ∈ Fj } .
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In-Block Controllability

Definition (In-Block Controllability (IBC))

Consider an affine system ẋ(t) = Ax(t) + Bu(t) + a and an
n-dimensional polytope X . We say that the affine system is
in-block controllable (IBC) w.r.t. X if there exists M > 0 such that
for all x , y ∈ X ◦, there exist T ≥ 0 and a control input u defined
on [0,T ] such that (i) ‖u(t)‖ ≤ M and φ(x , t, u) ∈ X ◦ for all
t ∈ [0,T ], and (ii) φ(x ,T , u) = y .

Objective: Provide a computationally efficient method for
constructing IBC regions.
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Controlled Invariance Problem

Controlled Invariance: Find inputs such that all the state
trajectories initiated in a set remain in it for all future time.

IBC vs Controlled Invariance

Controlled Invariance on given polytopes [GC86], [DH99] ⇒
Building controlled invariant polytopic sets [BMM95], [Blan99]

Analogous to the history of the controlled invariance problem,
we extend results for checking IBC on given polytopes to
building polytopic regions satisfying the IBC property.

[GC86] Gutman, Cwikel. IEEE Trans. Aut. Control, 1986.
[DH99] Dorea, Hennet. European Journal of Control, 1999.
[BMM95] Blanchini, Mesquine, Miani. Inter. J. of Control, 1995.
[Blan99] Blanchini. Automatica, 1999.
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In-Block Controllability

The IBC notion was first introduced for finite state machines
[CW95].

q
1

q
2

q
3

q
4 q

5

X
1

X
2

X
3

The notion was extended to continuous nonlinear systems on
closed sets [CW98] and to Automata [HC02].

These papers did not study conditions for IBC to hold.

[CW95] Caines, Wei. Sys. and Con. Letters, 1995.
[CW98] Caines, Wei. IEEE TAC, 1998.
[HC02] Hubbard, Caines. IEEE TAC, 2002.
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IBC of Affine Systems

ẋ = Ax +Bu+ a on X ⇔ ˙̃x = Ax̃ +Bu on X̃ satisfying 0 ∈ X̃ ◦

Theorem

Consider the system ẋ(t) = Ax(t) + Bu(t) defined on an
n-dimensional simplicial polytope X satisfying 0 ∈ X ◦. The system
is IBC w.r.t. X if and only if

(i) (A,B) is controllable.

(ii) The so-called invariance conditions of X are solvable (For each
v ∈ X, there exists u ∈ Rm s.t. Av + Bu ∈ C (v)).

(iii) The so-called backward invariance conditions of X are solvable
(For each v ∈ X, there exists u ∈ Rm s.t. −Av − Bu ∈ C (v)).

[HC14] MKH, Caines. CDC, 2014.
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What about constructing IBC regions?

Study was initiated for hypersurface affine systems
(m = n − 1) [HC15]

[HC15] MKH, Caines. CDC, 2015.
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Proposed Algorithm

How to Start?

Problem (Construction of IBC Polytopes)

Given a controllable linear system ẋ(t) = Ax(t) + Bu(t), construct
a polytope X such that 0 ∈ X ◦ and the system is IBC w.r.t. X .

Straightforward Approach: Construct around the origin a
polytope X satisfying both invariance conditions and backward
invariance conditions.
Two difficulties are faced here!

1 Invariance Cond: For each vertex v of X , there exists u ∈ Rm

s.t. hj · (Av +Bu) ≤ 0. (Given polytopes: Linear Programming
(LP) problems; building polytopes satisfying these conditions:
Bilinear Matrix Inequalities(BMIs)) NP hard Problem

2 We still need to verify that the constructed polytope is
simplicial!
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Proposed Algorithm

Geometric Guidelines

Let B be the image of B .

The set of possible equilibria O := { x ∈ Rn : Ax + a ∈ B }

Result 1: If v ∈ O is a vertex of X ,
then both the inv. and the
backward inv. conditions of X are
solvable at v .

Result 2: If B ∩ C ◦(v) 6= ∅ at a
vertex v , then both the inv. and
the backward inv. conditions of X
are solvable at v .

x1

x2
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Proposed Algorithm

Geometric Guidelines

What about verifying that the
constructed polytope is
simplicial? No need!

x1

x2

Theorem

Consider a controllable linear system defined on an n-dimensional
polytope X satisfying 0 ∈ X ◦. If for each vertex v of X , either
v ∈ O or B ∩ C ◦(v) 6= ∅, then the system is IBC w.r.t. X .

Punch Line: Construct X such that v ∈ O or B ∩ C ◦(v) 6= ∅.
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Proposed Algorithm

Algorithm Idea

Given: A controllable linear system satisfying O + B = Rn

Theorem

Consider a controllable linear system with O + B = Rn. Then, the
algorithm terminates successfully, and the system is IBC w.r.t. X .

15 / 21



Motivation Basic Definitions Literature Review Proposed Results Conclusions

Applications to Robotics

Robot Manipulators

Consider a robot arm with N links that is
modeled by:
D(q)q̈ + C (q, q̇)q̇ + g(q) = B(q)τ.

Suppose that qi ∈ [qi ,min, qi ,max ],
q̇i ∈ [q̇i ,min, q̇i ,max ], and τi ∈ [τi ,min, τi ,max ].

Objective: Build a safe speed profile for the robot manipulator.

For fully-actuated robots, τ = B−1(q)(C (q, q̇)q̇ + g(q) + D(q)u)
converts the dynamics to the equivalent controllable linear system:
q̈ = u, a set of decoupled double integrators q̈i = ui , where
ui ∈ [ui ,min, ui ,max ].

O + B = Rn ⇒ Our algorithm can be applied.
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Applications to Robotics

One DOF Robot

Intuition: Building an IBC region ⇔
Providing for each position of the robot a
corresponding safe speed range, resulting in
an overall safe speed profile for the robot.

Pos

Vel

IBC Region

Safe speed profiles based on intuition or the
controlled invariance property

Advantages of the proposed approach

Punch Line: Select the states of the robots’
reference trajectories inside the constructed
IBC region.
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Summary of Results

We reviewed the in-block controllability (IBC) notion, which
formalizes Kalman’s controllability under safety constraints.

We introduced the problem of constructing IBC regions.

We showed the difficulties that are faced if one tries to directly
use the existing results for checking IBC to construct IBC
regions.

Following a geometric approach, we proposed a
computationally efficient algorithm for constructing IBC
regions.

Used the proposed algorithm for building safe speed profiles for
several classes of robotic systems, including robotic
manipulators and ground robots.
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What is next?

The algorithm can be applied to other classes of robots.

We use the algorithm for constructing safe speed profiles for
unmanned aerial vehicles (UAVs), and then utilize the safe
profiles to:

achieve static/dynamic obstacle avoidance for UAVs;

determine the feasibility of reference trajectories for UAVs.
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Dynamic Obstacle Avoidance for UAVs

Safe Position Space
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Demo Video of Obstacle Avoidance for UAVs

Demo Video
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https://youtu.be/Dfws_Lmg59U
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