On the Construction of Safe Controllable Regions for Affine Systems with Applications to Robotics

> Mohamed K. Helwa Dynamic Systems Lab University of Toronto Institute for Aerospace Studies

Cooperative work with: Angela P. Schoellig

The 55th IEEE Conference on Decision and Control Las Vegas, USA, Dec 13, 2016

クロク 正正 スポイト イド・スポート

Motivation

Basic Definitions

Literature Review

Proposed Results

Conclusions

Motivating Examples

Google Self-Driving Car RIBA Healthcare Robot Flying Drones

• Safety is critical since these systems interact with humans.

Safety First

▲□▶ < @▶ < 글▶ < 글▶ ∃|= ♡९
 2/21

Control Design for Safety-Critical Systems

• Urgent need for addressing fundamental questions: When can we fully control a dynamical system under given safety constraints? Kalman's controllability does not apply!

• Introduced in-block controllability (IBC) study

クロク 正正 スポイト イド・スポート

Hierarchical Control of Hybrid/Nonlinear Systems

• ODEs are not powerful for designing controllers satisfying high-level objectives, expressed by temporal logic statements!

- IBC partitions/covers \Rightarrow Hierarchy of finite state machines
- This talk: Provide constructive guidelines for building IBC partitions/covers

Geometric Background

Definition

An *n*-dimensional polytope is the convex hull of a finite set of points in \mathbb{R}^n whose affine hull has dimension *n*.

- A facet is an (n-1)-dimensional face of the polytope.
- An *n*-dimensional simplex is a special case of an *n*-dimensional polytope that has *n* + 1 vertices.
- A polytope is simplicial if all its facets are simplices.

Motivation	Basic Definitions	Literature Review	Proposed Results	Conclusions
		Notations		

 $\mathcal{C}(x) := \{ y \in \mathbb{R}^n \mid h_j \cdot y \leq 0, j \in \{1, \cdots, r\} \text{ s.t. } x \in \mathcal{F}_j \}.$

In-Block Controllability

Definition (In-Block Controllability (IBC))

Consider an affine system $\dot{x}(t) = Ax(t) + Bu(t) + a$ and an *n*-dimensional polytope X. We say that the affine system is in-block controllable (IBC) w.r.t. X if there exists M > 0 such that for all $x, y \in X^{\circ}$, there exist $T \ge 0$ and a control input u defined on [0, T] such that (i) $||u(t)|| \le M$ and $\varphi(x, t, u) \in X^{\circ}$ for all $t \in [0, T]$, and (ii) $\varphi(x, T, u) = y$.

• Objective: Provide a computationally efficient method for constructing IBC regions.

Controlled Invariance Problem

- Controlled Invariance: Find inputs such that all the state trajectories initiated in a set remain in it for all future time.
- IBC vs Controlled Invariance
- Controlled Invariance on given polytopes [GC86], [DH99] ⇒ Building controlled invariant polytopic sets [BMM95], [Blan99]
- Analogous to the history of the controlled invariance problem, we extend results for checking IBC on given polytopes to building polytopic regions satisfying the IBC property.

[GC86] Gutman, Cwikel. IEEE Trans. Aut. Control, 1986.
[DH99] Dorea, Hennet. European Journal of Control, 1999.
[BMM95] Blanchini, Mesquine, Miani. Inter. J. of Control, 1995.
[Blan99] Blanchini. Automatica, 1999.

In-Block Controllability

• The IBC notion was first introduced for finite state machines [CW95].

- The notion was extended to continuous nonlinear systems on closed sets [CW98] and to Automata [HC02].
- These papers did not study conditions for IBC to hold.

[CW95] Caines, Wei. Sys. and Con. Letters, 1995.[CW98] Caines, Wei. IEEE TAC, 1998.[HC02] Hubbard, Caines. IEEE TAC, 2002.

IBC of Affine Systems

• $\dot{x} = Ax + Bu + a$ on $X \Leftrightarrow \dot{\tilde{x}} = A\tilde{x} + Bu$ on \tilde{X} satisfying $0 \in \tilde{X}^{\circ}$

Theorem

Consider the system $\dot{x}(t) = Ax(t) + Bu(t)$ defined on an *n*-dimensional simplicial polytope X satisfying $0 \in X^{\circ}$. The system is IBC w.r.t. X if and only if

- (i) (A, B) is controllable.
- (ii) The so-called invariance conditions of X are solvable (For each $v \in X$, there exists $u \in \mathbb{R}^m$ s.t. $Av + Bu \in C(v)$).
- (iii) The so-called backward invariance conditions of X are solvable (For each $v \in X$, there exists $u \in \mathbb{R}^m$ s.t. $-Av - Bu \in C(v)$).

[HC14] MKH, Caines. CDC, 2014.

What about constructing IBC regions?

• Study was initiated for hypersurface affine systems (m = n - 1) [HC15]

[HC15] MKH, Caines. CDC, 2015.

Problem (Construction of IBC Polytopes)

Given a controllable linear system $\dot{x}(t) = Ax(t) + Bu(t)$, construct a polytope X such that $0 \in X^{\circ}$ and the system is IBC w.r.t. X.

- Straightforward Approach: Construct around the origin a polytope X satisfying both invariance conditions and backward invariance conditions.
- Two difficulties are faced here!
 - Invariance Cond: For each vertex v of X, there exists $u \in \mathbb{R}^m$ s.t. $h_j \cdot (Av + Bu) \leq 0$. (Given polytopes: Linear Programming (LP) problems; building polytopes satisfying these conditions: Bilinear Matrix Inequalities(BMIs)) NP hard Problem
 - We still need to verify that the constructed polytope is simplicial!

- Let \mathcal{B} be the image of B.
- The set of possible equilibria $\mathcal{O} := \{ x \in \mathbb{R}^n : Ax + a \in \mathcal{B} \}$
- Result 1: If v ∈ O is a vertex of X, then both the inv. and the backward inv. conditions of X are solvable at v.
- Result 2: If B ∩ C°(v) ≠ Ø at a vertex v, then both the inv. and the backward inv. conditions of X are solvable at v.

• What about verifying that the constructed polytope is simplicial? No need!

Theorem

Consider a controllable linear system defined on an n-dimensional polytope X satisfying $0 \in X^{\circ}$. If for each vertex v of X, either $v \in \mathcal{O}$ or $\mathcal{B} \cap C^{\circ}(v) \neq \emptyset$, then the system is IBC w.r.t. X.

• Punch Line: Construct X such that $v \in \mathcal{O}$ or $\mathcal{B} \cap C^{\circ}(v) \neq \emptyset$.

• Given: A controllable linear system satisfying $\mathcal{O} + \mathcal{B} = \mathbb{R}^n$

Theorem

Consider a controllable linear system with $\mathcal{O} + \mathcal{B} = \mathbb{R}^n$. Then, the algorithm terminates successfully, and the system is IBC w.r.t. X.

Basic Definitions

Literature Review

Proposed Results

Conclusions

Applications to Robotics

Robot Manipulators

- Consider a robot arm with N links that is modeled by: $D(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = B(q)\tau.$
- Suppose that $q_i \in [q_{i,min}, q_{i,max}]$, $\dot{q}_i \in [\dot{q}_{i,min}, \dot{q}_{i,max}]$, and $\tau_i \in [\tau_{i,min}, \tau_{i,max}]$.

- Objective: Build a safe speed profile for the robot manipulator.
- For fully-actuated robots, $\tau = B^{-1}(q)(C(q, \dot{q})\dot{q} + g(q) + D(q)u)$ converts the dynamics to the equivalent controllable linear system: $\ddot{q} = u$, a set of decoupled double integrators $\ddot{q}_i = u_i$, where $u_i \in [u_{i,min}, u_{i,max}]$.
- $\mathcal{O} + \mathcal{B} = \mathbb{R}^n \Rightarrow$ Our algorithm can be applied $\mathbb{C} \to \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}$

Literature Review

Proposed Results

Conclusions

Applications to Robotics

One DOF Robot

 Intuition: Building an IBC region ⇔
 Providing for each position of the robot a corresponding safe speed range, resulting in an overall safe speed profile for the robot.

- Safe speed profiles based on intuition or the controlled invariance property
- Advantages of the proposed approach
- Punch Line: Select the states of the robots' reference trajectories inside the constructed IBC region.

Summary of Results

- We reviewed the in-block controllability (IBC) notion, which formalizes Kalman's controllability under safety constraints.
- We introduced the problem of constructing IBC regions.
- We showed the difficulties that are faced if one tries to directly use the existing results for checking IBC to construct IBC regions.
- Following a geometric approach, we proposed a computationally efficient algorithm for constructing IBC regions.
- Used the proposed algorithm for building safe speed profiles for several classes of robotic systems, including robotic manipulators and ground robots.

- The algorithm can be applied to other classes of robots.
- We use the algorithm for constructing safe speed profiles for unmanned aerial vehicles (UAVs), and then utilize the safe profiles to:
 - achieve static/dynamic obstacle avoidance for UAVs;
 - determine the feasibility of reference trajectories for UAVs.

Conclusions

Dynamic Obstacle Avoidance for UAVs

Safe Position Space

م (ک 20 / 21

Demo Video of Obstacle Avoidance for UAVs

▶ Demo Video

<□> <륜> <분> <분> 분별 %Q
21/21

References

[GC86] P.-O. Gutman, M. Cwikel, Admissible Sets and Feedback Control for Discrete-Time Linear Dynamical systems with Bounded Controls and States, IEEE Transactions on Automatic Control, Vol. 31 (4), pp. 373-376, Apr 1986.

[DH99] C.E.T. Dorea, J.-C. Hennet. (A,B)-invariance Conditions of Polyhedral Domains for Continuous-Time Systems. *European Journal of Control*, vol. 5, pp. 70-81, 1999.

[BMM95] F. Blanchini, F. Mesquine, S. Miani. Constrained Stabilization with Assigned Initial Condition Set. *International Journal of Control*, Vol. 62(3), pp. 601-617, 1995.

[Blan99] F. Blanchini. Set Invariance in Control. *Automatica*, Vol. 35, pp. 1747–1767, 1999.

[CW95] P. E. Caines and Y. J. Wei. The Hierarchical Lattices of a Finite Machine. *Sys. and Con. Letters*, vol. 25, pp. 257-263, 1995.

References

[CW98] P. E. Caines and Y. J. Wei. Hierarchical Hybrid Control Systems: A Lattice Theoretic Formulation. *IEEE Transactions on Automatic Control*, vol. 43, no. 4, pp. 501-508, Apr 1998.

[HC02] P. Hubbard, P. E. Caines. Dynamical Consistency in Hierarchical Supervisory Control. *IEEE Trans. Aut. Con.*, 47(1), pp 37 - 52, 2002.

[HC14] M. K. Helwa, P. E. Caines. In-Block Controllability of Affine Systems on Polytopes. *The 53rd IEEE Conference on Decision and Control*, Los Angeles, Dec 2014, pp. 3936-3942.

[HC14] M. K. Helwa, P. E. Caines. On the Construction of In-Block Controllable Covers of Nonlinear Systems on Polytopes. *The 54th IEEE Conference on Decision and Control*, Osaka, Dec 2015, pp. 276-281.