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Motivation

Motivating Examples

Google Self-Driving Car  RIBA Healthcare Robot Flying Drones

@ Safety is critical since these systems interact with humans.

Safety First
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Motivation

Control Design for Safety-Critical Systems

@ Urgent need for addressing fundamental questions: When can
we fully control a dynamical system under given safety
constraints? Kalman's controllability does not apply!
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@ Introduced in-block controllability (IBC) study
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Motivation

Hierarchical Control of Hybrid/Nonlinear Systems

@ ODEs are not powerful for designing controllers satisfying
high-level objectives, expressed by temporal logic statements!

abstraction
Dynamical System Hierarchy of finite state
machines
Logic
Specifications
Realize:
Translate to a low
level controller
Controller

e IBC partitions/covers = Hierarchy of finite state machines
@ This talk: Provide constructive guidelines for building IBC
partitions/covers
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Basic Definitions

Geometric Background

Definition

An n-dimensional polytope is the convex hull of a finite set of
points in R” whose affine hull has dimension n.

AOY

@ A facet is an (n— 1)-dimensional face of the polytope.

@ An n-dimensional simplex is a special case of an n-dimensional
polytope that has n+ 1 vertices.

@ A polytope is simplicial if all its facets are simplices.
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Basic Definitions

Notations
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Basic Definitions

In-Block Controllability

Definition (In-Block Controllability (IBC))

Consider an affine system x(t) = Ax(t) + Bu(t) + a and an
n-dimensional polytope X. We say that the affine system is
in-block controllable (IBC) w.r.t. X if there exists M > 0 such that
for all x, y € X°, there exist T > 0 and a control input u defined
on [0, T] such that (i) [Ju(t)|| < M and ¢(x, t,u) € X° for all

t €10, T], and (i) &d(x, T,u) = y.

@ Objective: Provide a computationally efficient method for
constructing IBC regions.
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Literature Review

Controlled Invariance Problem

e Controlled Invariance: Find inputs such that all the state
trajectories initiated in a set remain in it for all future time.

o IBC vs Controlled Invariance

e Controlled Invariance on given polytopes [GC86], [DH99] =
Building controlled invariant polytopic sets [BMM95], [Blan99]

@ Analogous to the history of the controlled invariance problem,
we extend results for checking IBC on given polytopes to
building polytopic regions satisfying the IBC property.

[GC86] Gutman, Cwikel. IEEE Trans. Aut. Control, 1986.
[DH99] Dorea, Hennet. European Journal of Control, 1999.
[BMMO5] Blanchini, Mesquine, Miani. Inter. J. of Control, 1995.
[Blan99] Blanchini. Automatica, 1999.
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Literature Review

In-Block Controllability

@ The IBC notion was first introduced for finite state machines
[CWOs].

@ The notion was extended to continuous nonlinear systems on
closed sets [CW98] and to Automata [HCO2].

@ These papers did not study conditions for IBC to hold.

[CWO5] Caines, Wei. Sys. and Con. Letters, 1995.
[CWO8] Caines, Wei. IEEE TAC, 1998.
[HCO2] Hubbard, Caines. IEEE TAC, 2002.
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Literature Review

IBC of Affine Systems

@ x=Ax+Bu+aon X & X = A%+ Bu on X satisfying 0 € X°

Theorem

Consider the system x(t) = Ax(t) + Bu(t) defined on an
n-dimensional simplicial polytope X satisfying 0 € X°. The system
is IBC w.r.t. X if and only if

(i) (A, B) is controllable.

(ii) The so-called invariance conditions of X are solvable (For each
v € X, there exists u € R™ s.t. Av+ Bu € C(v)).

(iii) The so-called backward invariance conditions of X are solvable
(For each v € X, there exists u € R™ s.t. —Av — Bu € C(v)).

[HC14] MKH, Caines. CDC, 2014.
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Literature Review

What about constructing IBC regions?

@ Study was initiated for hypersurface affine systems
(m=n—1) [HC15]

[HC15] MKH, Caines. CDC, 2015.
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Proposed Results

Proposed Algorithm

How to Start?

Problem (Construction of IBC Polytopes)

Given a controllable linear system x(t) = Ax(t) + Bu(t), construct
a polytope X such that 0 € X° and the system is IBC w.r.t. X.

e Straightforward Approach: Construct around the origin a
polytope X satisfying both invariance conditions and backward
invariance conditions.

@ Two difficulties are faced here!

@ Invariance Cond: For each vertex v of X, there exists u € R™
s.t. hj- (Av+ Bu) < 0. (Given polytopes: Linear Programming
(LP) problems; building polytopes satisfying these conditions:
Bilinear Matrix Inequalities(BMIs)) NP hard Problem

@ We still need to verify that the constructed polytope is
simplicial!
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Proposed Results

Proposed Algorithm

Geometric Guidelines

@ Let BB be the image of B.
@ The set of possible equilibria O :={x€R" : Ax+ac B}

@ Result 1: If v € O is a vertex of X,
then both the inv. and the
backward inv. conditions of X are
solvable at v.

@ Result 2: f BN C°(v) #0 at a y 1
vertex v, then both the inv. and
the backward inv. conditions of X

\ 3 o

X

are solvable at v.
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Proposed Results

Proposed Algorithm

Geometric Guidelines

XZ
@ What about verifying that the
constructed polytope is
simplicial? No need! B o

Consider a controllable linear system defined on an n-dimensional
polytope X satisfying 0 € X°. If for each vertex v of X, either
veOorBNC°(v) #0, then the system is IBC w.r.t. X.

@ Punch Line: Construct X such that v € O or BN C°(v) # 0.
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Proposed Results

Proposed Algorithm

Algorithm |dea

@ Given: A controllable linear system satisfying O + 3 = R”
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Consider a controllable linear system with O + B = R". Then, the
algorithm terminates successfully, and the system is IBC w.r.t. X.
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Proposed Results

Applications to Robotics

Robot Manipulators

o Consider a robot arm with N links that is
modeled by:

D(q)g+ C(q,9)q + g(q) = B(q)T.

e Suppose that g; € [qj miny Gi,max],
qi € [qi,min) qi,max]. and T; € [Ti,min)Ti,max]-

@ Objective: Build a safe speed profile for the robot manipulator.

e For fully-actuated robots, T = B~%(q)(C(q,4)g + g(q) + D(q)u)
converts the dynamics to the equivalent controllable linear system:
g = u, a set of decoupled double integrators g; = u;, where
Ui € (Ui miny Ui, max]-

o O+ B =R" = Our algorithm can be applied,
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Proposed Results

Applications to Robotics

One DOF Robot

Vel

@ Intuition: Building an IBC region &
Providing for each position of the robot a / \

corresponding safe speed range, resulting in \ Pos
an overall safe speed profile for the robot.
IBC Region
@ Safe speed profiles based on intuition or the Vol
e
controlled invariance property cut
@ Advantages of the proposed approach b' \
@ Punch Line: Select the states of the robots' \ Pos
reference trajectories inside the constructed %«

IBC region.
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Conclusions

Summary of Results

@ We reviewed the in-block controllability (IBC) notion, which
formalizes Kalman's controllability under safety constraints.

@ We introduced the problem of constructing IBC regions.

@ We showed the difficulties that are faced if one tries to directly
use the existing results for checking IBC to construct IBC
regions.

@ Following a geometric approach, we proposed a
computationally efficient algorithm for constructing IBC
regions.

@ Used the proposed algorithm for building safe speed profiles for
several classes of robotic systems, including robotic
manipulators and ground robots.

18/21



Conclusions

What is next?

@ The algorithm can be applied to other classes of robots.

@ We use the algorithm for constructing safe speed profiles for
unmanned aerial vehicles (UAVs), and then utilize the safe
profiles to:

o achieve static/dynamic obstacle avoidance for UAVs;

o determine the feasibility of reference trajectories for UAVs.
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Conclusions

Dynamic Obstacle Avoidance for UAVs
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Demo Video of Obstacle Avoidance for UAVs
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https://youtu.be/Dfws_Lmg59U
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