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One small assumption…
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Why is learning not commonly used?

Because safety matters!



What can go wrong?
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Problem definition
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with

Where is this control policy safe to use?

You can experiment, but no system failures!

Can we learn about dynamics while remaining stable?

Lipschitz continuous Bounded RKHS norm



Challenges with Bayesian learning
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Exploration (excitation)

Linear systems
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Nonlinear, continuous

Use ideas from sensor placement

Stability certificates (robustness)

Linear controllers

Nonlinear systems

This paper:

Lyapunov stability (nonlinear, uncertain systems)

with high probability

✓

?

✓

?

[F.Berkenkamp et al, ECC’15] [L. Jung, SAP’98]

✓
[R.I.Brafman et al, JMLR‘02][A.K.Akametalu et al, CDC’14]



Region of attraction
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Lyapunov functions 
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[A.M. Lyapunov 1966]



What about unknown dynamics?
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known systems: [R. Bobiti, M. Lazar, CDC 2016]



Gaussian process models
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high probability confidence intervals

Lipschitz continuous



What about unknown dynamics?
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True system is stable within            with high probability!



Exploring the safe set
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Challenges with Bayesian learning
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How to explore?
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How to actively explore?

Do we converge to maximum safe set?

The policy           is safe: keeps us in

Apply



Theoretical result
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Close-to-optimal measurements:

Theorem: Guaranteed to converge to the maximum safe levelset up to a certain accuracy after a 
finite number of data points – without leaving this safe levelset with high probability.

Bound depends on

• Size of the maximum safe levelset
• Information capacity of the Gaussian process model
• Accuracy

Theorem: Guaranteed to converge to the maximum safe levelsetTheorem: Guaranteed to converge to the maximum safe levelset up to a certain accuracyTheorem: Guaranteed to converge to the maximum safe levelset up to a certain accuracy after a 
finite number of data points

[A.Krause, C.Guestrin, UAI’05]



Inverted pendulum
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Maximum torque limited!

Safe exploration so that the pendulum doesn’t fall.

Controller: LQR with prior mean model

Quadratic Lyapunov function



Safe learning for an inverted pendulum
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Conclusion
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Can simultaneously learn system dynamics and give stability guarantees

Lyapunov stability for nonlinear, uncertain systems (with high probability, discretization)

Convergence guarantees

There is hope for safe reinforcement learning!

Code is open source

Example notebooks

More safe learning at http://berkenkamp.me


