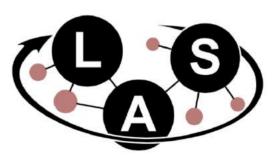
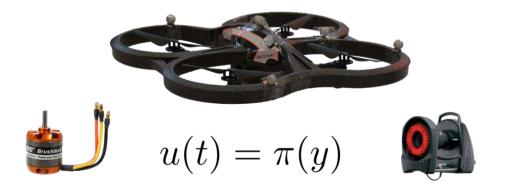
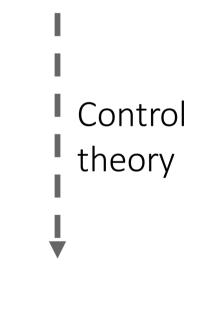
Safe Learning of Regions of Attraction for Uncertain, Nonlinear Systems with Gaussian Processes

Felix Berkenkamp, Riccardo Moriconi, Angela P. Schoellig, Andreas Krause

@CDC, December 2016







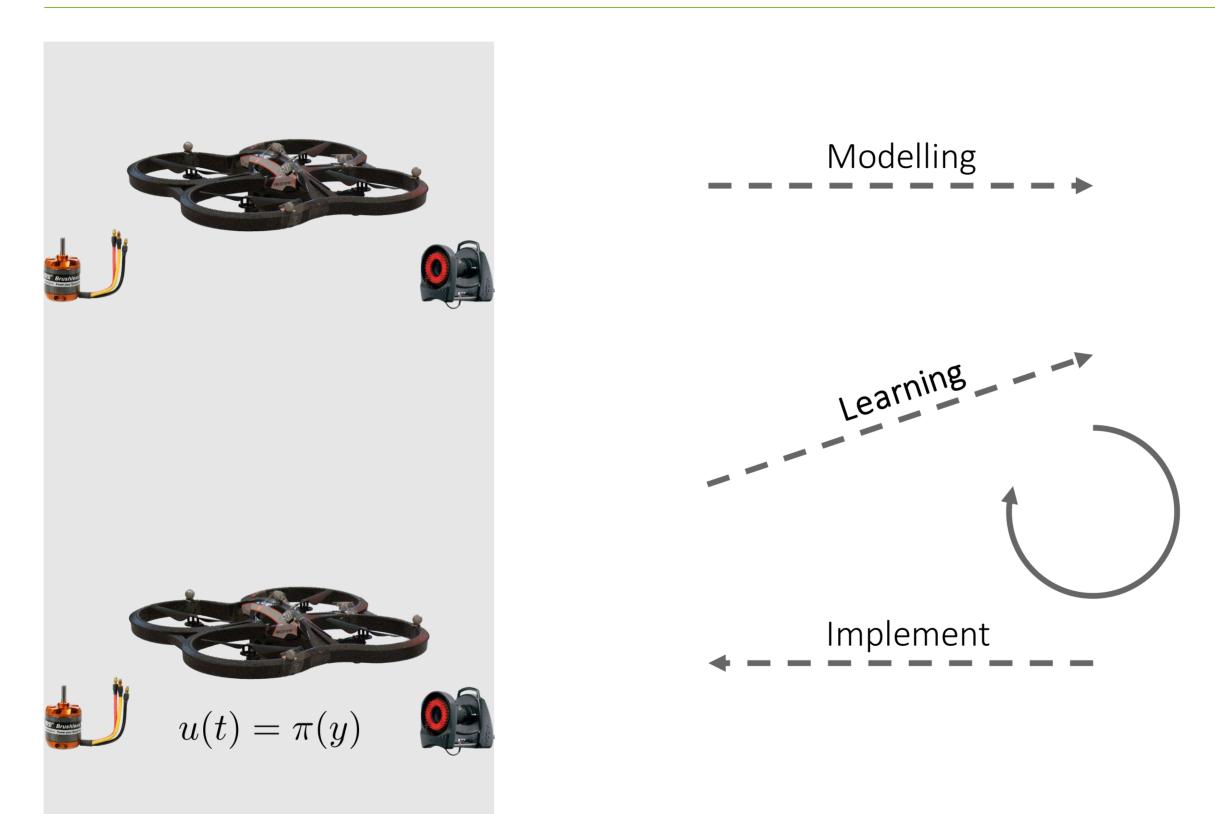
$$u(t) = \pi(y)$$

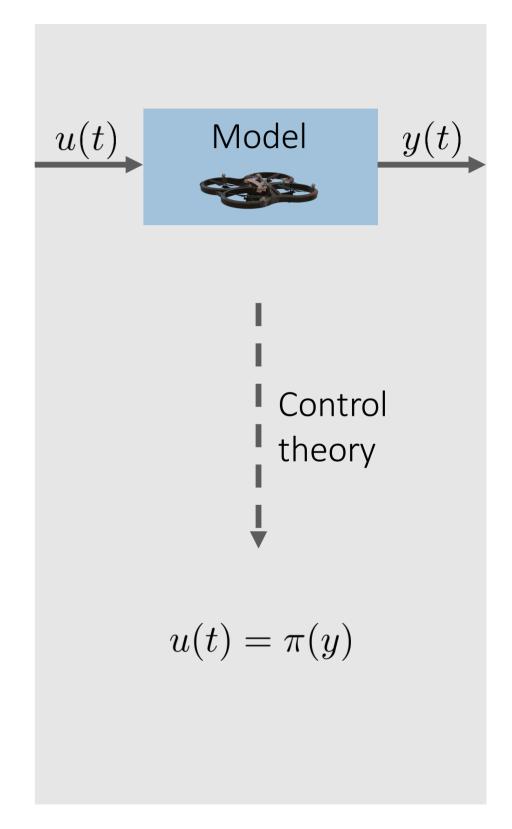
One small assumption...

Degraded performance Instability



What is control?

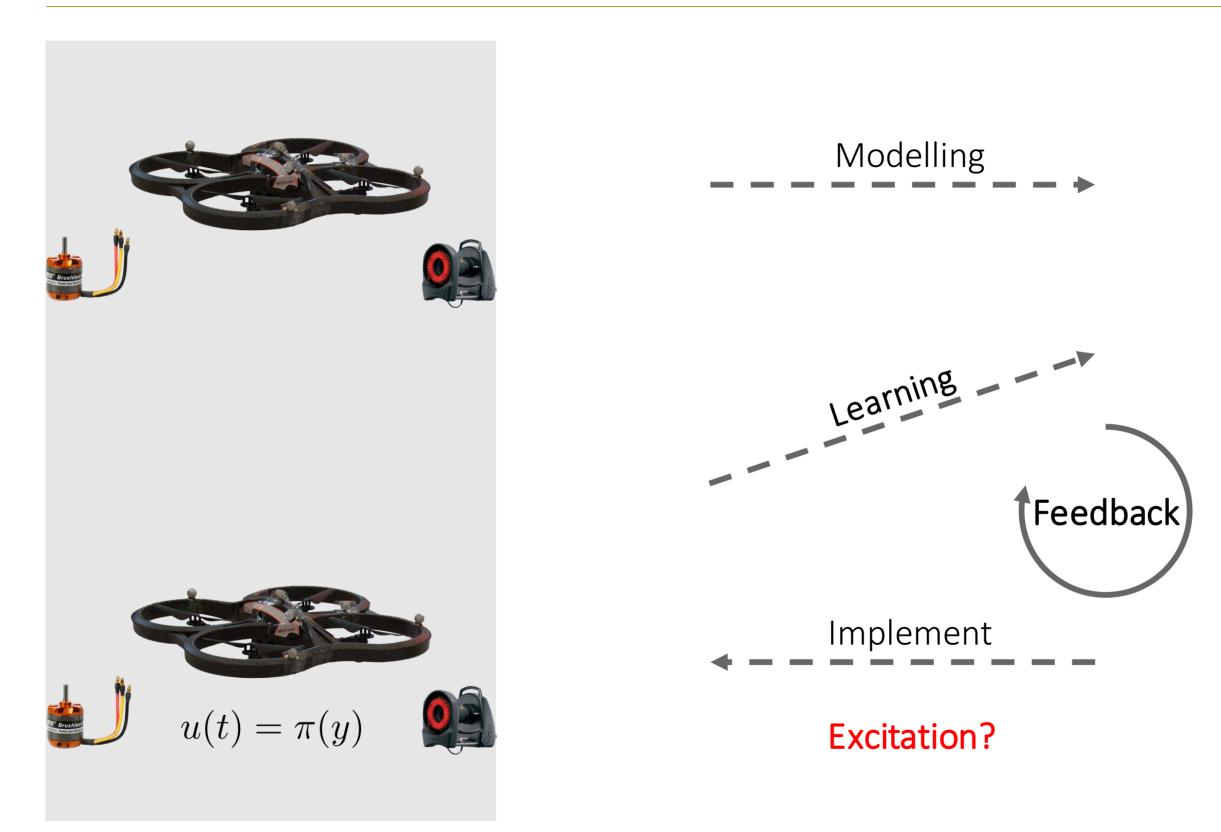


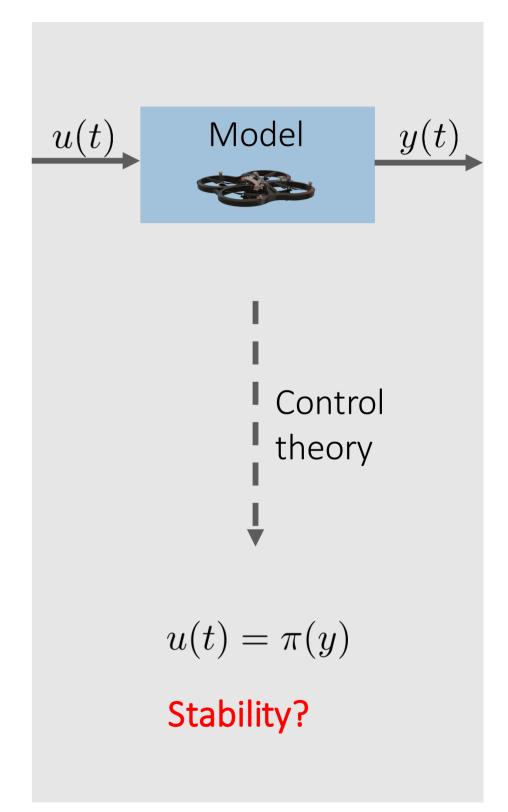


Why is learning not commonly used?

Because safety matters!

What can go wrong?





Can we learn about dynamics while remaining stable?

 $\dot{x}(t) = f(x(t), u(t)) + g(x(t), u(t))$

a priori model

unknown model

Lipschitz continuous

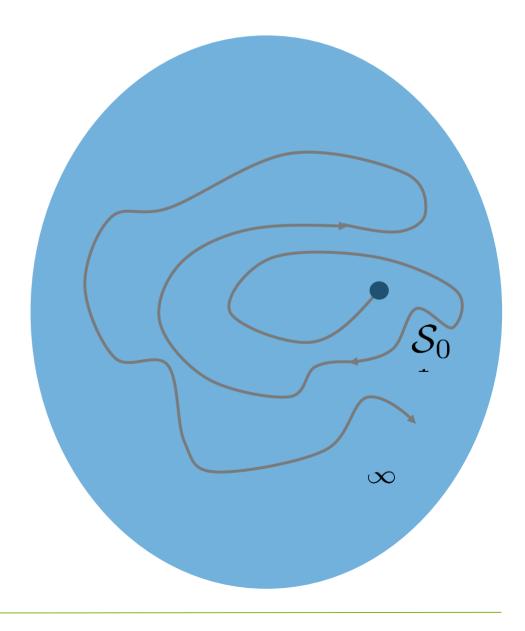
Bounded RKHS norm

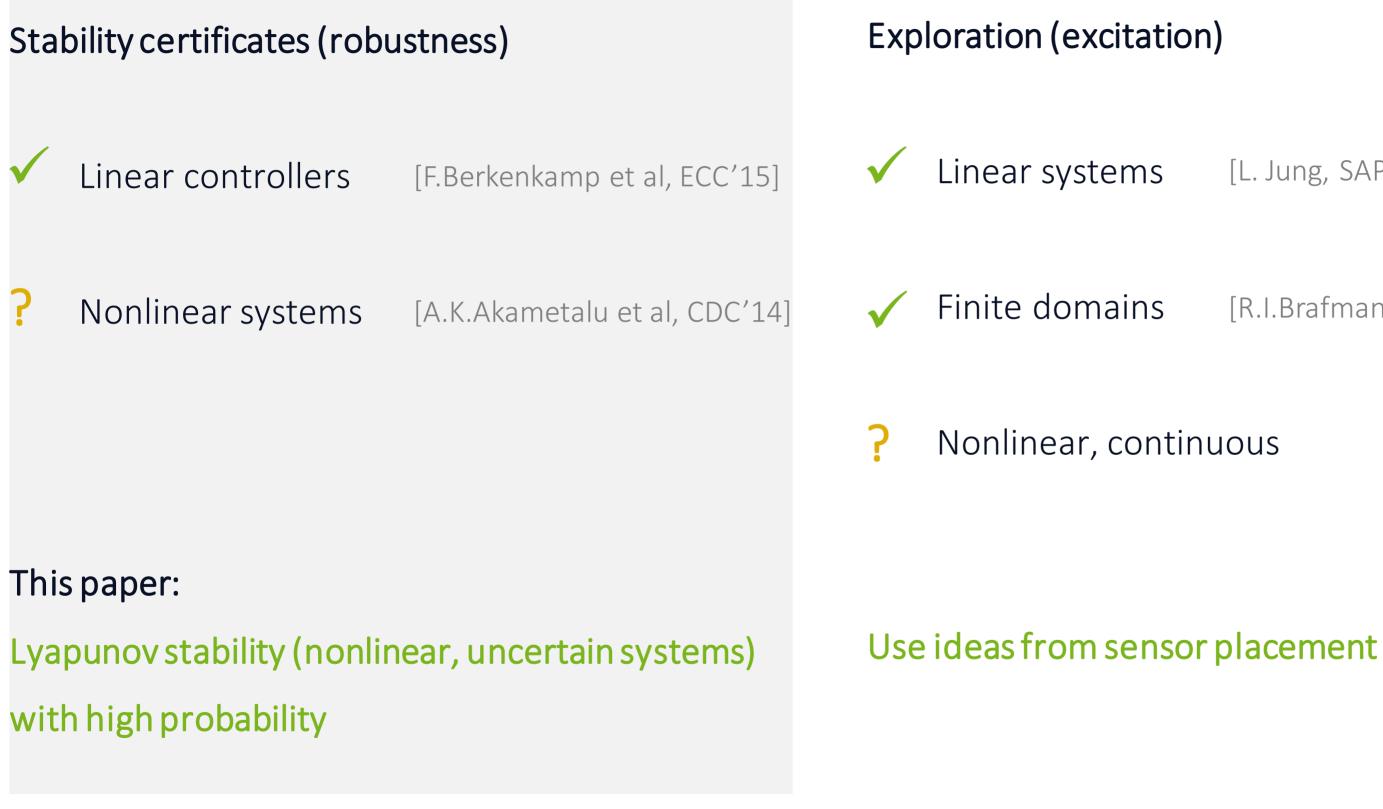
Where is this control policy safe to use?

You can experiment, but no system failures!

Felix Berkenkamp

with $u(t) = \pi(x(t))$

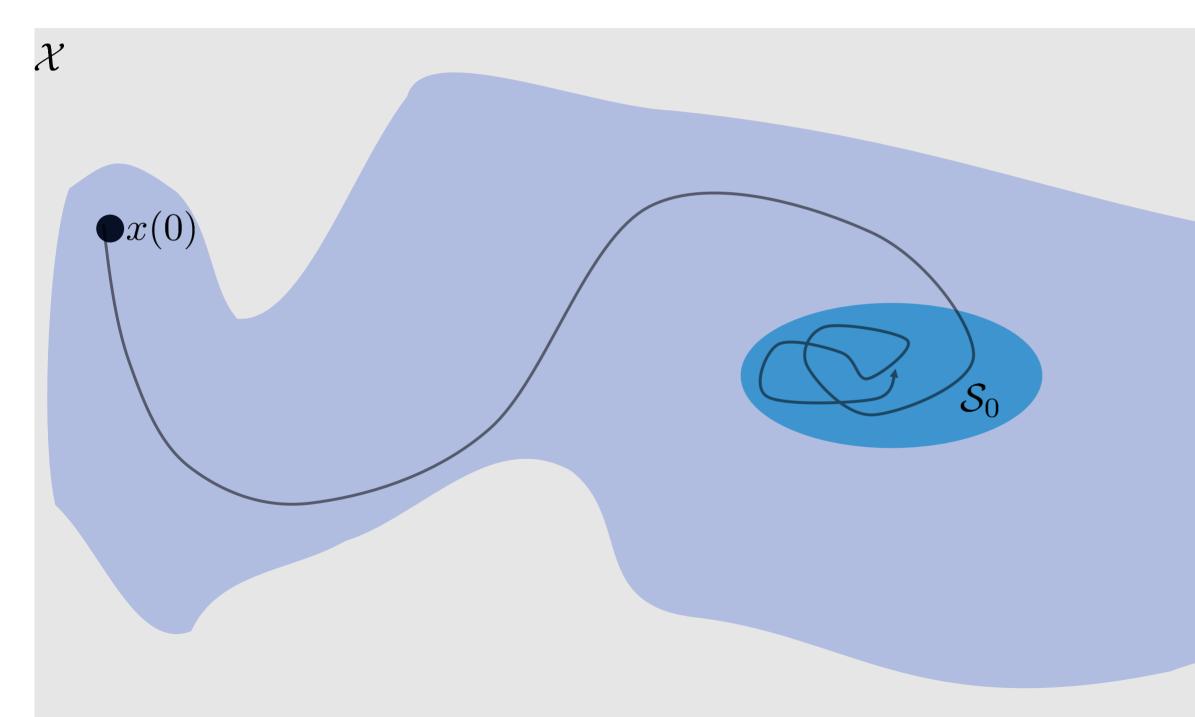




ETH zürich

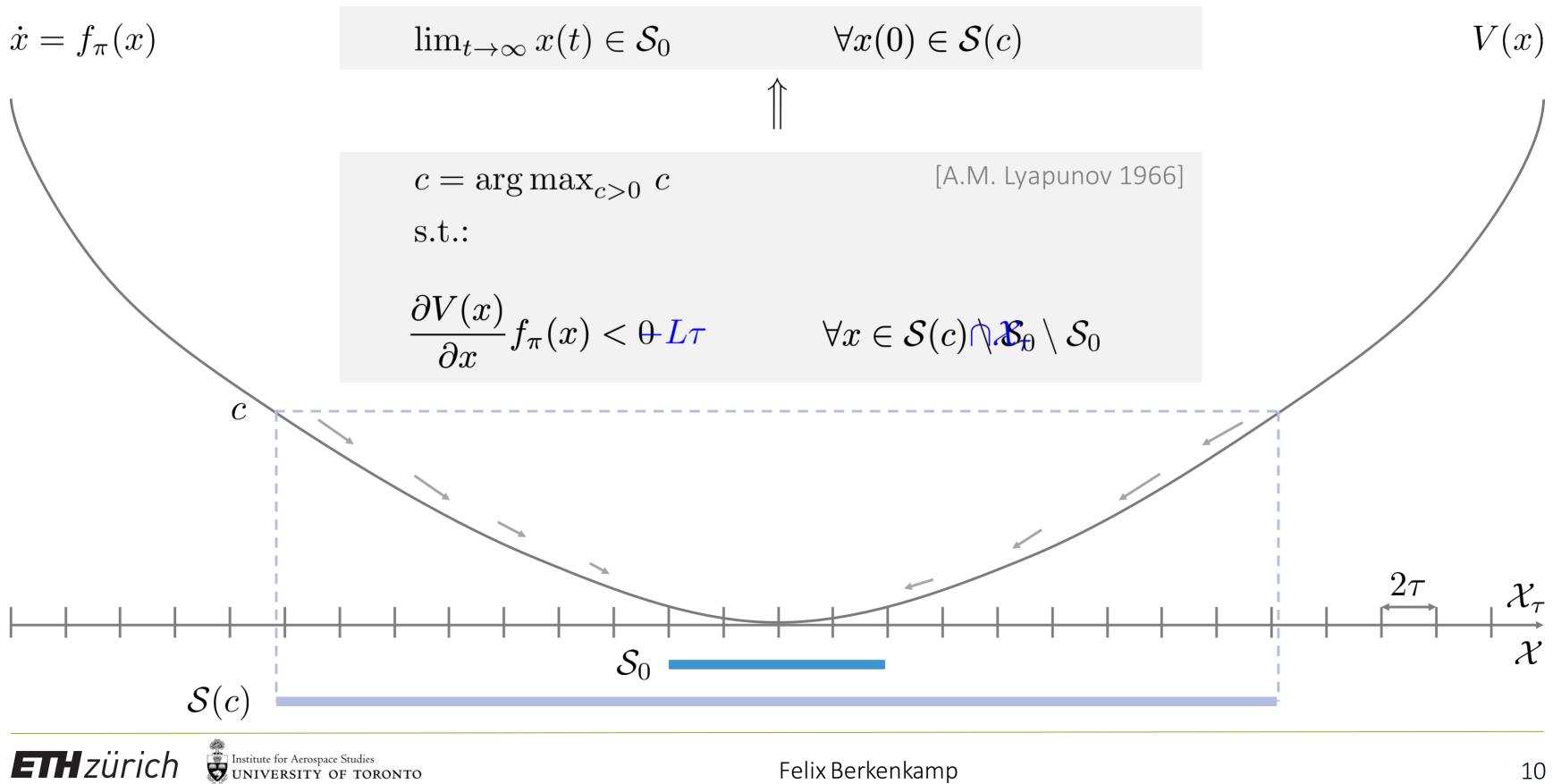
- [L. Jung, SAP'98]
- [R.I.Brafman et al, JMLR'02]

Region of attraction



Felix Berkenkamp

$\lim_{t \to \infty} x(t) \in \mathcal{S}_0, \quad \forall x(0) \in \mathcal{S}$



 $\dot{x} = f_{\pi}(x) + g_{\pi}(x)$ unknown model

 $c = \arg \max_{c>0} c$ s.t.:

$$\frac{\partial V(x)}{\partial x} f_{\pi}(x) < -L\tau \qquad \forall x \in \mathbb{C}$$

known systems: [R. Bobiti, M. Lazar, CDC 2016]

 $\dot{x} = f_{\pi}(x) +$ $g_{\pi}(x)$ unknown model

high probability confidence intervals

Lipschitz continuous

 $\dot{x} = f_{\pi}(x) + \underbrace{g_{\pi}(x)}_{}$ unknown model

$$c = \arg \max_{c>0} c$$

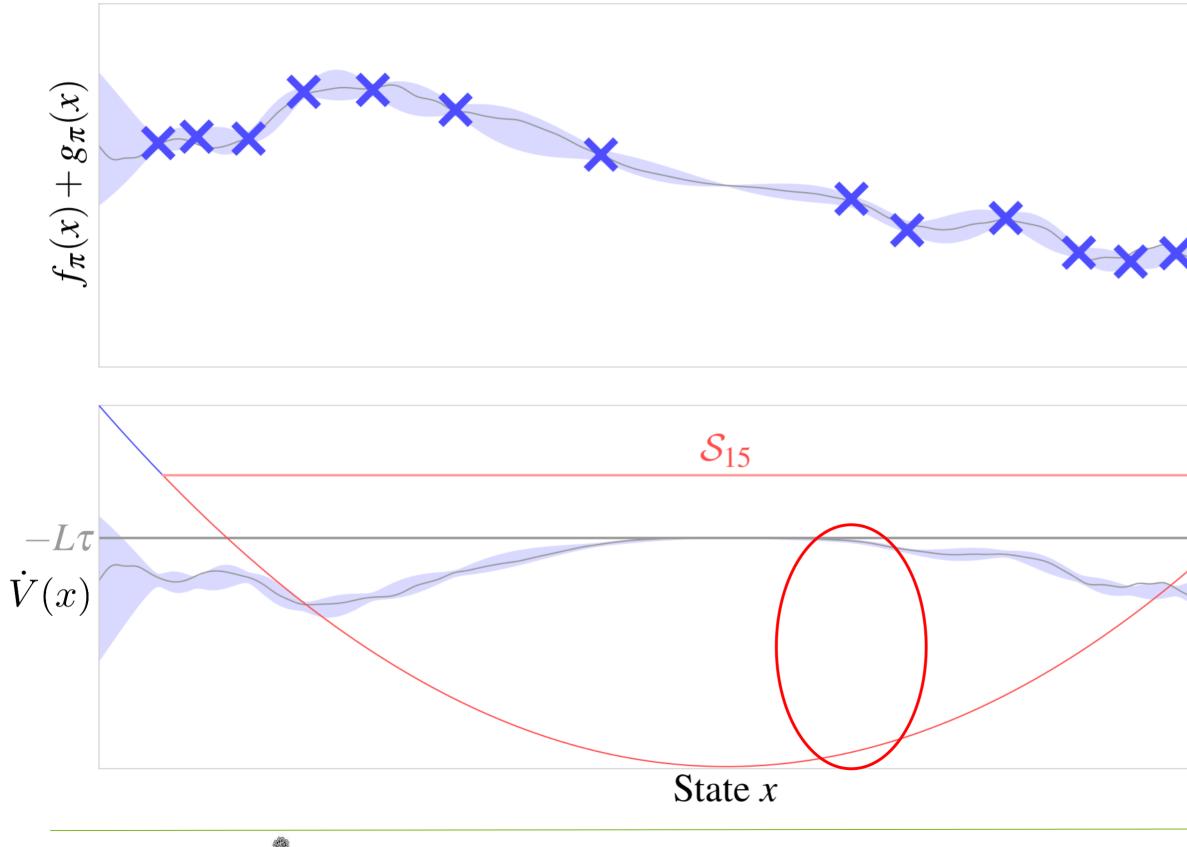
s.t.:
$$\Pr\left\{\frac{\partial V(x)}{\partial x} \left(\int_{\pi} f(x) x + \int_{\pi} f(x) \right) x \ll \mathcal{S}(x) \cap \forall x_{\tau} \notin \mathcal{S}(x) \right\}$$

True system is stable within $\mathcal{S}(c)$ with high probability!

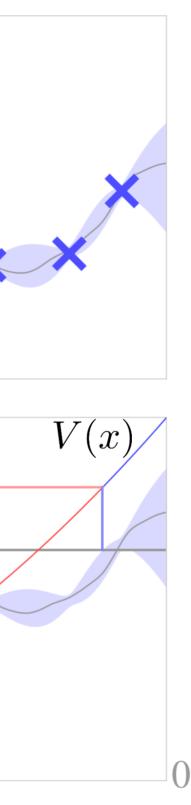
Felix Berkenkamp

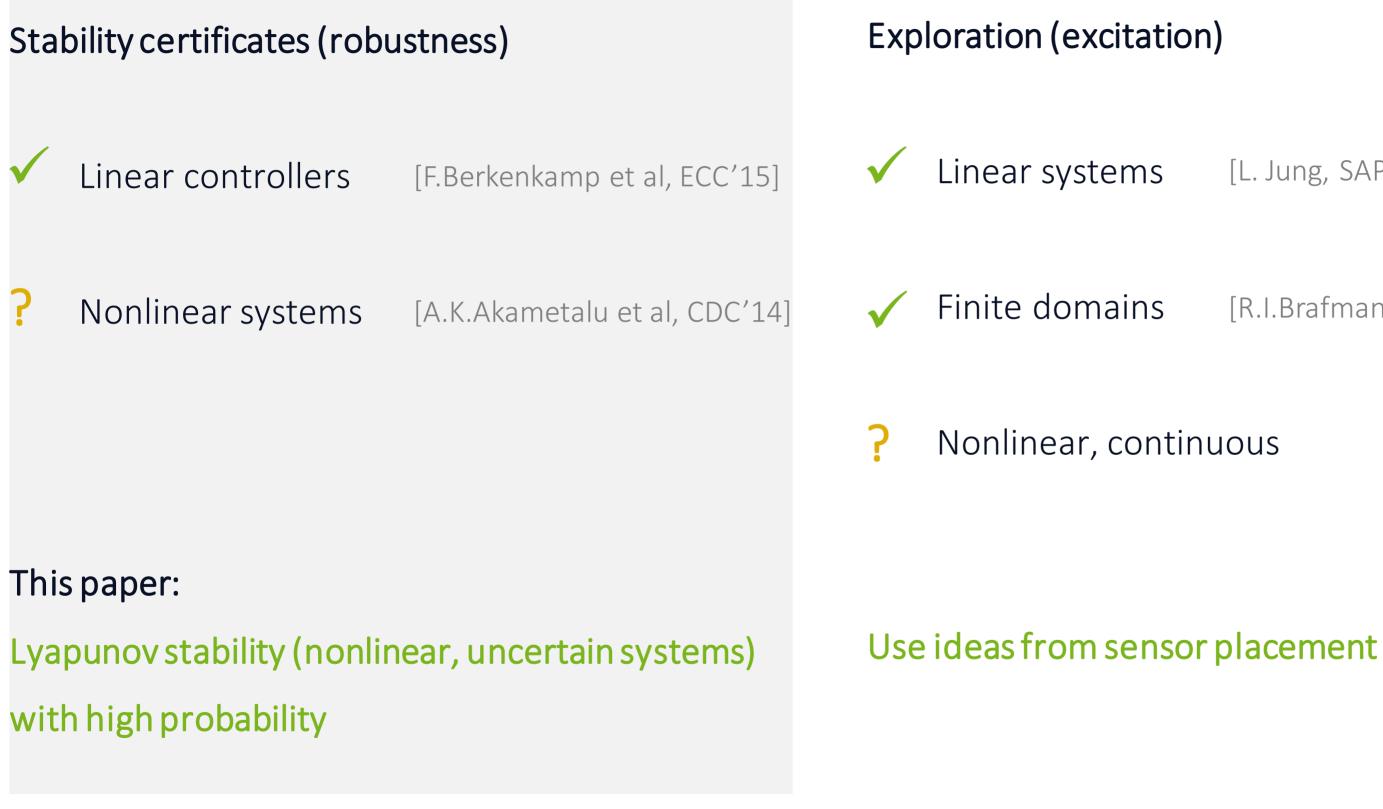
$\mathcal{C}(c) \cap \mathcal{X}_{\tau} \setminus \mathcal{S}_0 \bigg\} \ge 1 - \delta$

Exploring the safe set



Institute for Aerospace Studies UNIVERSITY OF TORONTO





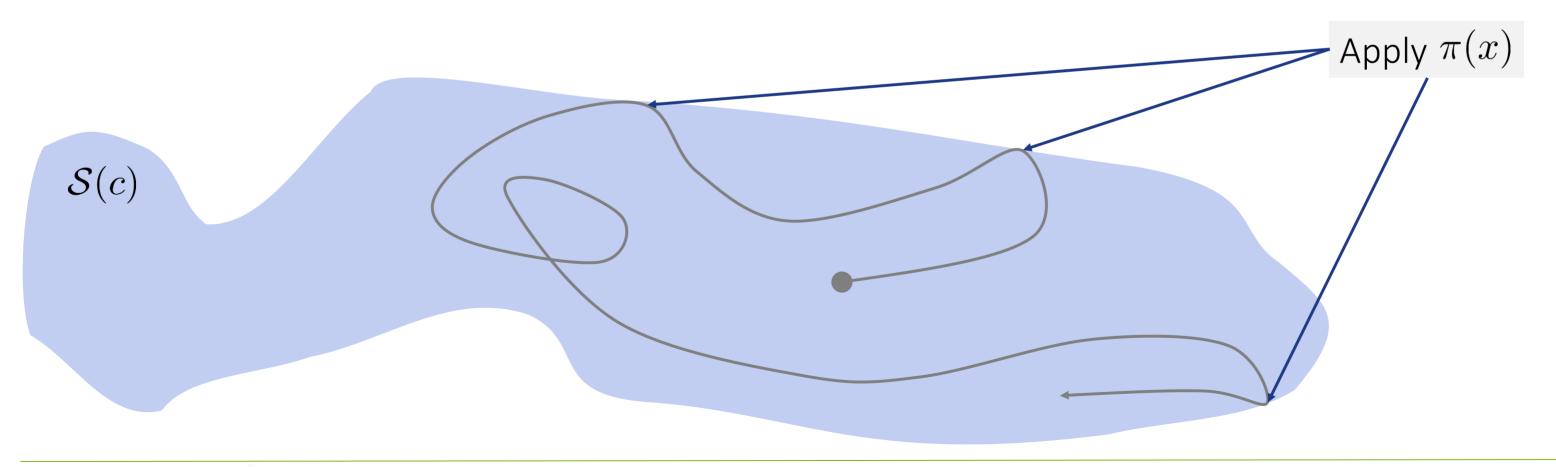
ETH zürich

- [L. Jung, SAP'98]
- [R.I.Brafman et al, JMLR'02]

How to actively explore?

Do we converge to maximum safe set?

The policy $\pi(x)$ is safe: keeps us in $\mathcal{S}(c)$



Close-to-optimal measurements: [A.Krause, C.Guestrin, UAI'05]

 $x_n = \underset{x \in \mathcal{S}(c_n)}{\operatorname{arg\,max}} \sigma_{n-1}(x)$

Theorem: Guaranteed to *converge* to the maximum safe levelset up to a certain *accuracy* after a *finite* number of data points – *without leaving* this safe levelset with high probability.

Bound depends on

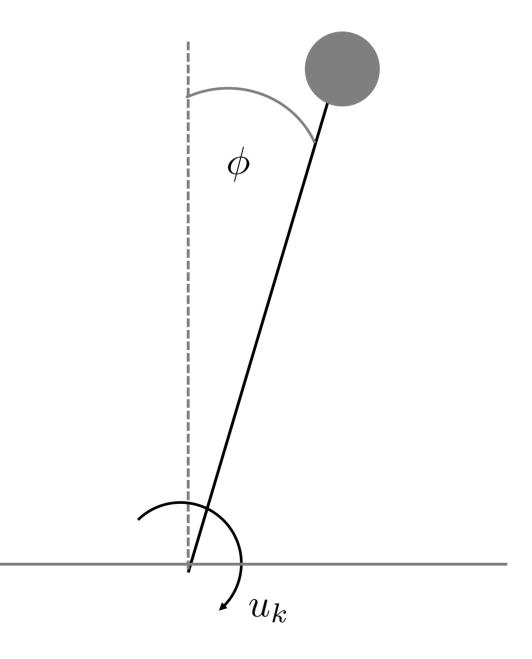
- Size of the maximum safe levelset
- Information capacity of the Gaussian process model
- Accuracy

Maximum torque limited!

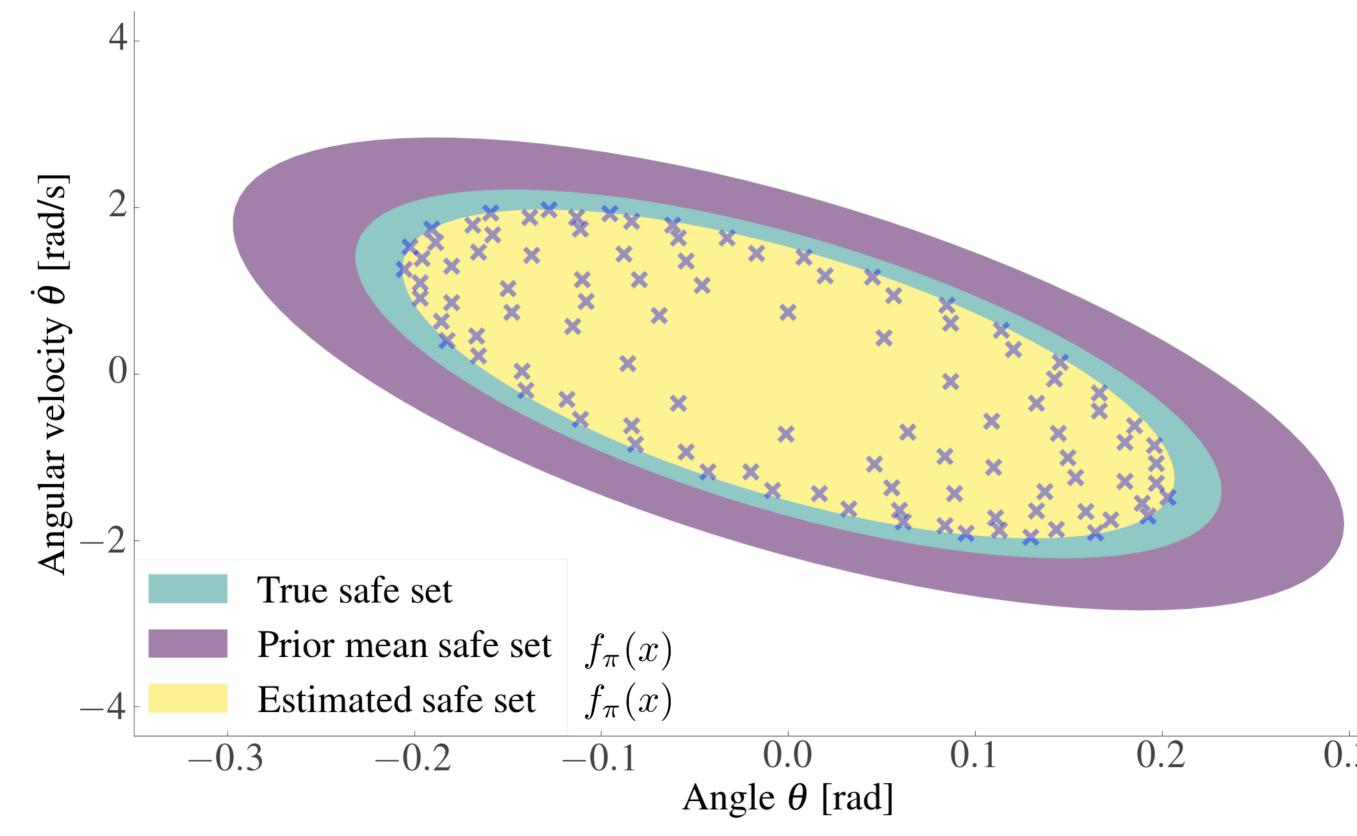
Safe exploration so that the pendulum doesn't fall.

Controller: LQR with prior mean model

Quadratic Lyapunov function



Safe learning for an inverted pendulum



ETH zürich

Institute for Aerospace Studies UNIVERSITY OF TORONTO

Felix Berkenkamp

0.3

Can simultaneously learn system dynamics and give stability guarantees

Lyapunov stability for nonlinear, uncertain systems (with high probability, discretization) Convergence guarantees

There is hope for **safe reinforcement learning**!

More safe learning at http://berkenkamp.me

ETH zürich

