Aerial Rock Fragmentation Analysis in Low-Light Condition Using UAV Technology

T. Bamford¹ K. Esmaeili¹ A. P. Schoellig²

¹Lassonde Institute of Mining University of Toronto

²University of Toronto Institute for Aerospace Studies University of Toronto

APCOM, August 2017

We use UAV technology to frequently measure rock fragmentation.

In this work we found that:

- Lighting conditions greatly impact photographic analysis accuracy
- Artificial lighting applied evenly can improve prediction accuracy and enable measurement in low light conditions

2 Related Work

Table of Contents

Motivation and Problem Statement

2 Related Work

3 Methods

5 Summary

Post-blast rock fragmentation influences:

- Comminution energy consumption
- Mill throughput rates
- Digging and hauling equipment efficiency
- Measuring it is important for optimizing a mining operation.

Unmanned Aerial Vehicle (UAV) technology can measure rock fragmentation:

- Provide higher spatial- and temporal-resolution data
- Automate data collection
- Collect from typically inaccessible and hazardous areas
- Improve safety for technicians
- Frequently measure surface to predict internal distribution

To frequently measure rock fragmentation consider:

- Night shifts in surface mines
- Underground working conditions

However, UAVs equipped with common cameras in poor lighting:

• Difficult to delineate particles

Two questions this work investigates:

- How much does poor lighting effect accuracy?
- Can artificial lighting reduce this effect?

2 Related Work

3 Methods

5 Summary

DYNAMIC SYSTEMS LAB

Related Work

Limitations for photographic and 3D measurement of rock fragmentation:

Limit	Photographic	3D techniques
Measure surface not internal distribution	\checkmark	\checkmark
Particle delineation error	\checkmark	\checkmark
Perspective distortion	\checkmark	
Inability to meaningfully detect fines	\checkmark	

Bamford, Esmaeili, Schoellig (UofT)

3D techniques using LIDAR and stereo imaging control some limitations, however:

- Have not enabled automated measurement
- Currently capture from fixed locations
- Addition to UAV can be expensive

2 Related Work

5 Summary

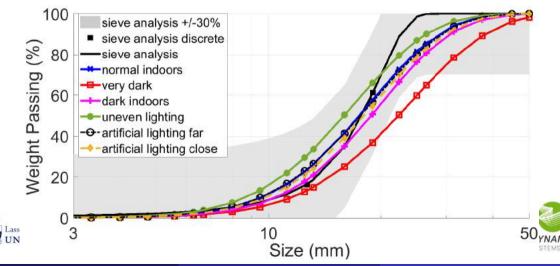
Compare UAV rock fragmentation measurement using commercial image analysis software with sieve analysis in different lighting conditions for:

- Controlled lab environment
- Outdoor Experiment

Compare UAV rock fragmentation measurement using commercial image analysis software with sieve analysis in different lighting conditions for:

- Controlled lab environment
- Outdoor Experiment

2 Related Work



Raw and delineated photos in ideal (a) and dark (b) lighting. a)

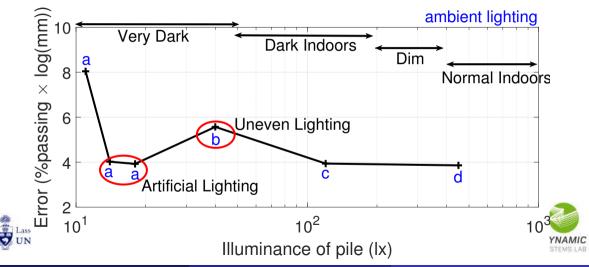
AMIC

b)

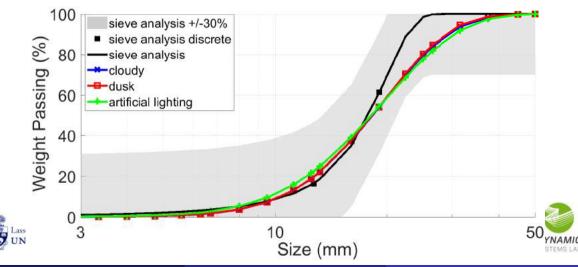
Rock fragmentation analysis results for indoor environment.

Illuminance Amount of luminous flux per unit area [lx]

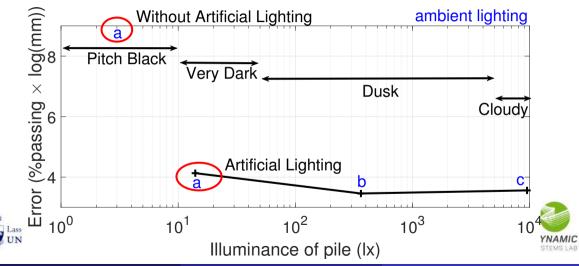
Error Area between sieve and estimate curves [percent passing \times log(mm)]



Bamford, Esmaeili, Schoellig (UofT)


Rock Fragmentation Analysis Using UAV

Distribution error plotted with illuminance measurement for indoor environment.



Rock Fragmentation Analysis Using UAV

Rock fragmentation analysis results for outdoor experiment.

Distribution error plotted with illuminance measurement for indoor environment.

2 Related Work

In this work we found that:

- Lighting conditions greatly impact photographic analysis accuracy
- Artificial lighting applied evenly can improve prediction accuracy

2 Related Work

5 Summary

DYNAMIC SYSTEMS LAB

Future Work

Items that have been raised during this work:

- Test concepts in a mining environment
- Incorporate measurement uncertainty into analysis
- Configure better cameras (ex. high dynamic range)
- Light inaccessible areas
- Increase control over image analysis
- Understand trade-offs using 3D techniques

assonde Institute of Mining

omre-researchgroup.com dynsyslab.org

Thank you! Thomas Bamford thomas.bamford@mail.utoronto.ca

NSERC CRSNG

