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Bridging the Model-Reality Gap with Lipschitz
Network Adaptation

Siqi Zhou, Karime Pereida, Wenda Zhao, and Angela P. Schoellig

Abstract—As robots venture into the real world, they are
subject to unmodeled dynamics and disturbances. Traditional
model-based control approaches have been proven successful in
relatively static and known operating environments. However,
when an accurate model of the robot is not available, model-
based design can lead to suboptimal and even unsafe behaviour.
In this work, we propose a method that bridges the model-reality
gap and enables the application of model-based approaches
even if dynamic uncertainties are present. In particular, we
present a learning-based model reference adaptation approach
that makes a robot system, with possibly uncertain dynamics,
behave as a predefined reference model. In turn, the reference
model can be used for model-based controller design. In contrast
to typical model reference adaptation control approaches, we
leverage the representative power of neural networks to capture
highly nonlinear dynamics uncertainties and guarantee stability
by encoding a certifying Lipschitz condition in the architectural
design of a special type of neural network called the Lipschitz
network. Our approach applies to a general class of nonlinear
control-affine systems even when our prior knowledge about
the true robot system is limited. We demonstrate our approach
in flying inverted pendulum experiments, where an off-the-shelf
quadrotor is challenged to balance an inverted pendulum while
hovering or tracking circular trajectories.

Index Terms—Machine learning for robot control, deep learn-
ing methods, robust/adaptive control.

I. INTRODUCTION

ADVANCES in hardware and algorithms have enabled
robots to enter more complex environments and perform

increasingly versatile tasks such as home and healthcare ser-
vices, search and rescue, aerial package delivery, and industrial
inspections. In these applications, robots need to cope with
unmodeled dynamics, external time-varying disturbances, and
other adverse factors such as communication latency. These
practical issues pose challenges to the design of controllers
using standard model-based techniques.

In the literature, common model-based control techniques
include, but are not limited to, model predictive control (MPC)
and linear quadratic regulators (LQR). These approaches are
effective when the dynamics model of the robot system is
sufficiently accurate and the operating environment does not
change significantly over time. When these conditions are not
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Fig. 1. Block diagrams of the proposed approach. The grey box represents
the robot system equipped with the proposed learning-based model reference
adaptation module (green box). The reference sent to the robot system is
adapted online by a Lipschitz network (blue box) such that the response from
the input u to the output ya resembles the response of a reference model,
which can be used in the outer model-based controller or planner. A video
of flying inverted pendulum experimental results can be found here: http:
//tiny.cc/lipnet-pendulum

met, model-based designs can lead to suboptimal or unsafe
behaviour [1]. While there exist robust approaches that account
for uncertainties by considering worst-case scenarios, these
robust techniques can be often overly conservative [2].

An alternative approach to cope with dynamics uncertainty
is to enable the system to adapt. One particular set of adaptive
approaches is model reference adaptive control (MRAC),
which aims to make the controlled system behave similarly to
a desired reference model despite unknown disturbances [3].
Although classical adaptive control approaches techniques
provide stability guarantees, they usually assume a particular
system structure that limit the range of robotic applications to
which they can be applied [3].

In this work, we propose a novel learning-based MRAC
approach that bridges the model-reality gap and enables us
to leverage the power and simplicity of model-based control
techniques, even in dynamic and uncertain conditions. In
particular, we consider the hierarchical architecture illustrated
in Figure 1, where a low-level adaptive module (green box)
modifies the input to the system such that the system’s input-
output response resembles that of the reference model and
a high-level controller is designed based on the reference

http://www.dynsyslab.org
http://tiny.cc/lipnet-pendulum
http://tiny.cc/lipnet-pendulum
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model to achieve a desired robot behaviour. In contrast to
existing MRAC approaches such as [3]–[5], we leverage the
expressive power of deep neural networks (DNNs) to capture a
broader range of unmodelled dynamics and guarantee stability
by exploiting the Lipschitz property of a special type of DNN
called Lipschitz network (LipNet) [6].

Our contributions are as follows:
(i) presenting a Lipschitz network adaptive control approach

that makes a nonlinear robot system, with possibly un-
known dynamics, behave as a reference model,

(ii) deriving a condition that guarantees stability of the pro-
posed approach by exploiting the Lipschitz properties of
the LipNet module, and

(iii) experimentally verifying the efficacy of the proposed
approach for bridging the model-reality gap by balancing
an inverted pendulum on a quadrotor platform despite
dynamics uncertainties.

II. RELATED WORK

The rich literature on model-based control approaches
shows the effectiveness, safety, and simplicity of these tech-
niques for cases when the dynamics model of system is
accurate and the operating environment is static. The model-
reality gap is a crucial factor that prevents traditional model-
based approaches to be directly applicable to robot systems
that are subject to uncertain dynamics and disturbances. One
can think of three approaches to address the model-reality
gap [1]: (i) robustness, (ii) adaptation, and (iii) anticipation.

The robustness approach aims to design control laws that
are stable for a range of unknown dynamics and disturbances
that may affect the robotic system. Robust control approaches
include, but are not limited to, sliding-mode control [7], robust
MPC [8], H∞ control [9], as well as more recent domain
randomization techniques for sim-to-real transfer [10]. While
robust approaches typically guarantee stability and safety in
the presence of unmodelled dynamics and disturbances, their
performance can be conservative.

In contrast, adaptation approaches address the model-reality
gap by adapting or learning online using data collected by
the robot. Adaptive controllers such as MRAC [3] and L1

adaptive control [11] are fast and able to handle unmod-
elled dynamics. In order to further improve performance,
learning-based controllers that leverage past experience are
being proposed. Non-parametric approaches include learning-
based controllers using Gaussian Processes (GPs) [12], which
leverage past experience to learn a better system model, but
can be computationally expensive resulting in a slow response
to changes in the environment. While there are newer learning
MPC approaches using Bayesian linear regression (BLR) [13],
formal guarantees are not given.

Anticipation approaches address the model-reality gap by
learning offline. In DNN-based inverse control, a mapping
from desired output to actual output is learned offline [14]
and used to improve tracking performance of a quadrotor. In
reinforcement learning (RL), latent variables that represent the
environment are used to anticipate changes in the environment
for off-policy RL [15]. While anticipation approaches are
effective for addressing the uncertainties for a broad range

of systems, they typically lack the adaptivity to cope with
changes during real-time execution.

Adaptive controllers handle unmodelled dynamics and dis-
turbances without the need for conservative control laws or
significant amounts of past experience to learn offline. Due
to their expensiveness and fixed cost for online inference,
neural networks (NNs) are emerging as attractive options for
implementing adaptive frameworks on resource-constrained
robot platforms. Neural networks have previously been used
in online inverse control, but they suffered from a lack of ro-
bustness against disturbances [16] and the need for appropriate
initialization in order to converge [17]. They have also been
used to relax the assumptions of conventional MRAC (e.g.,
[18]). However, earlier studies often use radial basis function
(RBF) NNs, which require a sufficient preallocation of basis
functions over the operating domain; the desired theoretical
guarantees do not hold outside of the targeted operating do-
main. Recently, an asynchronous DNN MRAC framework was
proposed to mitigate the limitation of RBF NNs by learning
“features” at a slower timescale [19]; but, the approach only
considers systems with additive input uncertainties.

In this work, we consider a more general class of control-
affine nonlinear systems and leverage the expressiveness of
DNNs to learn complex dynamic uncertainties. The stability
of the adapted system is guaranteed by exploiting the Lipschitz
properties of the Lipschitz network. We demonstrate our
approach in flying inverted pendulum experiments.

III. PROBLEM FORMULATION
We consider robot systems whose dynamics can be repre-

sented in the following form:

xa,k+1 = fa(xa,k) + ga(xa,k)ua,k

ya,k = ha(xa,k) ,
(1)

where the subscript a denotes the actual robot system, k ∈
Z≥0 is the discrete-time index, xa ∈ Rn is the system state,
ua ∈ R is the system input, ya ∈ R is the system output,
and fa, ga, and ha are smooth nonlinear functions that are
possibly unknown a-priori. Our goal is to design a learning-
based control law such that the robot behaves as a reference
model, which can subsequently be leveraged when designing
the outer-loop controller or planner.

The reference model can have the following form:

xm,k+1 = fm(xm,k) + gm(xm,k)um,k

ym,k = hm(xm,k) ,
(2)

where the subscript m denotes the reference model, the
reference model state xm, input um, and output ym are defined
analogously as in (1), and fm, gm, and hm are smooth non-
linear functions. Note that the reference model has a generic
control-affine form. Practically, one could use a nonlinear
reference model that best captures our prior knowledge about
the robot system. Alternatively, to simplify the outer-loop
controller design, one may choose a linear reference model

xm,k+1 = Amxm,k +Bmum,k

ym,k = Cmxm,k ,
(3)

where (Am, Bm, Cm) are constant matrices with consistent
dimensions, and use well-established linear control tools.
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We consider a control architecture as shown in Figure 1b.
Without loss of generality, we assume that the inputs to the
robot system and the reference model are

ua,k = uk + δuk and um,k = uk, (4)

where uk is the input command computed by the outer-
loop model-based controller. The objective of model reference
adaptation is to learn the input adjustment δuk such that the
output of the robot system (1), ya,k, tracks the output of the
reference system (2), ym,k.

We make the following assumptions: (i) the dynamics of
the robot system is minimum phase (i.e., has stable forward
and inverse dynamics) and has a well-defined relative degree,
and (ii) the reference model is stable and has the same
relative degree as the robot system. As discussed in [14],
the first assumption is necessary to safely apply an inverse
dynamics learning approach and is satisfied by closed-loop
stabilized robot systems such as quadrotors and manipulators.
The second assumption is also not restrictive, as the relative
degree of a robot system can be estimated from experiments
or inferred from our prior knowledge [14], and the reference
model can be designed to satisfy this assumption.

Note that the choice of a reference model is generally
problem dependent. For instance, it can be chosen to achieve
a certain desired response or maximize the stability margin of
the system. In practice, one would need to choose a reference
model that is feasible for the robot to follow or robustly
account for this factor in the outer-loop controller design.

IV. METHODOLOGY

In this section, we present our proposed LipNet-based
MRAC (LipNet-MRAC) approach to enforce a robot to behave
as a predefined reference model. To facilitate our discussion,
in Sec. IV-A, we present a brief background on the LipNet [6].
In Sec. IV-B, we derive an ideal model reference adaptation
law based on the dynamics model of the robot system. In
Sec. IV-C, we introduce an online algorithm to learn the
model reference adaptation law with a LipNet when the
robot dynamics are unknown, and in Sec. IV-D, we derive
a Lispchitz condition that guarantees stability of the proposed
LipNet-MRAC approach.

A. Background on Lipschitz Networks

In contrast to conventional feedforward networks whose
Lipschitz constants are often difficult to estimate [20], LipNets
have exact, predefined Lipschitz constants that the designer
can choose freely [6]. Setting and knowing the Lipschitz
constant is critical for guaranteeing stability of NN-based
control frameworks [14], [21].

In this work, we consider an M -layer neural network Tθ(ξ)
that can be expressed as follows:

Tθ(ξ) = WMσ(WM−1σ(. . . σ(W 1ξ + b1)) + bM−1) + bM ,
(5)

where ξ is the input of the network, {W 1,W 2, ...,WM} are
the weights matrices, {b1, b2, ..., bM} are the bias vectors, θ
denotes an augmented vector of the network weight and bias
parameters, and σ(·) is the activation function.

Different from conventional networks, LipNets enforce ex-
act Lispchitz constraints by ensuring that the input-output
gradient norm is preserved by each linear and activation layer:
||JTl zl|| = ||zl||, where zl and Jl are the input and the input-
output Jacobian of layer l, and || · || is the Euclidean norm of a
vector. To realize gradient norm preservation, [6] proposes to
(i) orthonormalize the weight matrices in each linear layer such
that the weight matrices have singular values of 1 exactly, and
(ii) use a gradient-preserving activation function GroupSort
that sorts the input to the hidden layer. More specifically,
the GroupSort activation function divides the input to the
hidden layer into groups and sorts the values of each group in
ascending or descending order. As an example, with full sort,
we have [1, 2, 3, 4]T = GroupSort([3, 2, 4, 1]T ).

Since the GroupSort activation function only permutates
the inputs to the layer, the input-output gradient norm of the
GroupSort layer is 1. By design, the overall network has a Lip-
schitz constant of 1. The 1-Lipschitz network can be extended
to approximate a function with an arbitrary Lipschitz constant
by scaling the output of the network by the desired Lipschitz
constant [6]. In contrast to spectral normalization approaches,
where the weight matrices of the network are scaled by their
spectral norms, LipNets have exact Lipschitz constants, which
reduces the conservatism for imposing Lipschitz constraints.

B. Model Reference Adaptive Law

In this subsection, using the representations of the robot
system (1) and the reference model (2), we derive the model
reference adaptive law to be approximated by the LipNet.

To facilitate our discussion, we introduce the notion of
system relative degree. We define fa ◦ ga as the composition
fa(ga(·)) of the functions fa and ga, and f ia as the ith
composition of the function fa with f0a (x) = fa(x) and
f ia(x) = f i−1a (x)◦fa(x). As discussed in [14], a nonlinear sys-
tem (1) is said to have a relative degree of r, if r is the smallest
integer such that ∂

∂ua
ha ◦ fr−1a (fa(x) + ga(x)ua(x)) 6= 0 in

a neighbourhood of an operating point (x̄a, ūa). Intuitively,
for a discrete-time system, the relative degree r defines the
number of sample delays between applying an input ua to the
system and seeing a corresponding change in the output ya.

By leveraging the definition of relative degree, we can relate
the input ua and output ya of the robot system (1):

ya,k+r = Fa(xa,k) + Ga(xa,k)ua,k, (6)

where Fa(xa,k) = ha ◦ fra (xa,k) and Ga(xa,k) = ∂
∂ua,k

ha ◦
fr−1a (fa(xa,k)+ga(xa,k)ua,k). This input-output relationship
allows us to predict the future output of the robot system
ya,k+r based on the current input ua,k and state xa,k.

By assuming that the reference model is designed to have
the same relative degree r, we can similarly derive the input-
output equation of the reference system:

ym,k+r = Fm(xm,k) + Gm(xm,k)um,k, (7)

where Fm(xm,k) and Gm(xm,k) are defined analogously to
Fa(xa,k) and Ga(xa,k) for (1). For a linear reference sys-
tem (3), the input-output equation reduces to:

ym,k+r = Amxm,k + Bmum,k, (8)
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where Am = CmA
r
m and Bm = CmA

r−1
m Bm.

Recall the architecture in Figure 1, where the inputs to
the robot system and the reference model are defined by (4).
In order to make the robot system behave like the reference
model, we enforce the outputs of the robot system and the
reference model to be identical. In particular, by setting
ya,k+r = ym,k+r and solving for δuk, one can show that the
ideal input adjustment δuk for model reference adaptation is

δuk =
Fm(xm,k)−Fa(xa,k) + Gm(xm,k) uk

Ga(xa,k)
− uk. (9)

When the robot dynamics is unknown, we can treat the
ideal adjustment (9) as a nonlinear function that maps from
the robot system state xa,k, the reference model state xm,k,
and the input signal uk to the input adjustment δuk:

δuk = Tθ(xa,k, xm,k, uk). (10)

C. Online Learning of the Model Reference Adaptation Law
In this subsection, we outline an online learning algorithm

to discover the ideal adaptation law (9) via a Lipschitz network
when the robot dynamics (1) is not known.

We define the performance error of the neural network as
the difference between the output of the robot system (1) and
the output of the reference model (2): Ek = ym,k+r− ya,k+r.
At each time step k, the parameters of the Lipschitz network
are updated to minimize the squared error cost function:

Jk =
1

2
E2
k =

1

2
(ym,k+r − ya,k+r)2 . (11)

We use the following gradient-based approach to update
the network parameters, θk+1 = θk + ∆θk. The change in the
network parameters is:

∆θk = −λ∇θJk = λHkGkEk, (12)

where λ > 0 is the learning rate, Gk = ∇θTθ|xa,k,xm,k,um,k
is

the gradient of the network output with respect to its param-
eters evaluated at (xa,k, xm,k, um,k), and Hk = ∇ua,k

ya,k+r
is the input-output gradient of the robot system.

To realize the online adaptation law (12), we need to
predict the system output ya,k+r and estimate the input-to-
output gradient ∇ua,k

ya,k+r. Similar to [16], [22], we can
simultaneously learn a forward model for the robot system to
estimate ya,k+r and ∇ua,k

ya,k+r (see (6)):

Remark 1 (Forward Model Learning [22]). At time k, one
can construct a paired dataset with inputs {ya,p−r, ua,p−r}
and outputs {ya,p} based on the latest N time steps p =
{k −N, ..., k} and use standard supervised learning to train
a forward model (e.g., a BLR model) as a local approximator
of (6). The model can be then used to estimate ya,k+r and
∇ua,k

ya,k+r by setting the input to (xa,k, ua,k).

We note that inaccuracies in the forward dynamics model
could, in general, lower the adaptation performance but will
not jeopardize the stability of the adapted system. As will
be shown in Sec. IV-D, the stability of the proposed LipNet-
MRAC approach is guaranteed if the Lipschitz constant of the
LipNet satisfies a small-gain-type condition.

In the case where a prediction model is not available, one
could still apply the proposed algorithm for model reference

adaptation but with a sample delay of r steps, which is
typically a small integer for robot systems such as quadrotors.
For a linear system, ∇ua,k

ya,k+r is a constant that can be
factored into the learning rate λ as a tuning parameter, and its
estimation is not required.

D. Stability Analysis

In this subsection, we provide stability guarantees of the
system including the model reference adaptation law by ex-
ploiting the Lipschitz property of the learning module. In the
stability analysis, we make the following assumptions:

(A1) The state of the robot system can be bounded by ||xa||l ≤
γ||ua||l +β, where γ and β are positive constant scalars,
||·||l denotes the l2 signal norm, and the variables without
the subscripts k denote the corresponding signals.

(A2) The input adjustment computed by the adaptation module
satisfies δuk = 0 for (xa,k, xm,k, uk) = (0, 0, 0).

(A3) The state of the reference system xm is bounded (i.e.,
||xm||l <∞).

Assumption (A1) holds for finite-gain l2 stable systems and
is common assumption in small-gain-type theorems, which are
the basis of the proof presented below. The scalar γ is an upper
bound on the input-to-state gain of the robot system, and the
scalar β is a constant value associated with the initial state of
the robot system. As shown in the proof below, β affects the
upper bound on the state of the system but does not impact
the stability of the adapted system. Assumption (A2) is true
for any robot and reference systems satisfying Fa(0) = 0
and Fm(0) = 0. This condition is not restrictive and can be
practically enforced by removing the bias vectors from the
LipNet architecture. Assumption (A3) can be satisfied by a
proper choice of stable reference system.

Theorem 1. Consider the proposed LipNet-MRAC approach
shown in Figure 1 (grey box). Under assumptions (A1)-(A3),
the dynamics of the adapted system from u to xa is finite-
gain l2 stable if L < 1/γ, where L is the Lipschitz constant
of the LipNet, which we are free to choose, and γ is an upper
bound on the input-to-state gain of the robot system.

Proof. By assumption (A1), the state of the robot system can
be bounded as follows: ||xa||l ≤ γ||ua||l + β = γ||u +
δu||l + β ≤ γ||u||l + γ||δu||l + β. Moreover, by assump-
tion (A2) and the Lipschitz property of the LipNet, at any
instance, the input adjustment computed by the LipNet can
be bounded as ||δuk|| ≤ L||ξk||, where L is the Lipschitz
constant of the network, and ξ = [xTa , x

T
m, u]T denotes the

network input. It follows that ||δu||l =
(∑∞

k=0 ||δuk||2
)1/2 ≤(∑∞

k=0 L
2||ξk||2

)1/2
= L||ξ||l ≤ L||xa||l+L||xm||l+L||u||l.

Using the upper bound on ||δu||l, we obtain ||xa||l ≤ γ(1 +
L)||u||l + γL||xa||l + γL||xm||l + β. It can be shown that,
if L < 1/γ is satisfied, the state of the robot system can be
bounded by ||xa||l ≤

(
γ(1+L)||u||l+γL||xm||l+β

)
/(1−γL).

Since, by assumption (A3), ||xm||l is bounded, the dynamics
of the adapted system from u to xa is finite-gain l2 stable [23]
(cf. Figure 1b).

Theorem 1 provides an upper bound on the Lipschitz
constant of the adaptive network module to guarantee stability.
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Fig. 2. The proposed LipNet-MRAC approach effectively enforces the input-
output response of system (13) to behave as the the reference model (14)
(blue and red). The baseline response without adaptation is shown in grey.
In contrast, with the conventional NNet-MRAC (green), closed-loop stability
is not guaranteed. This simulation corresponds to one test input trajectory
uk = sin

(
2π
5
kT
)
+ 5 cos

(
2π
3
kT
)
− 5 with T = 0.01. The learning rate

is set to 33 for both approaches.

Fig. 3. The performance of the proposed LipNet-MRAC approach and the
NNet-MRAC on one test trajectory when different learning rates are used.
Using the LipNet-MRAC approach, we can always guarantee stability, and
the adaptation performance asymptotically approaches a lower bound as the
learning rate increases. However, with the NNet-MRAC approach, there is an
ideal learning rate that needs to be carefully chosen, which can be challenging
to find when we do not know the robot dynamics a-priori. The solid lines and
the shades show the means and one standard deviations for ten trials with
different initial network parameters.

This Lipschitz condition can be enforced via the architecture
design of the LipNet (Sec. IV-A). To enforce the Lipschitz
condition, we require an estimate of the upper bound of the
system gain γ, which can be estimated from system input-
output data [24], [25] or chosen conservatively based on our
prior knowledge of the system. Overestimating γ will lead to a
smaller, more conservative Lipschitz constant for the LipNet,
but the overall adapted system will remain stable.

V. SIMULATION EXAMPLE

In this section, we present a numerical example to illustrate
the proposed LipNet-MRAC approach.

We consider the following system:

xa,k+1 =

[
1 T
−T 1− T

]
xa,k + d(xa,k) +

[
0

0.6T

]
uk,

ya,k =
[
1 1

]
xa,k,

(13)

where d(xa,k) = 0.1T
[
xa,k,1 sin(xa,k,1), 0

]T
with T =

0.01 and xa,k,1 being the first element of xa,k. The gain of
system (13) has an upper bound of γ = 1.12. The system (13)
has a relative degree of 1. The reference model is

xm,k+1 =

[
1 T

−0.25T 1− T

]
xm,k +

[
0
T

]
um,k,

ym,k =
[
0.25 0.25

]
xm,k .

(14)

The reference system (14) also has a relative degree of 1.

Our goal is to design an adaptive module such that the sys-
tem output (13) tracks the output of the reference model (14).
In the discussion below, we first illustrate the efficacy of using
the proposed adaptive LipNet-MRAC approach to make a
nonlinear system (13) behave as a linear reference system (14)
without knowing the dynamics model of the nonlinear system
a-priori. We then show the benefit of using the proposed
LipNet-MRAC approach by comparing it to a learning-based
MRAC approach with a conventional feedforward network
architecture (NNet). Both the LipNet and the NNet have
a depth and width of 3 and 20. The LipNet has FullSort
hidden layers and orthogonalized linear layers [6], while the
NNet has tanh hidden layers and standard linear layers. The
same adaptation scheme (Sec. IV-C) is applied to update the
network parameters. The initial parameters of the networks
are randomly sampled from the standard normal distribution.
We compare the two approaches over ten randomly-initialized
trials. To satisfy Theorem 1 with the proposed LipNet-MRAC
approach, the Lipschitz constant of the LipNet is set to
1/γ = 0.89 to guarantee stability.

Figure 2 shows the response of the system (13) when using
(i) the proposed LipNet-MRAC approach, and (ii) a learning-
based MRAC approach with a conventional feedforward net-
work architecture (abbreviated as NNet). By comparing the
baseline response of system (13) (grey line) and the response
of system (13) with the adaptive LipNet (blue line), we can see
that the proposed approach effectively enforces the dynamics
of system (13) to behave as the reference model (red dashed
line) as desired. With the conventional NNet (green line),
stability is not guaranteed.

Figure 3 compares the adaptation error when different
learning rates are used with NNet and the proposed LipNet.
For each learning rate, the plot shows the mean and stan-
dard deviation of the root-mean-square (RMS) error over ten
randomly-initialized trials. NNet has one ideal learning rate
for which the mismatch between the system and the reference
model is the lowest. Searching for this ideal learning rate
requires trial-and-error and the system can be destabilized for
higher values. For the LipNet-MRAC approach, the stability of
the system is not jeopardized, regardless of the chosen learning
rate. Higher learning rates generally allow for faster adaptation
to any mismatches between the reference model and the robot
system. As a result, the adaptation RMSE for the LipNet-
MRAC case asymptotically approaches an ideal value as the
learning rate increases. By encoding the Lipschitz condition
(Theorem 1) in the LipNet design, we can safely increase the
learning rate for faster adaptation while guaranteeing stability
a-priori despite network parameter initialization.

VI. EXPERIMENTAL RESULTS

We demonstrate the proposed LipNet-MRAC approach
through flying inverted pendulum experiments. A video of the
quadrotor experiments presented in this section can be found
here: http://tiny.cc/lipnet-pendulum

A. Experimental Setup

The goal of the experiment is to stabilize an inverted pen-
dulum on a quadrotor vehicle (the Bebop) while hovering and

http://tiny.cc/lipnet-pendulum
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Fig. 4. We demonstrate our proposed approach using a flying inverted
pendulum, where a quadrotor (Parrot Bebop) balances a pendulum while
hovering at a fixed point or tracking a trajectory.
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-0.5

0

0.5
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1.5
Control Input Reference Model Baseline LipNet-MRAC

Fig. 5. Given the control input (dashed line), the proposed LipNet-MRAC
approach allows the actual acceleration of the quadrotor (blue) to closely
follow the output of the reference model (red). The response of the baseline
system without adaptation is shown in grey. A similar result is observed for
the acceleration tracking in the y-direction.

tracking a trajectory in the xy-plane. The state of the quadrotor
consists of the translational positions of its centre of mass
(COM) (x, y, z), the translational velocities (ẋ, ẏ, ż), the roll-
pitch-yaw Euler angles (φ, θ, ψ), and the angular velocities
(ωx, ωy, ωz). We model the pendulum as a point mass [26].
To capture the dynamics of the pendulum, we define four
additional states (r, s, ṙ, ṡ), which correspond to the positions
and velocities of the COM of the pendulum relative to the
positions and velocities of the COM of the quadrotor along
the x and the y axes—the pendulum is balanced in the upright
position when both r and s are zero. An illustration of the
experimental setup is shown in Figure 4.

By assuming that the quadrotor is stabilized at a constant
height (i.e., ż = 0), we can represent the translational dynam-
ics of flying inverted pendulum system in the form below:

xa,k+1 = fa(xa,k) + ga(xa,k)aa,k, (15)

where the state xa = (xa, ẋa, ra, ṙa, ya, ẏa, sa, ṡa) is an
augmentation of the pertinent states of the quadrotor and
the pendulum, and the input aa = (aa,x, aa,y) is the actual
acceleration of the quadrotor [26].

To design a stabilizing controller for the quadrotor-
pendulum system in (15), one could first design a controller to
compute the required acceleration of the quadrotor to stabilize
the quadrotor-pendulum dynamics (15) and then use an inner-
loop attitude controller to ensure that the desired acceleration
is achieved [26]. However, in our experiments, we do not have
access to the attitude control of the off-the-shelf quadrotor. We
instead apply the proposed LipNet-MRAC approach outside of
the attitude control loop to make the acceleration dynamics of
the quadrotor behave as a predefined reference model:

am,k+1 = Amam,k +Bmum,k, (16)

where um = [um,x, um,y]T is the acceleration command.

increasing similarity 
between the reference 
model and the robot system

Fig. 6. The proposed LipNet-MRAC approach can effectively enforce the
robot system to behave as the randomly selected reference models. The plot
shows a comparison of the system similarity between the five reference models
and (i) the system with the baseline controller (grey), and (ii) the system
with the proposed LipNet-MRAC module (blue). Smaller values of ψx and
ψy indicate a higher system similarity between the reference model and the
system in terms of the ν-gap metric [2]; the dots and shaded areas in the plot
correspond to the means and 3σ error bounds of the ν-gap estimates obtained
based on the algorithm outlined in [27].

The reference model is then incorporated into the overall
quadrotor-pendulum dynamics model as an extended system:

ξa,k+1 =

[
fa(xa,k) + ga(xa,k)aa,k

Amaa,k

]
+

[
0
Bm

]
uk, (17)

where ξa = [xTa ,a
T
a ]T is the state of the extended system,

and the input u is the acceleration command of the quadrotor.
Note that, following [14], we can estimate the relative degree
of an uncertain robot system from simple experiments. In our
case, the robot system and the reference model have a relative
degree of 1.

Given the model in (17), we can use a standard model-based
controller to design a feedback control law for stabilizing the
quadrotor-pendulum system. In this work, we use a standard
linear quadratic regulator (LQR) of the form uk = Kξ̃a,k,
where K is the controller gain designed based on (17), ξ̃a,k
is the error in the extended state relative to a desired state,
which is constant for stabilization tasks and time-varying for
tracking tasks. Note that, to compensate for the input-output
delay present in the quadrotor system, we introduced a lead
compensator with a forward prediction in the closed-loop
system. Similar to the LQR controller, the parameters of the
lead compensator are determined based on (17).

To ensure that the acceleration dynamics of the quadrotor
follow the reference model (16), we assume decoupled quadro-
tor acceleration dynamics in the x- and y-directions and use
the proposed LipNet-MRAC approach outlined in Sec. IV. In
the experiments, the adaptive LipNets have depths of 3 and
widths of 20. By observing the input-output responses of the
baseline quadrotor attitude controller on a set of sinusoidal
trajectories, the quadrotor system gain γ is estimated to be
0.68. Based on Theorem 1, we conservatively set the Lipschitz
constant of the LipNets to 0.8. To train the LipNet online,
we simultaneously fit a local BLR model to approximate the
forward acceleration dynamics. The parameters of the LipNet
are updated to minimize the cost (11) with λ = 0.8.

With the proposed LipNet-MRAC, the acceleration com-
mand from the LQR controller is adjusted by the adaptive
LipNet (Figure 1b) and the overall acceleration command sent
to the quadrotor is ua,k = uk + δuk, where δuk is the
adjustment computed by the LipNet. Using the Euler param-
eterization of the attitude angles, the acceleration command



ZHOU et al.: BRIDGING THE MODEL-REALITY GAP WITH LIPSCHITZ NETWORK ADAPTATION 7

0 5 10 15 20
-4

-2

0

2

4 Control Input Reference Model LipNet-MRAC

(a) Performance validation of the underlying LipNet-MRAC module. The actual
acceleration of the quadrotor (blue) closely follows the output acceleration of
the reference model (red). Similar result is observed for ay . The control input
signal (black) is generated by the high-level LQR controller.
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baseline controller (thinner lines) unstable

(b) The error of the quadrotor positions x̃ and ỹ (dashed lines) and the pendulum
relative positions r̃ and s̃ (solid lines) when the quadrotor balances the pendulum
while hovering at a fixed position. The proposed LipNet-MRAC approach
(thicker lines) enables the pendulum to be balanced in the upright position
despite dynamics uncertainties. Without the LipNet-MRAC, due to the model-
reality gap, the baseline controller alone (thinner lines) cannot stabilize the
flying inverted pendulum system.

Fig. 7. Quadrotor balancing a pendulum while hovering.

u = [ux, uy]T is converted to the attitude commands based
on the following transformations: θc = arctan (ux/g) and
φc = arctan

(
−uy/

√
u2x + g2

)
, where θc and φc are the

commanded pitch and roll angles, and g is the acceleration
due to gravity. The attitude commands are sent to the Bebop
quadrotor onboard controller at a rate of 50 Hz.

Our experiments consist of (i) verifying efficacy of the
proposed LipNet-MRAC for making the quadrotor system
behave as a reference model and (ii) demonstrating the LipNet-
MRAC in closed-loop control for a flying inverted pendulum.

B. LipNet-MRAC for Predictable Acceleration Dynamics
We first show that the proposed LipNet-MRAC can make

the acceleration dynamics of the Bebop quadrotor behave
as different predefined reference models. For simplicity of
the outer-loop controller design, we choose linear reference
acceleration models of the following form:

am,k+1 =

[
βmx 0

0 βmy

]
am,k +

[
αmx 0

0 αmy

]
um,k, (18)

where τm = (αmx, βmx, αmy, βmy) are model parameters.
To illustrate the idea of our proposed approach, we

first set the reference model parameters to τm =
(0.35, 0.65, 0.35, 0.65). Figure 5 shows the quadrotor system
response with the baseline controller, and with the LipNet-
MRAC on one test trajectory. As can be seen from the plot,
the adaptive LipNet brings the acceleration response of the
quadrotor system close to the given reference model.

To further demonstrate the efficacy of the LipNet-MRAC
approach, we randomly sample five sets of model parameters
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4 Control Input Reference Model LipNet-MRAC

(a) Performance validation of the underlying LipNet-MRAC module. The actual
acceleration of the quadrotor (blue) closely follows the output acceleration of
the reference model (red). Similar result is observed for ay . The control input
signal (black) is generated by the high-level LQR controller.
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(b) The LipNet-MRAC approach allows the quadrotor to balance the pendulum
while tracking a circular trajectory with a radius of 0.25 m and angular velocity
of 1.25 rad/sec. The RMS error in the quadrotor positions (dashed lines) and
the pendulum positions (solid lines) are 0.27 m and 0.04 m, respectively.

Fig. 8. Quadrotor balancing a pendulum while tracking a trajectory.

τm and apply the LipNet without any fine tuning of the
learning algorithm parameters. To formally evaluate the per-
formance of the reference model adaptation approach, we use
the ν-gap metric from robust control [2] to measure the ‘dis-
tance’ between the reference model and the quadrotor system
response with and without LipNet adaptation. Intuitively, two
dynamical systems that are close in term of the ν-gap can be
stabilized by the same controller. Figure 6 shows the estimated
ν-gap metric using experimental data from the quadrotor and
the iterative algorithm outlined in [27]. A smaller ν-gap value
indicates a higher similarity between the reference model and
the quadrotor system. The plot shows that the LipNet-MRAC
approach can reliably make the quadrotor system behave close
to the five reference models. In the next subsection, we apply
LipNet-MRAC to the flying inverted pendulum problem.

C. Inverted Pendulum on a Quadrotor Experiments

An LQR stabilization controller is designed based on the
dynamics in (17), where the reference acceleration model has
the form of (18). In the controller design process, we expect
that the quadrotor system behaves as the reference model; we
do not need to explicitly model the acceleration dynamics
of the quadrotor system or modify the default attitude con-
troller onboard of the quadrotor platform. Our experiments
encompass the following tests: (i) pendulum stabilization, (ii)
pendulum stabilization with wind and tap disturbances, and
(iii) pendulum stabilization while tracking circular trajectories.

We first show results for the case when the quadrotor
is commanded to hover at a fixed point while balancing
the pendulum. Figure 7a shows the acceleration response of
the quadrotor system. It can be seen that, as desired with
the LipNet-MRAC, the actual acceleration of the quadrotor
follows the output of the reference model. As compared to the



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2021

baseline system of the quadrotor, the acceleration reference
model has an input-to-output gain closer to unity, which
facilitates the outer-loop LQR controller design. Figure 7b
shows the resulting errors in the pendulum and quadrotor
system. Given the predictable behaviour of the acceleration
dynamics, we see that the outer-loop pendulum controller
can successfully balance the pendulum while keeping the
quadrotor position error close to zero. The RMS error in the
quadrotor and pendulum positions are 0.08 m and 0.02 m,
respectively. On the contrary, if we use the baseline controller
alone, there is a model-reality gap and the overall system is
not stable (lighter lines in Figure 7b). As we demonstrate in
the supplementary video, the proposed LipNet-MRAC-based
controller design is even able to maintain the pendulum in the
upright position when wind disturbances are applied to the
quadrotor or a gentle force is applied to the pendulum.

Next, we show the case when the quadrotor is commanded
to track a circular trajectory of radius 0.25 m and angular
frequency 1.25 rad/sec while balancing a pendulum. Figure 8a
shows the acceleration response of the quadrotor system,
which closely tracks the output of the reference model de-
spite the sharp changes in the input signal. Figure 8b shows
the position errors of the pendulum and the quadrotor. The
quadrotor is able to track the circular trajectory while keeping
the pendulum balanced. The RMS error in the quadrotor and
pendulum positions are 0.27 m and 0.04 m, respectively. In
the supplementary video, we show that the quadrotor can
successfully track circular trajectories with angular frequencies
up to 2.09 rad/sec, while keeping the pendulum balanced.

VII. CONCLUSIONS

In this paper, we presented a neural model reference adap-
tive approach (LipNet-MRAC) to make nonlinear systems with
possibly unknown dynamics behave as a predefined reference
model. By leveraging the representative power of DNNs, the
proposed approach can be applied to a larger class of nonlinear
systems than other approaches in the literature. Moreover,
we derive a certifying Lipschitz condition that guarantees
the stability of the overall adaptive LipNet framework. We
applied the proposed approach to a flying inverted pendulum.
Our experiments show that the proposed approach is able to
make the dynamics of an unknown black-box quadrotor system
behave in a predictable manner, which facilitates the outer-
loop pendulum stabilization controller synthesis. By com-
plementing a standard controller with the proposed LipNet-
MRAC, we successfully stabilized an inverted pendulum with
an off-the-shelf quadrotor platform whose dynamics are not
known a-priori. In future work, we would like to analyze the
impact of the LipNet adaptation errors on the performance of
the outer-loop model-based control design.
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