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Abstract

High-accuracy trajectory tracking is critical to many robotic applications, including search and rescue, advanced manu-

facturing, and industrial inspection, to name a few. Yet the unmodeled dynamics and parametric uncertainties of operating

in such complex environments make it difficult to design controllers that are capable of accurately tracking arbitrary, fea-

sible trajectories from the first attempt (i.e., impromptu trajectory tracking). This article proposes a platform-independent,

learning-based ‘‘add-on’’ module to enhance the tracking performance of black-box control systems in impromptu tracking

tasks. Our approach is to pre-cascade a deep neural network (DNN) to a stabilized baseline control system, in order to

establish an identity mapping from the desired output to the actual output. Previous research involving quadrotors showed

that, for 30 arbitrary hand-drawn trajectories, the DNN-enhancement control architecture reduces tracking errors by

43% on average, as compared with the baseline controller. In this article, we provide a platform-independent formulation

and practical design guidelines for the DNN-enhancement approach. In particular, we: (1) characterize the underlying

function of the DNN module; (2) identify necessary conditions for the approach to be effective; (3) provide theoretical

insights into the stability of the overall DNN-enhancement control architecture; (4) derive a condition that supports data-

efficient training of the DNN module; and (5) compare the novel theory-driven DNN design with the prior trial-and-error

design using detailed quadrotor experiments. We show that, as compared with the prior trial-and-error design, the novel

theory-driven design allows us to reduce the input dimension of the DNN by two thirds while achieving similar tracking

performance.
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1. Introduction

As continued advancements in algorithms, actuation, and

sensor technology push robots into more complex environ-

ments, increasingly sophisticated methods for controlling

robot motion are needed. In particular, controllers that are

capable of high-accuracy trajectory tracking are becoming

increasingly important in robot applications where safety

and/or efficiency are essential. For example: in search and

rescue, where robots must operate in close proximity to

people (Liu and Nejat, 2013); in advanced manufacturing,

where robot arms must efficiently follow pre-designed tra-

jectories to perform complex manipulation tasks

(Brogärdh, 2007); or in industrial inspection, where

unmanned aerial vehicles fly in close proximity to facili-

ties to enable visual inspection (Nikolic et al., 2013).

The trajectory tracking problem has been extensively

studied in the control literature. Among various

techniques, the proportional–integral–derivative (PID)

controller is often used in trajectory tracking applications.

However, tuning PID parameters is typically time-con-

suming, and the performance of a PID controller can be

conservative (Åström and Hägglund, 2004). Moreover,

control theory shows that a standard PID control architec-

ture cannot achieve exact tracking for arbitrary trajectories

(Francis and Wonham, 1976).
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In addition to the PID controller, model-based tech-

niques such as model predictive control (MPC) have been

studied for finding optimal control commands that lead to

accurate and agile robot motions (Liniger et al., 2015).

Moreover, inversion-based feedforward approaches have

been widely applied to achieve high-accuracy tracking

(Devasia et al., 1996; Hirschorn, 1979). However, one

general limitation of model-based approaches is the reli-

ance on a sufficiently accurate dynamic model of the sys-

tem, which is difficult to obtain in practice. Adaptive

control (Slotine and Li, 1987) and robust control (Spong,

1992) strategies have been used to address uncertainties in

system parameters. Yet while these approaches typically

guarantee stability, they do not take past experience into

account, and the same errors are repeated from trial to trial

if the same reference is given.

As robot dynamics and operating environments become

ever more complex, researchers are increasingly turning to

learning-based approaches to address the resulting model

uncertainties. These learning-based approaches have been

applied successfully to manipulators (Levine et al., 2015),

bipedal robots (Da et al., 2017), autonomous cars (Drews

et al., 2017), and unmanned aerial vehicles (Bansal et al.,

2016; Tang and Kumar, 2018), to name a few. A common

learning-based approach that yields high-accuracy tracking

is iterative learning control (ILC). In ILC, the tracking per-

formance is improved by adjusting control inputs or refer-

ence signals in repeated trials (Bristow et al., 2006;

Schoellig et al., 2012; Tayebi, 2004). In addition to ILC,

reinforcement learning (RL)-based approaches have also

been proposed to iteratively optimize the tracking perfor-

mance (Kiumarsi et al., 2014; Pane et al., 2016; Zhang

et al., 2016a). Apart from iterative approaches, there are

also various works on improving the tracking performance

of classical model-based controllers by learning the uncer-

tain or unknown system dynamics with techniques such as

Gaussian processes (GPs) (Helwa et al., 2018; Nguyen-

Tuong and Peters, 2008), neural networks (NNs) (He et al.,

2016; Yan and Wang, 2014), and support vector machines

(SVMs) (Iplikci, 2006). Alternatively, these learning tech-

niques have also been applied to improve the tracking per-

formance by approximating inverse dynamic models in

inversion-based feedforward approaches (Nguyen-Tuong

and Peters, 2010; Schaal et al., 2002).

In this article, we consider the impromptu tracking

problem. That is, we aim to achieve high-accuracy track-

ing of arbitrary, feasible trajectories from the first attempt.

Motivated by the success of the learning-based control

approaches for robot control, we present a deep neural net-

work (DNN)-based approach for enhancing the impromptu

tracking control performance of black-box systems. This

paper is motivated by our previous work (Li et al., 2017),

in which a DNN add-on module was used to improve the

performance of quadrotors in tracking arbitrary, hand-

drawn trajectories. The proposed DNN-enhancement

architecture is illustrated in Figure 1. During the training

phase, the input, output, and state of the baseline system

are recorded for training a DNN module. Then, during the

testing phase, the DNN module is pre-cascaded to the

baseline system to adapt the reference signals to establish

an identity mapping from the desired output to the actual

output. In the work of Li et al. (2017), experiments on 30

arbitrary, hand-drawn trajectories show that the DNN-

enhancement control architecture effectively reduces the

tracking error of the quadrotor vehicle by 43% on average

as compared with the baseline controller. As compared

with the other learning-based tracking control approaches,

the proposed DNN-approach has the following advantages:

� Unlike the iterative learning methods (ILC approaches

and some RL-based approaches such as Pane et al.

(2016)), the proposed DNN approach can be directly

used for tracking arbitrary, feasible trajectories with-

out further adaptations during the testing phase, and,

consequently, it satisfies the impromptu tracking

requirement.
� Compared to more common approaches (such as for-

ward or inverse dynamic learning) where the learning

component typically resides in the main control loop,

we use the DNN module as an add-on block that is

placed outside of the closed-loop system to improve

the tracking performance. This add-on approach

enables black-box control systems to be improved

retrospectively.
� As discussed in the following section, the proposed

approach is less prone to instability than other inverse-

based approaches because the DNN loop can be run at

a lower rate than the baseline control loop (Li et al.,

2017). Moreover, the proposed architecture can poten-

tially lead to better learning-enhanced performance as

Fig. 1. The DNN-enhancement control architecture: during the

training phase (shaded yellow region), a baseline system is

treated as a black box, and the reference u, output y, and state x

are recorded for training a DNN module. During the testing

phase (shaded green region), the DNN module is pre-cascaded

to the baseline system and adjusts the reference u(k) based on

the current state x(k) and a set of selected future desired output

yd(k + Di) to enhance the tracking performance of the baseline

system, where k 2 Zø 0 is the discrete-time index and Di 2 Z.0.
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the closed-loop system has a more repeatable behavior

(Mueller et al., 2012).

While experiments from Li et al. (2017) have shown

that the DNN approach shown in Figure 1 is effective for

quadrotors, the DNN module was designed by trial and

error, and guidelines for systematically applying the

approach to other robotic platforms were not given. In

Zhou et al. (2017), we presented preliminary theoretical

results on the DNN-based approach based on a single-

input–single-output (SISO) system formulation. In this

article, we provide a comprehensive theoretical study of

the DNN-based approach and support it with both simula-

tions and extensive experimental results. In particular,

based on a multi-input–multi-output (MIMO) system for-

mulation, our study in this work includes: (1) characteriz-

ing the underlying function represented by the DNN

module, (2) identifying a necessary condition for the DNN

approach to be effective, (3) deriving a condition that

allows for further improving the DNN training data effi-

ciency, and (4) analyzing the stability of the overall DNN-

enhanced system given the presence of modeling errors in

the DNN module. These theoretical insights are illustrated

in simulation and verified with extensive quadrotor

experiments.

We note that we focus our attention on minimum phase

systems in this work; in Zhou et al. (2018), we discussed a

separate issue of applying the DNN approach to non-

minimum phase systems (i.e., systems with unstable

inverse dynamics).

We also note that, in the previous work (Li et al., 2017),

a DNN was chosen as the learning technique to construct

the add-on block. This design decision was motivated by

the fact that the amount of memory and computational cost

of the forward pass of the DNN is fixed as more data is

collected. In contrast to nonlinear regression methods such

as GPs, the relatively fixed memory and computational

cost allow the DNN model to be implemented on robot

platforms where onboard computational resources are lim-

ited (Li et al., 2017). Following Li et al. (2017), we use

DNNs as the learning technique in this work; however, the

presented theoretical insights can be potentially general-

ized to other nonlinear regression techniques.

2. Related work on NN-based inverse control

The DNN module in the proposed control architecture

(Figure 1) aims to establish an identity mapping from the

desired output to the actual output (Li et al., 2017). In the

literature of NN-based control, common approaches that

have a similar objective include direct inverse control,

feedback-error learning control, and adaptive inverse

control.

In direct inverse control, an NN is trained to approxi-

mate the inverse dynamics of the open-loop plant, and is

pre-cascaded to the plant as the controller to achieve exact

tracking (Hunt et al., 1992; Suprijono et al., 2015). Early

literature such as Jordan and Rumelhart (1992) and

Kawato (1990) compared different approaches for training

the NN inverse model and discussed details concerning

practical implementation. For example, Jordan and

Rumelhart (1992) pointed out that an NN directly trained

with the reversed input–output data from the open-loop

plant is not ‘‘goal-directed’’: the training objective of

minimizing the regression error of the model output does

not directly reflect the control objective of minimizing the

tracking error of the system. To address these concerns,

training schemes such as the distal teacher (Jordan and

Rumelhart, 1992) have been proposed. However, apart

from these discussions, a fundamental drawback of the

direct inverse control approach is the lack of robustness

against disturbances in the system. This drawback is

attributed to the fact that the NN inverse model is often

used as the only controller of the system.

To address the issues with direct inverse control,

Kawato (1990) proposed a feedback-error learning

scheme. This approach employs a feedback control loop,

where the input command to the plant is the sum of the

signal from the feedback controller and feedforward signal

from an NN-based inverse model. In contrast with typical

direct inverse control, the error signal for training the NN

is the output of the feedback controller instead of the typi-

cal regression errors based on the plant input–output data.

Although practical considerations such as the ‘‘goal-

directness’’ issue and robustness issue are addressed in the

feedback error learning approach, the training of the NN

requires a plant in the loop, which may not be desired in

the early training phase.

Another inversion-based approach for trajectory track-

ing problems is adaptive inverse control, in which the

parameters of an NN controller are updated online with

guaranteed stability (Chen and Khalil, 1995; Ge and

Zhang, 2003; Zhang et al., 2016b). A limitation of the

adaptive-NN approach is that the number of adaptive para-

meters and, hence, the online computational cost, can be

large. Moreover, an appropriate initialization for the NN

parameters are typically needed for convergence (Chen

and Khalil, 1995).

Overall, despite the similarity in the control objective,

there are fundamental differences between the proposed

DNN control architecture in Figure 1 and the common

NN-based inverse control architectures. One of the differ-

ences is that the proposed DNN control architecture modi-

fies the reference of a stabilized closed-loop system, while

the common NN-based inverse control approaches directly

modify the input to the open-loop plant. From a practical

perspective, this difference has two potential benefits: (i)

by introducing the DNN as an outer loop that runs at a

lower rate as compared with the baseline system, the over-

all approach is less prone to stability issues (Li et al.,

2017); (ii) as the closed-loop system partially compensates

for non-repeated disturbances, the response of the closed-

loop system is more repeatable than that of the open-loop

Zhou et al. 3



plant (Mueller et al., 2012). Thus, learning to adapt the ref-

erence of a closed-loop system can be potentially more

effective for achieving good tracking performance. In con-

trast to adaptive inverse control, in which high-accuracy

tracking control and stability of the plant are simultane-

ously achieved by the designed NN parameter update laws,

the proposed DNN approach achieves stabilization through

the design of the baseline controller, and tracking perfor-

mance is enhanced separately by the pre-cascaded DNN

module. This approach of decoupling the stabilization and

tracking performance enhancement problems can greatly

simplify the DNN design and training in practical applica-

tions. We furthermore investigate the effectiveness of the

proposed DNN approach for the problem of impromptu

tracking, and verify this experimentally by testing whether

quadrotors are able to accurately fly arbitrary, hand-drawn

trajectories from the first attempt. Although the NN-based

inverse control approaches in the literature provide theore-

tical foundations for designing high-accuracy tracking con-

trollers, their ability to track arbitrary, feasible trajectories

has not been thoroughly demonstrated in experiments.

3. Problem formulation

Our objective is to enhance black-box control systems to

achieve high-accuracy, impromptu tracking. In our previ-

ous work (Li et al., 2017), with quadrotors as the test plat-

form, a DNN-enhancement control architecture (Figure 1)

was proposed to establish an identity mapping from the

desired output yd to the actual output y. In this work, we

aim to provide a platform-independent formulation of the

proposed DNN-enhancement control architecture (Li et al.,

2017). This formulation includes:

(O1) identifying the underlying function that should be

represented by the DNN module in order to estab-

lish an identity mapping from yd to y;

(O2) identifying necessary conditions for the approach

to be effective;

(O3) deriving guidelines for systematically selecting the

inputs and outputs of the DNN module;

(O4) analyzing the stability of the DNN-enhanced sys-

tem in the presence of regression errors; and

(O5) characterizing a condition that allows for further

improving data efficiency of the DNN training.

In the following discussion, we first consider linear time

invariant (LTI) MIMO baseline systems represented by the

following state space model

x(k + 1)= Ax(k)+ Bu(k)
y(k)= Cx(k)

ð1Þ

where k 2 Zø 0 denotes the discrete-time index, x 2 R
n is

the system state, u 2 R
m is the reference signal sent to the

baseline system, y 2 R
m is the system output, and A, B,

and C are constant matrices of appropriate dimensions.

After presenting the insights from the linear system

formulation, we then extend the discussion to nonlinear

MIMO baseline systems represented by

x(k + 1)= f (x(k))+ g(x(k))u(k)
y(k)= h(x(k))

ð2Þ

where f (�), g(�), and h(�) are matrices of smooth functions

with appropriate dimensions. Note that, in the discussion

of this work, we focus on square MIMO systems having

the same number of inputs and outputs. This is not a

restrictive formulation for tracking applications, because

systems (1) and (2) typically represent baseline closed-

loop systems, and each output in y has a corresponding

reference input in u.

In deriving the theoretical insights for this article, we

make the following assumptions:

(A1) the baseline system is input-to-state stable (Jiang

and Wang, 2001); for the nonlinear system (2), we

additionally assume that the state can be bounded

by

kxk‘ ł L1 kuk‘ + L2 kx0 k + L3 ð3Þ

where k�k‘ denotes the infinity norm, x0 2 R
n is

the initial state, and L1, L2, and L3 are constant,

positive scalars;

(A2) at any instant k, a preview of n future time steps of

the desired trajectory (i.e., {yd(k), yd(k + 1), . . . ,
yd(k + n)}) is available, where n is the system

order;

(A3) the DNN module has a feedforward architecture

and globally Lipschitz activation functions.

Note that assumptions (A1)–(A3) are not restrictive.

Assumption (A1) on the stability of the baseline closed-

loop system can be achieved by proper controller designs

with well-developed control techniques even in the

absence of a detailed or highly accurate dynamic model of

the system. The inequality (3) in assumption (A1) holds

for input-to-state stable linear systems; for nonlinear sys-

tems, this is an additional assumption that we use to pro-

vide a theoretical guarantee on stability of the overall

control system. For assumption (A2), a preview of n steps

of the desired trajectory is usually available in practice,

and does not prevent combinations with online trajectory

generation algorithms. For assumption (A3), although we

use feedforward neural networks (FNNs) in this work, the

proposed approach can be potentially adapted for use with

other nonlinear regression techniques (e.g., GPs, recurrent

NNs). The globally Lipschitz condition in assumption

(A3) holds for the commonly-used activation functions

such as the rectified linear unit (ReLU), sigmoid, and

hyperbolic tangent.

4. Theoretical insights

In this section, we provide four theoretical insights to

achieve the objectives (O1)–(O5) stated in Section 3. We
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begin our discussion with a background on the inversion

of dynamic systems in Section 4.1. We then build on this

conceptual overview in Section 4.2 to derive the underly-

ing function to be modeled by the DNN module to estab-

lish an identity mapping between the desired and actual

outputs, and identify conditions that are necessary for the

proposed DNN approach to be effective. Building on the

insight regarding the underlying function modeled by the

DNN module, we provide guidelines for systematically

selecting the inputs and outputs of the DNN module in

Section 4.3, provide a proof of stability of the overall con-

trol system in the presence of DNN regression errors in

Section 4.4, and derive a condition that allows us to fur-

ther improve the data-efficiency of the DNN training in

Section 4.5.

4.1. Background on system inversion

Starting with the DNN-enhancement control architecture

in Figure 1, Li et al. (2017) initially designed a DNN mod-

ule with yd(k) and x(k) as input and u(k) as output to

enhance the tracking performance of the quadrotor base-

line control system. The experiments of Li et al. (2017)

show that the DNN module is able to enhance the tracking

performance of the baseline system only after yd(k) in

the DNN input is replaced by certain future desired

outputs fyd(k + D1), yd(k + D2), . . . , yd(k + DL)g with

D1,D2, . . . , DL 2 Z.0 selected based on trial and error.

As shown in Section 4.2, this experimental observation

can be explained by associating the DNN module with the

inverse dynamics of the baseline system.

In order to facilitate the following discussions, in this

subsection, we state the formal definition of the vector

relative degree (Isidori, 1995; Jang et al., 1994), and dis-

cuss its connection to the system inverse. In the following

discussions, we use h 8 f to denote the composition of the

functions h and f , and f i to denote the ith composition

of the function f with f 0(x(k))= x(k) and f i(x(k))=
f 8 f i�1(x(k)).

Definition 4.1 (Vector relative degree). The nonlinear

MIMO system (2) has a vector relative degree

(r1, r2, . . . , rm) at an operating point (x0, u0) if

(i) ∂
∂uj

hi 8 f p(f (x)+ g(x)u)= 0, 8i = f1, 2, . . . ,mg, 8p =
f1, 2, . . . , ri � 2g, 8j = f1, 2, . . . ,mg for every point

(x, u) in some neighborhood of (x0, u0), where uj is the

jth element of the input u, and hi is the ith element of

the vector function h; and

(ii) the decoupling matrix Dn(x, u) 2 R
m×m with elements

½Dn(x, u)�ij = ∂
∂uj

hi 8 f ri�1(f (x)+ g(x)u) has full rank

at the operating point .

Note that, from the first condition (i) of Definition 4.1,

if we focus on an output dimension yi, the relative degree

ri can be interpreted as the number of sample delays

between changing any of the inputs uj, j = 1, . . . ,m, and

changing the output yi. Given that both (i) and (ii) of

Definition 4.1 are satisfied, the relative degree ri associates

the value of an output yi at time step k + ri with a non-zero

input u applied at time step k. The decoupling matrix

Dn(x, u) in the second condition (ii) of Definition 4.1 is the

collection of the Jacobian of yi(k + ri) with respect to the

input u; the non-singularity condition requires that the out-

puts y(k + r)= ½y1(k + r1) � � � ym(k + rm)�T are influenced

by the input u(k) in non-repeated (linearly independent)

ways.

Remark 4.1 (Vector relative degree for linear systems).

As a the special case of Definition 4.1, the linear MIMO

system (1) has a vector relative degree (r1, r2, . . . , rm) if:

(i) CiA
pBj = 0, 8i = f1, 2, . . . ,mg, 8p = f1, 2, . . . ,

ri � 2g, 8j = f1, 2, . . . ,mg, where Ci is the ith row of

the matrix C and Bj is the jth column of the matrix B;

and

(ii) the decoupling matrix Dl 2 R
m×m with elements

½Dl�ij = CiA
ri�1Bj has full rank.

Note that, from Definition 4.1, for MIMO systems with

a well-defined vector relative degree, one may relate the

future output y(k + r) to the current state x(k) and input

u(k). Based on this concept, in the following subsections

we formalize the DNN-based approach proposed in Li

et al. (2017), develop theoretical insights for systemati-

cally designing the DNN module, and provide comments

on its practical implementation.

4.2. Underlying function modeled by the DNN

module

In this subsection, we show that, given the system repre-

sentations in (1) and (2), an identity mapping from the

desired output yd to the actual output y is achieved if the

DNN module learns the output equation of the inverse

dynamics of the baseline system. Owing to this association

with inverse dynamics, a necessary condition for the pro-

posed approach to be effective is that the baseline system

has stable inverse dynamics. For simplicity, we start our

discussion with the linear system (1) and then extend

the results to the nonlinear system (2). Note that although

we start our discussion with known system models, we

later demonstrate that implementing the proposed DNN-

enhancement approach requires only minimal knowledge

about the baseline system (e.g., its order and relative

degree). This required knowledge can typically be deter-

mined from simple dynamic models or step response

experiments.

By applying the definition of the vector relative degree

in Remark 4.1 to the linear system (1), we can relate the

input u and the output y of the baseline system by

yi(k + ri)= CiA
ri x(k)+ CiA

ri�1Bu(k) ð4Þ

Zhou et al. 5



or, in augmented form,

y(k + r)= Clx(k)+ Dlu(k) ð5Þ

where y(k + r)=½y1(k + r1)� � � ym(k + rm)�T, Cl = ½(C1

Ar1 )T � � � (CmArm )T�T, and Dl is the decoupling matrix of

system (1).

Let yd(k + r)= ½y1, d(k + r1) � � � ym, d(k + rm)�T be the

desired output corresponding to y(k + r). As the decou-

pling matrix Dl has full rank by condition (ii) of the vector

relative degree definition in Remark 4.1, it can be shown

that if we choose the following control law

u(k)= D�1
l �Clx(k)+ yd(k + r)ð Þ ð6Þ

then y(k + r)= yd(k + r), or exact tracking, is achieved.

Thus, for the proposed DNN-enhancement control archi-

tecture in Figure 1 and system (1), the DNN module

should be trained to approximate (6) to establish an iden-

tity mapping between yd and y. If we consider yd as the

input and u as the output, Equation (6) is, in fact, the out-

put equation of the inverse dynamics of system (1).

Note that the first condition (i) in Remark 4.1 implies

that the relative degree ri associated with the output

dimension i is the smallest integer such that CiA
ri�1Bj 6¼ 0

for any input dimension j. As briefly noted in Section 4.1,

the relative degree ri is the number of sample delays

between applying an input u to the system and first seeing

its effect in the particular output yi. This inherent delay

from input to output is a well-known fact for discrete-time

linear systems. By training the DNN module to approxi-

mate (6), the inherent delay of the system is compensated

for by the preview of the future desired output yd(k + r).
In practice, at a particular time k, a preview of r steps of

the desired trajectory (where r ł n) is not challenging to

satisfy with online or offline trajectory generation algo-

rithms; the non-causality in (6) is, thus, not an issue in

practical applications.

We next generalize the previous discussion to nonlinear

systems. By assuming the system (2) has a well-defined

vector relative degree, and applying Definition 4.1, we can

relate the input u and output y of the nonlinear MIMO sys-

tem (2) by

yi(k + ri)= hi8f
ri�1(f (x(k))+ g(x(k))u(k)) ð7Þ

or, in an augmented form,

y(k + r)= h8f
r�1(f (x(k))+ g(x(k))u(k)) ð8Þ

where h8f
r�1 is a vector of composition functions with the

ith element being hi8f
ri�1. As discussed in Sun and Wang

(2001) and Jang et al. (1994), by assuming y(k + r) is

affine in the input u(k), the decoupling matrix Dn(x, u) is

independent of u and (8) becomes

y(k + r)= h8f
r(x(k))+ Dn(x(k))u(k) ð9Þ

where h8f
r is a composite function with the ith element

being hi8f
ri . This special case holds for nonlinear mechan-

ical systems such as robot manipulators (Jang et al.,

1994). As the decoupling matrix Dn has full rank by the

second condition (ii) in Definition 4.1, exact tracking (i.e.,

y(k + r)= yd(k + r)) can be achieved by choosing the con-

trol law

u(k)= Dn(x(k))½ ��1(� h8f
r(x(k))+ yd(k + r)) ð10Þ

for the affine case in (9), and it is reasonable to assume

that

u(k)= F(x(k), yd(k + r)) ð11Þ

for the general case in (8), where F : Rn ×R
m 7!R

m is a

vector of nonlinear functions.

Based on the above results, we now present our insight

on the underlying function modeled by the DNN module,

and describe the conditions that are necessary for the

learning-based approach to be effective.

Insight 4.1 (Underlying function and necessary condi-

tions). Consider the DNN-enhancement control architec-

ture in Figure 1. In order to establish an identity mapping

between the desired output yd and the actual output y, the

DNN module should approximate the output equation of

the baseline system’s inverse dynamics. Owing to the asso-

ciation with inverse dynamics, two necessary conditions

for the learning approach to be effective are: (i) the base-

line system has a well-defined (vector) relative degree; and

(ii) the baseline system has stable zero dynamics.

By inspecting the control laws in (6) and (11), it can be

seen that the ideal control law that leads to exact tracking

is dependent on the current x(k) and the future desired out-

put yd(k + r) for either the linear or nonlinear case, where

r is the vector relative degree. In practice, when training

the DNN module to approximate the control law for

achieving exact tracking, we do not require a detailed

dynamic model of the system. Instead, we need only iden-

tify the vector relative degree r of the baseline system.

Experimentally, for the linear system (1) and the special

case of the nonlinear system (2) where y(k + r) is affine in

u(k), one can identify the vector relative degree of the

baseline system through m step response experiments

detailed as follows. In each of the m experiments, the sys-

tem is initialized at an equilibrium point, and one element

of the input, uj, is activated. Without loss of generality, we

assume the equilibrium is the origin. After the m experi-

ments, one may determine the minimum number of time

delays between the output yi and the inputs uj for all j; the

minimum number of time delays for the output dimension

yi is the estimated relative degree ri associated with the

particular output dimension. After estimating the relative

degree for each output dimension, it remains to check the

non-singularity condition (ii) in Definition 4.1. From the

m experiments, one may construct a matrix eD, where the

jth column of eD is ½y1(r1) � � � ym(rm)�T from the jth
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experiment. By inspecting (5) and (9), it can be shown that

the non-singularity condition (ii) in Definition 4.1 can be

examined from the rank of eD.

The stability of the zero dynamics of the linear system

(1) is equivalent to the stability of the system’s inverse

dynamics, and is characterized by the zeros of the system

transfer function. In practice, for linear systems, we may

infer the stability of zero dynamics from characteristics of

the system’s step responses such as undershoot and zero

crossings (Hoagg and Bernstein, 2007). The zero dynamics

of the nonlinear system (2) is the system’s invariant

dynamics when the input u(k) is chosen such that y(k)= 0

for all k. For nonlinear systems, achieving stable zero

dynamics is a necessary but not sufficient condition for

achieving stable inverse dynamics (Sussmann, 1990).

Hence, a necessary condition for applying the proposed

DNN-learning approach to either the linear system (1) or

the nonlinear system (2) is that the baseline system has sta-

ble zero dynamics.

4.3. DNN input selection

In this subsection, we identify the necessary and sufficient

inputs of the DNN module to compute the reference u(k)
of the baseline system (1) and (2) to achieve exact track-

ing. By designating the output of the DNN module as

O= fu(k)g, we can determine the appropriate DNN input

I for either the linear or the nonlinear case based on the

following insight.

Insight 4.2 (DNN input selection). In order to establish an

identity mapping from yd to y, the necessary and sufficient

input of the DNN add-on module is I = fx(k), yd(k + r)g,
where yd(k + r)= ½y1, d(k + r1) � � � ym, d (k + rm)�T and

r = (r1, . . . , rm) is the vector relative degree of the system.

Insight 4.2 directly follows from the fact that the DNN

should approximate the baseline system inverse to achieve

unity mapping between yd and y and from (6) and (11) of

the system inverse.

The implementation of Insight 4.2 requires knowledge

or estimation of the full state of the system x. In many

robotics applications, linearization techniques are used for

the baseline system controller designs, and this often leads

to decoupled linear dynamics. Some examples include

ground vehicles in which the dynamics in the two-

dimensional position space can be converted into

decoupled integrators with the point-ahead linearization

technique (Giesbrecht et al., 2009), and fully actuated

manipulators in which the dynamics in the joint space can

be turned into decoupled double integrators with feedback

linearization (Helwa and Schoellig, 2016). In cases where

the full state of the system is not available, but where the

closed-loop dynamics can be approximated as a decoupled

MIMO linear system, we can derive an alternative DNN

input selection.

In deriving the alternative input selection, we first

equivalently represent system (1) by Y (z)= H(z)U (z),
where

H(z)= C(zI � A)�1B ð12Þ

and U (z) and Y (z) are the z-transform of the input and out-

put of the baseline system, respectively. To show the main

idea, we first consider the special case of a SISO linear

system (i.e., m = 1). Without loss of generality, we assume

that the SISO system is represented by a transfer function

of the following form:

H(z)=
Y (z)

U (z)
=

bn�rz
n�r + bn�r�1zn�r�1 + � � � + b0

zn + an�1zn�1 + � � � + a0

ð13Þ

where ai and bi are scalar constants, and r and n are the

relative degree and degree of the system, respectively. By

calculating the inverse system of (13) and applying inverse

z-transformation, it can be shown that the reference u(k)
for achieving exact tracking is

u(k)=
1

bn�r

yd(k + r)+
an�1

bn�r

yd(k + r � 1)+ � � �

+
a0

bn�r

yd(k � n + r)� bn�r�1

bn�r

u(k � 1)

�bn�r�2

bn�r

u(k � 2)� � � � � b0

bn�r

u(k � n + r)

ð14Þ

Based on (14), we can alternatively select the DNN input

for a SISO linear baseline system to be

I = fyd(k � n + r : k + r), u(k � n + r : k � 1)g, where

the column ‘‘:’’ abbreviates consecutive discrete-time

indexes.

The transfer matrix H(z) of a decoupled MIMO linear

system (1) is a diagonal matrix; the dynamics between

each input–output pair (ui, yi) can be considered sepa-

rately, where i 2 f1, . . . ,mg. As outlined in Section 4.2,

one can execute m experiments to identify the relative

degree ri for each output yi. Similar to the SISO scenario

discussed above, in the case of the decoupled MIMO linear

system, we can consider each reference dimension sepa-

rately and train m networks with the input of each network

being I i = fyd, i(k � n + ri : k + ri), ui(k � n + ri : k � 1)g
and output being O= fui(k)g, where ri is the relative

degree corresponding to the ith output dimension, and yd, i

denotes the ith desired output dimension.

Insight 4.3 (Alternative input selection for decoupled

MIMO linear systems). Based on the transfer function for-

mulation, we can derive an alternative, sufficient input

selection of the DNN module for a decoupled MIMO linear

system. For this case, we propose using a DNN module

with m independent networks: one for each of the baseline

system reference dimensions. The input to the ith network

in the DNN module is I i = fyd, i(k � n + ri : k + ri),
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ui(k � n + ri : k � 1)g, where ri is the relative degree cor-

responding to the output dimension yi.

In comparison with the input selection based on the

state space representation (Insight 4.2), the implementation

of the alternative input for the linear systems does not

require the estimation of the full state x(k) of the system

and instead only requires the identification of the order of

the system n, which (for robots such as multi-link manipu-

lators) can be determined from the laws of physics. Note,

however, that this transfer function approach is derived for

decoupled linear systems; the state space approach is

applicable to more general cases. When the state of the

system is available, applying the state space approach has

additional advantages. One advantage of the state space

approach is the current state feedback to the DNN module.

This additional feedback from the baseline system can help

compensate for the initial errors and disturbances along the

trajectory. Moreover, the input selection based on the state

space approach typically leads to a DNN with a lower

input dimension than the transfer function approach. As an

example, for a SISO linear system, the dimension of the

DNN inputs derived from the transfer function and the

state space approaches are (2n� r + 1) and (n + 1),
respectively. This reduced DNN input dimension implies

that the amount of data required to cover the operational

space is potentially less, and thus the DNN training can be

made more efficient by using the state space approach.

4.4. Stability

In this subsection, we restrict our discussion to minimum

phase systems (i.e., systems with stable inverse dynamics),

and prove the stability of the overall DNN-enhancement

control system in the presence of DNN modeling errors:

ku(k)� û(k)k6¼ 0 ð15Þ

where u(k) corresponds to the exact inverse in (11)

(respectively (6) for the linear system case) and û(k) corre-

sponds to the reference outputted by the DNN module

trained based on the system input–output data. Note that,

in the ideal case, where the DNN models the inverse

dynamics exactly, the response from the desired output to

the actual output is the identity mapping, and the overall

system is input-to-state stable. However, in the presence

of modeling errors, owing to the state feedback connection

to the DNN module (see Figure 1), the stability of the

overall system needs to be assessed. In this subsection, we

show that under Assumptions (A1) and (A3), the DNN-

enhanced system with the proposed input selection as in

Insight 4.2 is input-to-state stable if the regression error of

the DNN module is sufficiently small.

By assumption (A3), the DNN module has a feedfor-

ward architecture, and the activation functions are globally

Lipschitz; because the DNN is a composite of linear com-

binations of Lipschitz functions, the output of the DNN

module, û, is globally Lipschitz in its inputs, x and yd . In

particular, we can bound the output of the DNN module

by

k ûk‘ ł L4 kxk‘ + L5 kydk‘ ð16Þ

where L4 and L5 are positive, constant scalars. Moreover,

because we consider a baseline system that is minimum

phase (i.e., has a stable inverse dynamics), the reference

u(k) corresponding to the exact inverse in (11) is bounded

(i.e., kuk‘\‘). As a result of the global Lipschitz condi-

tion of the DNN module in (16) and the boundedness of u,

an upper bound on the modeling error of the DNN module

can be derived as follows:

ku� ûk‘ ł k ûk‘ + kuk‘ ð17Þ
ł L4 kxk‘ + L5 kydk‘ + L6 ð18Þ

where L6 = kuk‘ is the bound on the exact inverse refer-

ence u of the minimum phase baseline system.

Lemma 4.1 (Stability). Consider the DNN-enhancement

control architecture (Figure 1) and the case where the

baseline system is minimum phase. Under assumptions

(A1) and (A3), the overall DNN-enhanced system is input-

to-state stable if L1L4\1, where L1 and L4 are constant

scalars defined in (3) and (18), respectively.

Proof. By assumption (A1), the baseline system is input-

to-state stable, and with û as the system input, the state of

the system is bounded by

kxk‘ ł L1 k ûk‘ + L2 kx0k + L3 ð19Þ

By combining the bound on the regression error in (18)

and the bound on state in (19), the following is obtained:

kxk‘ ł L1 ku� ûk‘ + L1 kuk‘ + L2 kx0k + L3 ð20Þ
ł L1L4 kxk‘ + L1L5 kydk‘ + L7 ð21Þ

where L7 = L1L6 + L1 kuk‘ + L2 kx0k + L3. Based on

(21), if

L4\
1

L1

ð22Þ

is satisfied, then the state of the system is bounded by

kxk‘ ł
L1L5 kydk‘ + L7

1� L1L4

ð23Þ

which is bounded by a constant for bounded input yd .

Thus, if L4\ 1
L1

, then the DNN-enhanced system is input-

to-state stable. h

Note that, by examining (19) and (18), L1 is a constant

characterizing the maximum possible gain of the baseline

system, whereas L4 is a constant associated with the

regression error of the DNN model. Hence, the condition

in (22) implies that if the regression error of the DNN

module is sufficiently small, then the overall DNN-

enhancement control architecture is input-to-state stable.
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One can note the similarity between condition (22) and

the well-known small gain theorem in robust control

(Francis and Khargonekar, 1995).

Also note that the globally Lipschitz activation function

assumption in assumption (A3) is sufficient to show (18)

but not necessary; condition (18), and hence the proof of

the lemma, may be satisfied in other scenarios.

4.5. Difference learning scheme for improving the

training efficiency

In this subsection, we derive a condition that allows us to

further improve the data-efficiency of the proposed DNN-

enhancement approach. This discussion is motivated by

the DNN design in Li et al. (2017), where the position

terms in the DNN input and output are taken relative to

the current desired and actual positions in order to sim-

plify the training process. The basic idea of this difference

learning scheme is that with the relative positions (instead

of the absolute positions), the function modeled by the

DNN becomes invariant under spatial translations, which

reduces the amount of data needed to cover the operation

space. Based on the theoretical formulations presented in

the previous subsections, we derive in this section a neces-

sary condition for the effectiveness of the difference learn-

ing scheme. This necessary condition will be further

illustrated with quadrotor experiments in Section 6.

In order to motivate this insight on the difference learn-

ing scheme, we first focus our discussion on a SISO linear

system represented by the transfer function representation

in (13). Recall that, for system (13), the control law for

achieving exact tracking is described by (14), and the

corresponding DNN input–output selection for learning

the system inverse is I = fyd(k � n + r : k + r),
u(k � n + r : k � 1)g and O= fu(k)g, where ‘‘:’’ is used

to abbreviate consecutive time indexes. With the differ-

ence learning scheme, we aim to train a DNN that depends

only on a set of relative terms: Dyd
(k + p) :¼ yd

(k + p)� yd(k) for p 2 f�n + r, . . . , rg and Du(k + p)
:¼ u(k + p)� yd(k) for p 2 f�n + r, . . . , 0g, where yd is

the desired output, u is the reference of the baseline sys-

tem, k is the current time index, and p is a shift in the time

index. Note that, in this work, we aim to enhance the

tracking performance of square MIMO baseline systems,

and we assume that there is a one-to-one correspondence

between the reference u and the output y, and hence a

one-to-one correspondence between the reference u and

the desired output yd . For a position tracking system as an

example, the terms Dyd
and Du can be intuitively inter-

preted as the relative position vectors from the current

desired position yd(k) to a past/future desired position

yd(k + p) and a past reference position u(k + p).

Lemma 4.2 (Difference learning for SISO linear systems).

Consider a SISO linear baseline system (13) and the DNN-

enhancement control architecture in Figure 1. A difference

learning scheme can be applied to improve the data effi-

ciency of the DNN module if and only if the baseline sys-

tem has a unity DC gain.

Proof. Starting from the control law in (14), it can be

shown that by subtracting yd(k) on both sides of the equa-

tion, and adding and subtracting 1
bn�r

yd(k),
1

bn�r

Pn�r�1
i = 0

biyd(k) and 1
bn�r

Pn�1
i = 0 aiyd(k) on the right-hand side,

Equation (14) can be written as

Du(k)=
1

bn�r
Dyd

(k + r)+ an�1

bn�r
Dyd

(k + r � 1)+ � � �
+ a0

bn�r
Dyd

(k � n + r)� bn�r�1

bn�r
Du(k � 1)

� bn�r�2

bn�r
Du(k � 2)� � � � � b0

bn�r
Du(k � n + r)

+
1

bn�r

1�
Xn�r

i = 0

bi +
Xn�1

i = 0

ai

 !
yd(k)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼D s(yd (k))

ð24Þ

In this expression, the only non-relative time-dependent

term is the last term

s(yd(k))=
1

bn�r

1�
Xn�r

i = 0

bi +
Xn�1

i = 0

ai

 !
yd(k)

on the right-hand side. Thus, one may express the control

law for achieving exact tracking in terms of the relative

terms Dyd
and Du (and, hence, apply the difference learn-

ing scheme) if and only if s(yd(k))= 0. For arbitrary yd(k),
the condition s(yd(k))= 0 is equivalent toPn�r

i = 0 bi

1 +
Pn�1

i = 0 ai

= 1 ð25Þ

For system (13), the condition in (25) is equivalent to the

condition that system (13) has a unity DC gain, i.e., it

achieves zero steady-state errors for step reference

inputs. h

Note that, in this work, we consider a baseline system

with an underlying feedback controller (Figure 1). In prac-

tice, tracking step reference inputs is a common require-

ment for controller designs, and this can be often achieved

with well-established classical controller design techniques

(Franklin et al., 1994). As we demonstrate in Section 6.5,

when the baseline system is able to track step reference

inputs with sufficiently small errors, the difference learn-

ing scheme can significantly reduce the amount of data

required for training the DNN module.

In the following discussion, we prove the same result

for the MIMO state space formulation for the special case

of a position/velocity-like system.

Definition 4.2 (Position/velocity-like system). System (1)

is called position/velocity-like if it has the following prop-

erties: (i) the output of the system y is the first m elements

of the state vector (i.e., x1, . . . , xm); and (ii) for step
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reference inputs, the remaining elements of the state vector

(i.e., xm + 1, . . . , xn) are zero at steady state.

Examples of position/velocity-like systems include, but

are not limited to, mechanical systems with a position-

velocity state space (e.g., industrial manipulators). Similar

to the SISO transfer function scenario, we identify a nec-

essary condition that allows us to express the control law

in (6) in relative terms Dx(k)= x(k)� ½yd(k)
T 0 � � � 0�T,

Dyd
(k + r)= yd(k + r)� yd(k), and Du(k)= u(k)� yd(k).

In particular, we prove the following lemma.

Lemma 4.3 (Difference learning for MIMO linear sys-

tems). Consider a position/velocity-like MIMO system and

the DNN-enhancement control architecture in Figure 1. A

DNN design based on the state space approach (Insight

4.2) and the difference learning scheme is able to achieve

exact tracking only if the baseline system has zero steady-

state errors for step reference inputs.

Proof. Suppose by the way of contradiction that the DNN-

based approach achieves exact tracking for arbitrary feasi-

ble trajectories and the baseline system does not achieve

zero steady-state error for an arbitrary step reference input

u(k)= a, where a 2 R
m is a constant vector. Hence, we

have

yss = Kuss = Ka ð26Þ

where K 2 R
m×m is a constant non-zero matrix character-

izing the DC gains of the system, and K 6¼ Im by assump-

tion, where Im denotes the identity matrix. Note that, when

K is a zero matrix, the system has zero DC gain; it can be

easily shown that the mapping fDx(k),Dyd
(k + r)g

! fDug is one-to-many and cannot be represented by the

DNN module (Jordan and Rumelhart, 1992). Next, for the

case where K is non-zero, by assumption, the DNN mod-

ule is able to achieve exact tracking yss = yd(k) for an arbi-

trary step input yd(k)= b, where b 2 R
m is a constant

vector. With the difference learning scheme, the inputs to

the DNN module are Dx and Dyd
and the output is Du.

When exact tracking is achieved, Dx = 0 and Dyd
= 0,

while Du = c, where c 2 R
m is a constant corresponding to

the bias of the DNN model (i.e., the output of the DNN

model when the inputs are zero). At the steady state, the

reference of the baseline system is uss = b + c. From (26),

the system output at the steady state is yss = K(b + c). As

exact tracking is achieved by assumption, yss = b and

Kc = (Im � K)b ð27Þ

As K is non-zero and K 6¼ Im by assumption, Equation

(27) implies that the bias of the DNN, c, is correlated with

the step input vector b. For a typical feedforward DNN,

the bias c is a fixed vector determined from the training

algorithm. The dependency of the bias c on the system

desired output yd(k)= b leads to a contradiction. Thus, a

DNN module trained with the difference learning scheme

cannot achieve exact tracking for a baseline system for

which the steady-state error for step reference inputs is not

zero. h

Note that, in the previous discussion, the input and out-

put of the DNN module are taken relative to the current

desired output yd(k). In practice, the input and output of

the DNN module can be alternatively taken relative to the

current actual output y(k) to additionally compensate for

initial tracking errors or disturbances.

Based on the above theoretical results for linear sys-

tems, we present the following important insight.

Insight 4.4 (Necessary condition for applying the differ-

ence learning scheme). In order to reduce the amount of

training data, a difference learning scheme can be applied

to the input and output selection of the DNN module.

However, as shown in the theoretical analysis for the linear

system formulations, for the DNN approach with the differ-

ence learning scheme to be effective, the baseline system

controller needs to be designed such that the system

response has zero or sufficiently small steady-state errors

for step reference inputs.

This insight is motivated from the linear system formu-

lations. As nonlinear systems can be approximated by a set

of piecewise linear/affine systems with arbitrary accuracy

(Helwa and Caines, 2015), it is reasonable to expect that

the necessary condition is also required for the nonlinear

system (2). In Section 6, we verify this necessary condition

for nonlinear systems with quadrotor experiments.

5. Simulation

In this section, we illustrate Insights 4.1–4.3 by consider-

ing two linear MIMO baseline closed-loop systems. The

two systems have the same state equation:

x(k + 1)=
0:2 1 0

0 0:5 0

0 0 0:6

24 35x(k)+
0 0

1 0

0 0:5

24 35u(k) ð28Þ

The output equations of the two systems are defined in

(29) and (30), respectively:

y(k)=
0:35 0:35 0

0 0 0:5

� �
x(k) ð29Þ

y(k)=
�0:35 0:35 0

0 0 0:5

� �
x(k) ð30Þ

Note that the two systems we consider have identical

dynamics and differ only in the output equations and,

hence, the locations of zeros.1 In particular, system (29)

has a stable (minimum phase) zero at �0:8, while system

(30) has an unstable (non-minimum phase) zero at 1:2.

Both systems have three stable poles at f0:2, 0:5, 0:6g and

a vector relative degree of (1, 1).
Upon introducing the DNN architecture and training in

Section 5.1, we first follow the state space approach to

select the input of the DNN module and show the necessity

of stability of the baseline system zero dynamics (Insights
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4.1 and 4.2) in Section 5.2. After verifying the first two

insights, we illustrate in Section 5.3 the efficacy of the

alternative DNN input selection derived from the transfer

function formulation (Insight 4.3). Note that, for this simu-

lation study and with known system matrices (A, B, C), we

can compute (6) and use it as the ground truth to assess the

proposed DNN approach.

5.1. DNN architecture and training

For comparison purposes, the DNN architecture and train-

ing trajectories are identical for all simulation cases pre-

sented in this section. Matlab’s Neural Network Toolbox is

used for implementing the DNN modules. The DNNs are a

fully connected feedforward networks with two hidden

layers; each hidden layer consists of 20 hyperbolic tangent

activation units. The training trajectories are 25 sinusoidal

trajectories with different combinations of amplitudes and

frequencies; the amplitudes range between 1 and 5, and

the frequencies range between 0:024 and 1:25 Hz. Note

that the architecture of the DNN modules (i.e., the number

of hidden layers and the number of neurons) is chosen such

that the DNNs have sufficient modeling complexity. In this

study, we set aside part of the training data as the valida-

tion set and use a standard validation procedure to ensure

that the DNN modules do not overfit or underfit the train-

ing data (Bishop, 2006). We further test the sufficiency of

the training data by running the DNN-enhanced system on

untrained trajectories. In general, the DNN architecture

and the training trajectories are not restricted to the partic-

ular choices we made, but one should validate the trained

DNN module for its generalizability.

As shown in Figure 1, the baseline systems we consider

are feedback systems with reference input u and output y.

Our goal is to use a DNN module to enhance the tracking

performance of a baseline system by adjusting the refer-

ence input u sent to the baseline system. In the training

phase, the responses of the baseline systems (x(k), y(k),
u(k)) are recorded at 70 Hz for constructing the training

datasets, which consist of labeled input–output pairs (I ,

O). The DNN input I and output O are defined for each

simulation case as follows. In the first set of simulations,

the state space approach (Insight 4.2) is examined. For

both system (29) and system (30), the input and output of

the DNN module are selected as I ss = fx(k), yd, 1

(k + 1), yd, 2(k + 1)g and O= fu(k)g, where yd, i denotes

the ith element of yd . In the second set of simulations, we

focus on the minimum phase system (29). Based on

the transfer function approach (Insight 4.3), the input

and output of the DNN module are I tf = fyd, 1

(k � 2 : k + 1), yd, 2(k � 2 : k + 1), u(k � 2 : k � 1)g and

O= fu(k)g, where ‘‘:’’ abbreviates consecutive discrete-

time indexes. Note that, in the construction of the training

dataset, the data pairs (I , O) are randomly sampled from

the 25 training trajectories with balanced proportions to

prevent the model from overfitting a particular frequency.

The Levenberg–Marquardt algorithm is used for train-

ing the weight and bias parameters of the DNN module. In

the first set of simulations, the training objective is to mini-

mize the mean squared error between the targets O and the

DNN outputs. For the second set of simulations, we addi-

tionally include an L2 regularization term in the training

objective function to help the training algorithm to phase

out any unnecessary dimensions in the DNN input I tf ; the

regularization constant is set to 0.005. In the training of

each DNN module, 70% of the data is used for optimizing

the model parameters and the rest is used for model valida-

tions. The generalizability of the DNN modules is further

verified by testing the tracking performance of the overall

DNN-enhanced system on test trajectories that differ from

the training trajectories.

5.2. Simulation 1: Illustrations of underlying

function and necessary condition

In this subsection, we illustrate Insights 4.1 and 4.2 by

using the state space approach and comparing the DNN-

enhanced performance of the minimum phase system (29)

and the non-minimum phase system (30). For this simula-

tion illustration, the systems’ performances are compared

on a test trajectory that differs from those in training:

yd, 1(t)= sin 4p
33

t
� �

+ cos 4p
41

t
� �

� 1 and yd, 2(t)= sin 4p
23

t
� �

+ cos 4p
21

t
� �

� 1.

The references and outputs of the DNN-enhanced track-

ing for system (29) and system (30) are shown in Figures

2 and 3, respectively. It can be seen from Figure 2(a) that,

by selecting the DNN input as I = fx(k), yd(k + r)g, the

DNN is able to effectively generalize the training data col-

lected from the minimum phase system (29), and outputs

references (blue solid line) that coincide with the reference

computed based on the exact inverse in (6) (red dashed

line). With (6) as the ground truth, the root-mean-square

(RMS) modeling error of the DNN module is approxi-

mately 7:8× 10�5. From Figure 2(b), we see that the refer-

ence computed by the DNN module compensates for the

magnitude errors in the baseline system response (gray

dotted line), and leads to approximately exact tracking

(blue solid line and red dashed line). On this particular test

trajectory, the addition of the DNN module reduces the

RMS tracking error from approximately 1:0 to approxi-

mately 2:5× 10�5. In this simulated setting, the perfor-

mance of the proposed DNN approach is only limited by

the modeling accuracies and numerical precisions. In con-

trast to the minimum phase case, the reference for achiev-

ing exact tracking is unbounded in the non-minimum

phase system case (30) owing to the inherent instabilities

of the system inverse dynamics (Hoagg and Bernstein,

2007). In the non-minimum phase case reflected in Figure

3, though with the same architecture and training, the

DNN module cannot effectively model the exact inverse

in (6) (Figure 3(a)) and leads to worse performance as

compared with the baseline system (Figure 3(b)).
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5.3. Simulation 2: Illustrations of the transfer

function approach

In the previous subsection, we showed the effectiveness of

the state space approach for designing the DNN module to

enhance the tracking performance of the minimum phase

system (29). In this subsection, we provide a brief discus-

sion on a DNN design based on the equivalent transfer

function formulation (Insight 4.3).

Figure 4 shows the references and outputs of the system

(29) with the DNN design based on Insight 4.3. From

Figure 4(a), we can see that similar to the state space

approach, the DNN module design based on the transfer

function approach (blue solid line) is able to approximate

the reference from the exact inverse equation (6) (red

dashed line). For this particular test trajectory, the RMS

modeling error of the DNN is approximately 1:2× 10�2.

Consequently, as shown in Figure 4(b), the output of the

DNN-enhanced system (blue solid line) also coincides

with the desired trajectory (red dashed line). The RMS

tracking error of the DNN-enhanced system is approxi-

mately 4:2× 10�3. This simulation example shows that

the transfer function approach can be equivalently used to

enhance the tracking performance of the minimum phase

system (29) without relying on the knowledge or estima-

tion of the full state as required by the state space

approach.

6. Quadrotor experiments

This section presents the results of quadrotor experiments

designed to verify the theoretical insights derived in

Section 4. In order to test the effectiveness of the DNN

(a)

(b)

Fig. 2. The references and outputs of the minimum phase

closed-loop system (29) for a desired trajectory with

yd, 1(t)= sin 4p
33

t
� �

+ cos 4p
41

t
� �

�1 and yd, 2(t)= sin 4p
23

t
� �

+ cos 4p
21

t
� �

�1.

(a) References u of the minimum phase system (29) with the

state space approach (Insight 4.2). The root-mean-square (RMS)

modeling error of the DNN module is approximately

7:8× 10�5. (b) Outputs y of the minimum phase system (29).

The RMS tracking errors of the baseline system and the DNN-

enhanced system are approximately 1:0 and 2:5× 10�5,

respectively. From (a), the DNN module design based on Insight

4.2 is able to approximate the system’s exact inverse equation

(6) with high accuracy; from (b), the reference computed by the

DNN module is able to compensate for the errors in the baseline

system response and approximately achieve exact tracking.

(a)

(b)

Fig. 3. The references and outputs of the non-minimum phase

closed-loop system (30) for the desired trajectory shown in

Figure 2. (a) References u of the non-minimum phase system

(30) with the state space approach (Insight 4.2). The RMS

modeling error of the DNN module is approximately 14:5. (b)

Outputs y of the non-minimum phase system (30). The RMS

tracking errors of the baseline system and the DNN-enhanced

system are approximately 2:0 and 4:6, respectively. Owing to

the inherent instability of the non-minimum phase system, the

reference u for achieving exact tracking is unbounded (Hoagg

and Bernstein, 2007). From (a), the DNN module consequently

cannot effectively model the exact inverse of system (30); from

(b), when the necessary condition of achieving stable zero

dynamics in Insight 4.1 is violated, the DNN inverse learning

approach cannot be applied directly to enhance the tracking

performance of the baseline system.
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module design based on the provided theoretical insights,

we adopt the fly-as-you-draw application setup from Li

et al. (2017), where visitors are invited to draw desired tra-

jectories on a mobile device, and the desired trajectories

are tracked by a quadrotor vehicle. A demonstration video

of the experiments is available as Extension 1, and the

hand drawings used for evaluating the proposed DNN-

enhancement trajectory tracking approach are shown in

Figure 5.

In the following discussion, we first introduce the

experimental setup, the control architecture, and the DNN

architecture and training procedures in Section 6.1. In

Section 6.2, we verify the proposed DNN input–output

design and demonstrate the generalizability of the DNN

module on the same 30 test trajectories. Upon verifying

the proposed DNN input–output design, in Section 6.4 we

show that the performance of the proposed approach can

be pushed further by improving the representativeness of

the DNN training dataset. This section is concluded with

illustrations of the improved training data efficiency of the

difference-learning scheme in Section 6.5. The training

data and testing results presented in the following subsec-

tions can be found in Extension 2.

Note that, for the convenience of the discussion, we

denote the desired trajectory with a subscript d, the refer-

ences of the baseline system with a subscript r, and the

measured states of the quadrotor with a subscript a.

6.1. Experimental setup

6.1.1. Overview. The objective of the experiments is to

design a control system such that the center of mass of a

quadrotor vehicle pa(k) tracks desired trajectories pd(k)
generated based on arbitrary hand-drawings with high

accuracy from the first attempt. In the experiments, we use

Parrot AR.Drone 2.0 as the testing platform and imple-

ment the control algorithm in the Robot Operating System

(ROS) environment.

6.1.2. Desired hand-drawn test trajectories. The desired

trajectories to be tracked by the quadrotor are generated

with the fly-as-you-draw application (Li et al., 2017). In

particular, in order to generate the desired trajectories, we

invite visitors to draw on a mobile device, which gives us

sets of discrete points sampled at fixed time intervals along

the hand-drawings. The distance between two consecutive

(a)

(b)

Fig. 4. The references and outputs of the minimum phase

closed-loop system (29) for the desired trajectory shown in

Figure 2. (a) References u of the minimum phase system (29)

with the transfer function approach (Insight 4.3). The RMS

modeling error of the DNN module is approximately

1:2× 10�2. (b) Outputs y of the minimum phase system (29).

The RMS tracking errors of the baseline system and the DNN-

enhanced system are approximately 1:0 and 4:2× 10�3,

respectively. From (a), the DNN module design based on the

transfer function approach (Insight 4.3) is an equivalent

approximation of the exact inverse equation (6); from (b), as

with the state space approach (Figure 2(b)), exact tracking is

approximately achieved with the DNN module design based on

the alternative transfer function formulation.

Fig. 5. Illustrations of 30 hand-drawn trajectories for testing the DNN-enhancement approach (Li et al., 2017).
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points along a hand-drawing is proportional to the drawing

speed. Given the set of sampled points from a hand-draw-

ing, the desired position trajectory for the quadrotor is then

interpolated using the sampling interval of the position

controller. The speed along the desired trajectory is scaled

based on a predefined maximum speed vmax and a prede-

fined maximum acceleration amax, which are defined such

that the generated trajectory is feasible for the quadrotor to

track.

Given a desired trajectory generated from a hand-draw-

ing, we use the three-dimensional RMS position tracking

error as the measure for evaluating the tracking perfor-

mance of the quadrotor:

etraj =
1

N

XN

k = 1

pd(k)� pa(k)j jj j2
 !1

2

ð31Þ

where N is the number of time steps for which the trajec-

tory is defined.

6.1.3. Control architecture. The quadrotor vehicle has 12

states: translational positions p= (x, y, z), translational

velocities v= ( _x, _y, _z), attitudes u = (f, u,c), and

rotational velocities w= (p, q, r). The baseline controller

of the quadrotor vehicle consists of (i) an off-board posi-

tion controller that receives the reference positions

and velocities (pr and vr) and outputs the desired roll

angle, pitch angle, yaw rate, and z-velocity commands

(fcmd, ucmd, rcmd, and _zcmd) at 70 Hz; and (ii) an on-board

attitude controller that adjusts motor thrusts based on the

roll angle, pitch angle, yaw rate, and z-velocity commands

at 200 Hz. Of particular interest is the off-board position

controller, which consists of a nonlinear transformation

and PD control; from the internal model principle, it is

known that this type of controller cannot be tuned to

achieve perfect tracking for arbitrary desired reference fre-

quencies (Francis and Wonham, 1976). We aim to

enhance the baseline position controller with our proposed

DNN add-on module, which models the output of the

inverse dynamics of the baseline control system. In the

experiments, we introduce a DNN module design based

on Insight 4.2 to adjust the position reference pr and the

velocity reference vr sent to the baseline controller, and

compare the tracking performance of the DNN-enhanced

controller against that of the baseline controller. As in pre-

vious work (Li et al., 2017) and for the robustness of

implementation against instability, the DNN-loop in the

experiments runs at 7 Hz, which is 10 times slower than

the baseline controller.

In the implementation of our baseline position control-

ler and the DNN module, the states of the quadrotor are

estimated based on a Vicon motion capture system running

at 200 Hz. The onboard attitude controller of the ARDrone

relies only on onboard sensing (Bristeau et al., 2011), and

the onboard attitude estimation and control modules

together are a black box for our baseline position control-

ler and DNN module implementation.

6.1.4. Neural network architecture and training. For com-

parison purposes, the DNN modules used in the experi-

ments have the same architecture and training procedure

as in Li et al. (2017). The DNN modules are composed of

fully connected FNNs with four hidden layers of 128

ReLU neurons; the python TensorFlow library is used for

implementing the DNN module. The training dataset is a

set of labeled input–output pairs constructed from the

input–output response data of the baseline system on one

or more multiple training trajectories (details of the DNN

module input–output selections are discussed in Section

6.2). The sampling rate of the baseline system for con-

structing the training dataset is consistent with the update

rate of the DNN module, which is selected to be 7 Hz. Of

all the training data collected from the baseline system,

90% is selected for training and the remaining is used for

validation. The training loss function is the squared error

between the DNN output and the labeled output in the

training dataset. The Adam optimizer (Kingma and Ba,

2014) is used for optimizing the weight parameters of the

DNN. A dropout rate of 0.5 is used to improve the gener-

alizability of the DNN to unseen inputs (Srivastava et al.,

2014).

6.2. Experiment 1: DNN input–output design

Through experimental trial-and-error, Li et al. (2017)

found that a DNN module with the following input and

output can effectively improve the performance of the

baseline system for tracking arbitrary hand-drawn

trajectories:

I 1 = fpd(k + 4)� pa(k), pd(k + 6)� pa(k),

va(k), vd(k + 4), vd(k + 6), ua(k),

ud(k + 4), ud(k + 6), wa(k), wd(k + 4),

wd(k + 6), €za(k), €zd(k + 4), €zd(k + 6)g

ð32Þ

O1 = fpr(k)� pd(k), vr(k)� vd(k)g ð33Þ

On the 30 hand-drawn trajectories shown in Figure 5, the

average RMS error reduction achieved by the DNN mod-

ule is approximately 43%. In order to verify Insight 4.2,

we repeat the 30 test trajectories from Li et al. (2017) with

a DNN module design based on the proposed input–output

selection and compare the improved tracking performance

with that achieved in Li et al. (2017). Note that we

repeated the experiments in Li et al. (2017) on the quadro-

tors used for this work for comparability.

In order to apply our insights, we first performed sim-

ple step response experiments and identified the following

properties of the baseline system:

(P1) the responses of the baseline system are approxi-

mately decoupled in the x-, y-, and z-direction;
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(P2) the relative degrees of the baseline system in the x-,

y-, and z- direction are four, four, and three, respec-

tively; and

(P3) zero steady-state error for step reference inputs is

approximately achieved in the three directions.

Note that, for obtaining (P2), we identified the relative

degrees of the baseline system from experimental data

because the baseline system is treated as a black box in

our experiment. In practice, one could alternatively derive

the relative degrees of a baseline system from a dynamics

model; however, the relative degrees determined based on

a standard model may differ from that identified experien-

tially due to unmodeled dynamics and/or delays that are

present in the physical system.

Given properties (P1)–(P3), we assume decoupled

dynamics in the x-, y-, and z-direction and apply Insight

4.2 with the difference learning scheme to obtain the fol-

lowing input and output selection of the DNN module:

I2 = fxd(k + 4)� xa(k), yd(k + 4)� ya(k), zd(k + 3)

� za(k), _xd(k + 3)� _xa(k), _yd(k + 3)� _ya(k),

_zd(k + 2)� _za(k), ua(k),wa(k)g
ð34Þ

O2 = fpr(k)� pa(k), vr(k)� va(k)g ð35Þ

We note two differences between the DNN from Li

et al. (2017) and the proposed DNN design based on

Insight 4.2. The first is the DNN input selection. In com-

parison with the DNN from Li et al. (2017), which has 36

inputs (#I1 = 36, where # denotes cardinality), the DNN

design based on Insight 4.2 has only 12 inputs (#I 2 = 12).

Based on the inverse-dynamics formulation, the input

selection I 2 represents the necessary and sufficient inputs

that allow the DNN add-on module to achieve enhanced

tracking performance. Another difference is in the applica-

tion of the difference learning scheme for the two DNN

designs. In particular, for the DNN design from Li et al.

(2017), the position elements in the input I1 are taken rela-

tive to the actual output values (subscripted with a), and

the position elements in the output O1 are taken relative to

the desired output values (subscripted with d). For the pro-

posed DNN design based on Insight 4.2, the relative terms

in the input I 2 and output O2 are consistently taken with

respect to the actual values (subscripted with a). Based on

the theoretical discussions of Insight 4.4, we expect the

consistency of the relative terms in the proposed design

would further improve the capability of the DNN module

in correcting for any deviations from the desired

trajectories.

We first present the performance comparison between

the DNN from Li et al. (2017) and the proposed DNN on

one of the test trajectories (Figures 6, 7, and 8). We then

summarize the comparison between the two DNN designs

on 30 hand-drawn test trajectories (Figure 9). The test tra-

jectories are generated based on the procedure described

in Section 6.1.2. The maximum speed and maximum

acceleration of the trajectories are vmax = 0:6 m/s and

amax = 2:0 m/s2, respectively. Note that, for the experi-

ments, the DNN modules are trained on a 400-second

three-dimensional sinusoidal trajectory similar to that used

in Li et al. (2017) (Extension 2a). In order to establish a

fair comparison, we use the same DNN architecture, train-

ing data, and training algorithm for the DNN design based

on Li et al. (2017) and the DNN design based on Insight

4.2; the only difference between the two DNNs is the

input–output selection.

From Figures 11 and 12, it can be seen that both the

DNN from Li et al. (2017) (green solid line) and the DNN

design based on Insight 4.2 (blue solid line) are able to

reduce the time delays and magnitude errors of the base-

line system tracking response (gray dotted line) and lead

to quadrotor tracking paths that are closer to the desired

hand-drawing (red dashed line). On this test trajectory, the

RMS tracking error reduction achieved by the DNN from

Li et al. (2017) and the proposed DNN are 45% and 67%,

respectively. The trajectory tracking error comparison

depicted in Figure 8 shows that the proposed DNN design

based on Insight 4.2 achieves similar error reductions to

the DNN design from Li et al. (2017) while having far

fewer inputs.

Figure 9 (Extension 2b) summarizes the performance

comparison between the two DNN modules on the 30

hand-drawn test trajectories studied in Li et al. (2017) (see

Figure 5). The plot shows that the proposed DNN module

design based on Insight 4.2 (blue bars) leads to similar

tracking performance as the DNN module from Li et al.

(2017) (green bars). On the 30 test trajectories, the mean

RMS error of the baseline system enhanced by the DNN

from Li et al. (2017) is approximately 0.17 m, and that of

the baseline system enhanced by the proposed DNN is

approximately 0.15 m. The corresponding average track-

ing error reduction achieved by the DNN from Li et al.

(2017) and that design based on Insight 4.2 are 49% and

54%, respectively.

From this set of experiments, we verify Insight 4.2 on

the proposed DNN input selection. Although the input

dimension is reduced by two thirds as compared with the

DNN from Li et al. (2017), the DNN module design based

on the derived theoretical insight can effectively enhance

the quadrotor’s baseline system performance. The compar-

ison with the results from Li et al. (2017) further validates

the generalizability of the proposed DNN for tracking arbi-

trary untrained trajectories impromptu.

6.3. Experiment 2: Generalization to different

trajectory speeds

In this subsection, we examine the performance of the

baseline system and the DNN-enhanced systems for differ-

ent operating speeds. In particular, we use the trajectory

shown in Figure 6 as the test trajectory and scale the time-
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parameterized trajectory based on a set of specified maxi-

mum speeds vmax = f0:2, 0:3, 0:4, 0:5, 0:6, 0:7, 0:8g m/s.

Figure 10 (Extension 2c) summarizes the performance of

(i) the baseline system, (ii) the system enhanced with the

DNN module design from Li et al. (2017), and (iii) the sys-

tem enhanced with the DNN module design based on our

Insight 4.2. As can be seen from the plot, the tracking per-

formance of the baseline system (gray) degrades quickly

as the speed of the test trajectory increases. In contrast, the

tracking errors of the systems with the DNN modules

(green and blue) remain relatively at a lower constant

level. The average RMS tracking error over the trials pre-

sented in Figure 10 is 0.35 m for the baseline system, 0.19

m for the system enhanced with the DNN design from Li

et al. (2017), and 0.14 m for the system enhanced with the

DNN design based on Insight 4.2.

As discussed in Section 4.2, the DNN module in our

framework represents the inverse of the baseline system

and, theoretically, establishes an identity mapping from

the desired output yd to the actual output of the system y.

In the quadrotor experiments, we demonstrate the efficacy

of the proposed DNN module approach for reducing the

tracking error of the baseline system across multiple oper-

ating speeds. We note that the effectiveness of the DNN

module generally relies on having training data that suffi-

ciently covers the range of operating speeds of interest. As

discussed in Section 7, we would like to explore systema-

tic approaches for training data generation as future work.

6.4. Experiment 3: DNN training dataset

In the previous set of experiments, the performance of the

DNN from Li et al. (2017) and the proposed DNN are

compared on the basis of training on 400-second sinusoi-

dal trajectories. These trajectories have gradually

increasing amplitudes but fixed frequencies in the x-, y-,

and z-direction (Li et al., 2017). In this subsection, we

show that the performance enhancement achieved by the

proposed DNN design can be further improved with a

richer training dataset. In particular, we compare two

training datasets constructed from the baseline system

responses to different training trajectories (Extension 2a):

� Training Dataset 1 based on a 400-second sinusoidal

training trajectory; and
� Training Dataset 2 based on the 400-second sinusoidal

training trajectory from Training Dataset 1 and 30

additional hand-drawn trajectories.

Note that the 30 hand-drawn trajectories in Training

Dataset 2 are different from the 30 trajectories (Figure 5)

for evaluating the performance of the DNNs. By adding

hand-drawn trajectories to the DNN training, we expect to

increase the similarity between the DNN inputs encoun-

tered at the training time and the test time. In particular,

we expect the arbitrary training hand-drawn trajectories to

capture a richer set of cases (e.g., sharp edges) that are

non-trivial to define with analytical expressions. By hav-

ing a more representative training dataset, we can then fur-

ther reduce the generalization error of the DNN module

for impromptu tracking performance enhancements.

Figure 11 (Extension 2b) shows the performance com-

parison of three DNN-enhanced systems on the 30 test

hand-drawn trajectories (Figure 5). From the previous sub-

section, we show that, on average, the DNN with the pro-

posed inputs (middle histogram in Figure 11) leads to

better performance as compared with the DNN from Li

et al. (2017) (top histogram in Figure 11). When compar-

ing the proposed DNN trained with Training Dataset 1

Fig. 6. A comparison of the tracking performance

enhancements between the DNN module from Li et al. (2017)

and the DNN module design based on Insight 4.2 for a hand-

drawn test trajectory (trajectory 24 in Figure 5). On this test

trajectory, the RMS tracking error of the baseline system is

approximately 0.41 m. The RMS tracking errors of the baseline

system enhanced by the DNN module from Li et al. (2017) and

the proposed DNN module design based on Insight 4.2 are 0.23

and 0.14 m, respectively, which correspond to 45% and 67%

error reductions.

Fig. 7. A comparison of the x- and z-position trajectories for a

hand-drawn test trajectory (corresponding to Figure 6). From the

plots, the DNN module from Li et al. (2017) and the DNN

module trained based on Insight 4.2 both tend to correct the

delays and magnitude errors of the baseline system response.

When compared with the DNN from Li et al. (2017), the

proposed DNN design based on Insight 4.2 has two thirds fewer

inputs while achieving better performance enhancements.
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(middle histogram in Figure 11) and Training Dataset 2

(bottom histogram in Figure 11), we see that the inclusion

of the additional hand-drawn trajectories in training further

improves the performance of the DNN-enhanced system

in tracking arbitrary hand-drawn trajectories. Overall, the

proposed DNN trained with Training Dataset 2 increases

the average RMS tracking error reduction by 8% as com-

pared with the proposed DNN trained with Training

Dataset 1.

We note that, as similarly discussed in Mueller et al.

(2012), the learning performance of the DNN approach is

limited by the non-repeatable or stochastic error in the

baseline system. More explicitly, the non-repeatable or

stochastic error corresponds to the variations we see in the

baseline system output when an identical reference is

given to the baseline system multiple times. In our experi-

mental setup, one primary source of the stochastic error is

the noise in the onboard inertial measurement unit (IMU)-

and camera-based attitude estimation and control, which

we do not have direct access to. In our experiments, the

proposed DNN module trained with Training Dataset 2

reduces the average tracking error of the quadrotor on the

30 hand-drawn trajectories to approximately 0.07–0.15 m.

This performance is comparable with the standard devia-

tion of the position error of the quadrotor at hover, which

is an estimate of the inherent noise in the system and

serves as a lower bound on the achievable tracking accu-

racy. We expect our DNN to achieve lower tracking errors

if the response of the baseline system could be made more

repeatable.

6.5. Experiment 4: Difference learning

In Section 4.5, we theoretically showed that, in order to

apply the difference learning scheme to improve the data

efficiency of the DNN training, the baseline system needs

to achieve zero steady-state error for step reference inputs.

In this subsection, we first illustrate the necessity of the

condition by applying the difference learning scheme to

DNN modules to enhance (i) the original baseline system

where zero steady-state error for step reference inputs is

achieved, and (ii) a modified baseline system where the

necessary condition is not achieved. In the experiment,

Fig. 8. The tracking errors of the x- and z-position

(jx(k)� xd(k)j and jz(k)� zd(k)j) corresponding to Figure 7.

The DNN module from Li et al. (2017) and the DNN module

trained based on Insight 4.2 both effectively reduce the peak

tracking errors of the baseline system. The peak errors for the

baseline system in the x- and z-direction are approximately 0.62

and 0.21 m, respectively. For the DNN design from Li et al.

(2017), the peak tracking errors in the x- and z-direction are

reduced to approximately 0.27 and 0.09 m, while for the

proposed DNN, the peak tracking errors in the x- and z-direction

are reduced to approximately 0.21 and 0.15 m.

Fig. 9. Comparisons of the tracking performance enhancements between the DNN module from Li et al. (2017) (with 36 inputs)

and the proposed DNN module design based on Insight 4.2 (with 12 inputs). In the two sets of experiments, the percentage of the

RMS tracking error reductions achieved by the DNN module are indicated above the corresponding bars; the mean RMS error over

the 30 trajectories are indicated by the horizontal dashed lines. Note that, for comparability, we repeated the 30 impromptu tracking

experiments from Li et al. (2017) on the same quadrotor vehicles and training datasets used for testing the proposed DNN design.

From the plot, despite having two thirds fewer inputs, the proposed DNN design based on Insight 4.2 yields a performance

comparable with the DNN from Li et al. (2017). On the 30 test trajectories, the average RMS error reduction is 49% for the DNN

from Li et al. (2017) and 54% for the proposed DNN design based on Insight 4.2.
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the modified baseline system is obtained by multiplying

the reference signals zr sent to the original baseline system

by a factor of 0.5. The baseline and DNN-enhanced track-

ing performance for the two systems are shown in Figure

12 (Extension 2d). The plots show that for the original

baseline system (bottom panel), where zero steady-state

error for step reference inputs is achieved, the DNN with

the difference learning scheme is able to effectively

enhance the tracking performance of the baseline system.

However, as expected from Insight 4.4, for the modified

baseline system (top panel), where the zero steady-state

error condition is not satisfied, the DNN trained with the

difference learning scheme only partially compensates for

the magnitude error and the bias of the modified baseline

system.

In order to evaluate the effectiveness of the proposed

difference learning scheme for improving the training data

efficiency, we next compare a DNN module trained with

and a DNN trained without the difference learning scheme.

Figure 13 (Extension 2d) shows a comparison of the DNN

modules trained with (blue) and without (red) the differ-

ence learning scheme for enhancing the tracking perfor-

mance of the quadrotor baseline system where zero steady-

state error for step reference inputs is achieved. In the plot,

the RMS tracking errors of the DNN-enhanced systems are

compared as the amount of training data varies. Note that,

in order to prevent overfitting, the training datasets are ran-

domly sampled from a large training dataset (Training

Dataset 2). Here, we use Trajectory 24 (Figure 5) as the

test trajectory for evaluating the performance of the DNN-

enhanced systems. Figure 13 shows that, for the DNN

without the difference learning scheme (red), the RMS

tracking increases quickly as the amount of training data

reduces. In contrast, the performance of the DNN trained

with the difference learning scheme (blue) drops more gra-

dually as the amount of training data decreases. The DNN

trained with the difference learning scheme reaches the

best observed performance of the DNN without the differ-

ence learning scheme (gray dotted line), with approxi-

mately 15 times less data.

7. Discussion

In Section 6, we showed that the proposed DNN approach

can effectively enhance the impromptu tracking perfor-

mance of classical controllers. In the proposed approach,

the design of the DNN module relies only on the input,

output, and state data of the baseline system, as well as

basic properties of the system (e.g., the vector relative

degree) that can be identified from a set of simple step

response experiments. Without requiring a dynamic model

Fig. 10. The tracking performance of (i) the baseline system,

(ii) the system enhanced by the DNN module design from Li et

al. (2017), and (iii) the system enhanced by the DNN module

design based on Insight 4.2 as the trajectory speed increases.

The solid lines and the shaded regions in the plot correspond to

the mean and the standard deviation of the position error

pd � pa along the test trajectories. In contrast, the tracking error

of the baseline system increases significantly with trajectory

speed, while the tracking error of the system enhanced with the

proposed DNN remains at a lower constant level. The average

RMS tracking error over the presented trials is 0.35 m for the

baseline system, 0.19 m for the system with the DNN module

design from Li et al. (2017), and 0.14 m for the system with the

DNN design based on Insight 4.2.

Fig. 11. A comparison of the tracking error reduction achieved

by (a) the DNN used in Li et al. (2017) and trained on a 400-

second sinusoidal trajectory, (b) the proposed DNN designed

based on Insight 4.2 and trained on the 400-second sinusoidal

trajectory, and (c) the proposed DNN designed based on Insight

4.2 and trained on the 400-second sinusoidal trajectory and 30

additional hand-drawn trajectories. Note that, for the last case

(c), the 30 additional hand-drawn trajectories used for training

are different from the 30 test trajectories. The mean percentage

error reduction for each distribution is indicated by the vertical

dashed line.
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as a prior, the DNN approach can be used to complement

black-box control systems: a possible step towards addres-

sing the issue of uncertain or unmodeled dynamics that

limit the performance of classical model-based control

design approaches.

Despite its advantages, the proposed approach has lim-

itations that require further investigation. The first relates

to its applicability to systems with hybrid dynamics, where

hybrid control strategies are often applied (Antsaklis,

2000). In our formulation, we represent the baseline sys-

tem by (1) and (2). For hybrid systems such as bipedal

robots or quadrotors with load suspension, however, multi-

ple dynamic equations defined on different regions of the

state space must be considered. One trivial approach is to

apply the current results to each individual dynamic sys-

tem and train a set of independent DNN modules to

enhance the tracking performance. Accounting for transi-

tions across the boundaries of the dynamic regions is an

open question. The hierarchical structure in some typical

hybrid control approaches (e.g., supervisory control) natu-

rally encourages a hierarchical learning structure for deal-

ing with this class of systems capturing more complex

dynamics.

The second limitation is related to the sufficiency and

transparency of the DNN training. In particular, in our pro-

posed approach, the training data of the DNN module

needs to sufficiently cover the potential operation space of

the baseline system. In the experiments, we trained the

DNN modules with large datasets and verified the suffi-

ciency of training by testing the DNN module on untrained

trajectories. Although we showed that the proposed

approach can significantly reduce the tracking error of the

baseline system on arbitrary hand-drawn trajectories, the

sufficiency of the training dataset, and hence the perfor-

mance of the DNN module, are not known prior to the

tests on the physical system. One promising direction for

examining the data sufficiency is to introduce probabilistic

learning to the current DNN-enhancement control frame-

work. Many researchers are investigating approaches that

provide uncertainty estimations to deep learning (e.g.,

Depeweg et al., 2018; Gal and Ghahramani, 2016). As

noted by Depeweg et al. (2018), these approaches can be

naturally combined with the active learning framework

(MacKay, 1992) to guide training data collection. The

probabilistic framework and guided data collection can

potentially provide indications of insufficient training and

further increase training efficiency and transparency.

8. Conclusions

This article presents theoretical and experimental studies

of a DNN-based approach for enhancing the tracking per-

formance of black-box control systems for arbitrary feasi-

ble trajectories. We considered a MIMO, possibly

nonlinear, system as our starting point. In order to achieve

an identity mapping from the desired output to the actual

output, we established that the DNN module in the pro-

posed control architecture should approximate the output

equation of the inverse dynamics of the baseline system.

Owing to the association with system inversion, the

Fig. 12. A comparison of the difference learning scheme as

applied on: (i) a baseline system for which zero steady-state

error for step reference inputs is not achieved (top); and (ii) a

baseline system for which zero steady-state error for step

reference inputs is achieved (bottom). When the necessary

condition of having a baseline system that achieves zero steady-

state error for step reference inputs is not satisfied (see Insight

4.4), the DNN trained with the difference learning scheme

cannot effectively compensate for the errors of the baseline

system response.

Fig. 13. A comparison of the RMS tracking error versus the

amount of data for training the DNNs with (blue) and without

(red) the difference learning scheme. The horizontal axis shows

the proportion of randomly selected data from Training Dataset

2 described in Section 6.4; the vertical axis shows the RMS

error on Trajectory 24 with the DNN-enhanced system (see

Figure 5). The plot shows that the DNN trained with the

difference learning scheme is able to reach the best observed

performance of the DNN trained without the difference learning

scheme (indicated by the gray dotted line) with approximately

15 times less training data. Note that the RMS tracking error

corresponding to the baseline system is shown as a gray dashed

line for reference.
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effectiveness of the proposed approach relies on two nec-

essary conditions that the baseline system has (i) a well-

defined vector relative degree and (ii) stable zero

dynamics. Second, for the systems satisfying these two

necessary conditions, we identified the necessary and suf-

ficient inputs of the DNN module. Third, we verified the

insights by repeating the quadrotor experiments in Li et al.

(2017). In particular, we showed that with the proposed

DNN input selection, the DNN input dimension is reduced

by two thirds while achieving similar or better performance

on the 30 hand-drawn trajectories in Li et al. (2017).

Moreover, in contrast to the quadrotor baseline controller,

for which the tracking error increased with the trajectory

speed, the tracking errors of the DNN-enhanced systems

remained small as the trajectory became more aggressive.

By using a richer training dataset, we also showed that the

proposed DNN module reduced RMS error by approxi-

mately 62% on the average of the 30 testing hand-drawn

trajectories. Fourth, using an argument similar to the small

gain theorem, we proved that, for systems with stable zero

dynamics, the overall DNN-enhanced control system is

input-to-state stable if the DNN modeling error is suffi-

ciently small. Fifth, we explored via both theory and

experiments the effectiveness of the difference learning

scheme for improving the efficiency of the training of the

DNNs in the proposed approach. In particular, we derived

a necessary condition for the effectiveness of the difference

learning approach, and verified this condition via experi-

ments. For the quadrotor impromptu tracking experiments,

we showed that the DNN trained with the difference learn-

ing scheme is able to achieve comparable tracking perfor-

mance of a DNN module trained without the difference

learning scheme with approximately 15 times less data.
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Note

1. Both system (29) and system (30) are controllable and obser-

vable and are, thus, minimal state space realizations. The

zeros of the MIMO systems are frequencies at which the

system matrix of the MIMO systems or the equivalent trans-

fer matrices H(z) of the systems drop rank (see Dahleh et al.,

2004 for more details). The locations of zeros (and poles) of

the systems can be conveniently veried with the Matlab com-

mand pzmap.
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Pane YP, Nageshrao SP and Babuška R (2016) Actor–critic rein-

forcement learning for tracking control in robotics. In: Pro-

ceedings of the IEEE Conference on Decision and Control

(CDC), pp. 5819–5826.

Schaal S, Atkeson CG and Vijayakumar S (2002) Scalable tech-

niques from nonparametric statistics for real time robot learn-

ing. Applied Intelligence 17(1): 49–60.

Schoellig AP, Mueller FL and D’Andrea R (2012) Optimization-

based iterative learning for precise quadrocopter trajectory

tracking. Autonomous Robots 33(1-2): 103–127.

Slotine JJE and Li W (1987) On the adaptive control of robot

manipulators. The International Journal of Robotics Research

6(3): 49–59.

Spong MW (1992) On the robust control of robot manipulators.

IEEE Transactions on Automatic Control 37(11): 1782–1786.

Srivastava N, Hinton G, Krizhevsky A, Sutskever I and Salakhut-

dinov R (2014) Dropout: A simple way to prevent neural net-

works from overfitting. Journal of Machine Learning

Research 15: 1929–1958.

Sun M and Wang D (2001) Analysis of nonlinear discrete-time

systems with higher-order iterative learning control. Dynamics

and Control 11(1): 81–96.

Suprijono H, Wahab W and Kusumoputro B (2015) Optimized

direct inverse control to control altitude of a small helicopter.

In: MATEC Web of Conferences, Vol. 34. EDP Sciences.

Sussmann H (1990) Limitations on the stabilizability of globally-

minimum-phase systems. IEEE Transactions on Automatic

Control 35(1): 117–119.

Tang S and Kumar V (2018) Autonomous flight. Annual Review

of Control, Robotics, and Autonomous Systems 1(1): 29–52.

Zhou et al. 21



Tayebi A (2004) Adaptive iterative learning control for robot

manipulators. Automatica 40(7): 1195–1203.

Yan Z and Wang J (2014) Robust model predictive control of

nonlinear systems with unmodeled dynamics and bounded

uncertainties based on neural networks. IEEE Transactions on

Neural Networks and Learning Systems 25(3): 457–469.

Zhang T, Kahn G, Levine S and Abbeel P (2016a) Learning deep

control policies for autonomous aerial vehicles with MPC-

guided policy search. In: Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation (ICRA),

pp. 528–535.

Zhang Y, Tao G and Chen M (2016b) Adaptive neural network

based control of noncanonical nonlinear systems. IEEE Trans-

actions on Neural Networks and Learning Systems 27(9):

1864–1877.

Zhou S, Helwa MK and Schoellig AP (2017) Design of deep

neural networks as add-on blocks for improving impromptu

trajectory tracking. In: Proceedings of the IEEE Conference

on Decision and Control (CDC), pp. 5201–5207.

Zhou S, Helwa MK and Schoellig AP (2018) An inversion-based

learning approach for improving impromptu trajectory track-

ing of robots with non-minimum phase dynamics. IEEE

Robotics and Automation Letters 3(3): 1663–1670.

Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior

to 2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at

http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media type Description

1 Video Impromptu tracking experiment
2 Data a. Training data

b. Testing results on 30 trajectories
c. Operating speed generalization
d. Difference learning scheme
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