
Knowledge Transfer Between Robots with Similar Dynamics for
High-Accuracy Impromptu Trajectory Tracking

Siqi Zhou1, Andriy Sarabakha2, Erdal Kayacan3, Mohamed K. Helwa1, and Angela P. Schoellig1

Abstract— In this paper, we propose an online learning
approach that enables the inverse dynamics model learned for
a source robot to be transferred to a target robot (e.g., from
one quadrotor to another quadrotor with different mass or
aerodynamic properties). The goal is to leverage knowledge
from the source robot such that the target robot achieves high-
accuracy trajectory tracking on arbitrary trajectories from
the first attempt with minimal data recollection and training.
Most existing approaches for multi-robot knowledge transfer
are based on post-analysis of datasets collected from both
robots. In this work, we study the feasibility of impromptu
transfer of models across robots by learning an error prediction
module online. In particular, we analytically derive the form
of the mapping to be learned by the online module for exact
tracking, propose an approach for characterizing similarity
between robots, and use these results to analyze the stability
of the overall system. The proposed approach is illustrated
in simulation and verified experimentally on two different
quadrotors performing impromptu trajectory tracking tasks,
where the quadrotors are required to accurately track arbitrary
hand-drawn trajectories from the first attempt.

I. INTRODUCTION

Machine learning techniques have been applied to many
robot control problems with the goal of achieving high
performance in the presence of uncertainties in the dynamics
and the environment [1]. Due to the cost associated with
data collection and training, approaches such as manifold
alignment [2]–[4] and learning invariant features [5], [6] have
been proposed to transfer knowledge between robots and
thereby increase the efficiency of robot learning. In these
approaches, datasets on a set of sample tasks are initially
collected from both robots. They are then used for finding a
mapping offline to transfer knowledge from a source robot
to a target robot. This transferred knowledge is expected to
speed up the training of the target robot and enhance its
performance in untrained tasks [7].

In this paper, we consider the problem of impromptu
trajectory tracking, in which robots are required to track
arbitrary trajectories accurately from the first attempt [8].
Model-based techniques such as model predictive control

1Siqi Zhou, Mohamed K. Helwa, and Angela P. Schoellig are with the
Dynamic Systems Lab (http://www.dynsyslab.org), Institute for Aerospace
Studies, University of Toronto, Canada. The authors are also affiliated
with the Vector Institute for Artificial Intelligence, Toronto. Mohamed
K. Helwa is also with the Electrical Power and Machines Department,
Cairo University, Egypt. Emails: siqi.zhou@robotics.utias.utoronto.ca, mo-
hamed.helwa@robotics.utias.utoronto.ca, schoellig@utias.utoronto.ca

2Andriy Sarabakha is with the School of Mechanical and Aerospace
Engineering, Nanyang Technological University, Singapore. Email: an-
driy001@e.ntu.edu.sg

3Erdal Kayacan is with the Department of Engineering, Aarhus Univer-
sity, Denmark. Email: erdal@eng.au.dk

DNN Offline
Learning Module

(Source System Inverse)

Plant

Online
Learning Module
(Inverse Correction)

Baseline
Controller

Target Baseline
Closed-Loop System

Desired Output Actual
Output

State

Sys.
Ref.

DNN
Ref.

Online
Module Ref.

Fig. 1: Block diagram of the DNN-enhanced control architecture with
online learning. The DNN module represents the inverse dynamics of a
source system and is previously trained offline with a sufficiently rich
dataset. During the testing phase, the DNN module is leveraged to enhance
the tracking performance of a target system that shares some dynamic
similarities with the source system. An online learning module (trained
based on small sets of real-time data) further adjusts the reference generated
by the DNN module to allow the target system to achieve high-accuracy
tracking on arbitrary trajectories from the first attempt (i.e., impromptu
tracking). A video of this work can be found here: http://tiny.cc/dnnTransfer

(MPC) or the linear-quadratic regulator (LQR) can be used to
solve tracking problems; however, applying these techniques
to achieve high tracking performance can be difficult as
they rely on sufficiently accurate dynamics models or can
be time-consuming to tune. In [8], [9], we proposed a
deep neural network (DNN)-based approach to enhance the
tracking performance of black-box robot control systems. In
particular, we showed that we can effectively enhance the
tracking performance of a robot by training a DNN inverse
dynamics module offline and then pre-cascading the module
to the baseline system at test time. For example, on 30 arbi-
trary, unseen hand-drawn trajectories, the DNN-enhancement
approach reduced the tracking error of a quadrotor by an
average of 43% [8].

Motivated by recent work in transfer learning, in this
work, we study the feasibility of leveraging the DNN
model trained on one robot to enhance the performance
of another robot in impromptu tracking tasks. In contrast
to the existing approaches, where transfer mappings are
usually found offline (e.g., [3], [5]), we propose an online
learning approach (Fig. 1) that allows a target robot using
the DNN module from a source robot to achieve high-
accuracy tracking impromptu — i.e., without additional data
collection and training on sample tasks. With the online
learning approach, we aim to significantly reduce the data
recollection and training time usually required for enhancing
the target robot performance. In this work, we
(1) analytically derive the form of the mapping for the

online module that allows the target system to achieve
exact tracking,

(2) present first results on characterizing system similarity
between source and target systems and how it relates

http://www.dynsyslab.org
http://tiny.cc/dnnTransfer

to the stability of the proposed overall learning system
given modeling uncertainties, and

(3) verify the effectiveness of the proposed approach in sim-
ulation and impromptu trajectory tracking experiments
on quadrotors.

The paper is organized as follows: We start with a brief
review of the related work (Sec. II) and provide some
background on offline inverse learning (Sec. III). Then, we
formulate the online learning problem (Sec. IV), discuss
theoretical results (Sec. V), and illustrate the approach in
simulation (Sec. VI) and in quadrotor experiments (Sec. VII).
We conclude with a summary of the main results (Sec. VIII).

II. RELATED WORK

The problem of knowledge transfer or transfer learning has
been studied in different application domains (e.g., natural
language processing [10], computer vision [11], and robot
control [3]). The common goal is to leverage existing data
to accelerate and improve subsequent learning processes
such that the costs (and potential risks) associated with
data recollection can be reduced [7], [12]. In robotics, two
directions of knowledge transfer have been considered: (i)
transfer across tasks and (ii) transfer across robots. The
former typically considers the transfer of knowledge from
a source task to a target task to be performed by a single
robot (e.g., [13]–[15]), while the latter considers the transfer
of knowledge from a source robot to a target robot (e.g., [2]–
[6], [16]). In this paper, we will focus on the latter. We aim
to transfer the inverse dynamics model trained on one robot
to enhance the tracking performance of another robot. The
transferred inverse dynamics model is expected to generalize
to arbitrary trajectories [8], [9].

In the robot learning literature, and especially in rein-
forcement learning (RL), different approaches have been
proposed to address the problem of knowledge transfer
across different robots or domains. One of the approaches
for cross-domain transfer is manifold alignment, where data
from the source and target systems are collected for a set
of sample tasks and are mapped to corresponding feature
spaces (e.g., through dimensionality reduction) from which
a transformation mapping between the source and target
systems is found. This offline mapping can then be used
to translate the policies trained on the source robot to the
policies for the target robot [2], or map the data collected on
the source robot to the target robot for model learning [3].
Extension hereto [4], [16] derive an optimal mapping for
data transfer across robots from a control theory perspective.
Other related work aims to learn and exploit a common
feature space between the source and target robots while
performing similar tasks [5], [6]. In [6], it is shown that
the approach can effectively transfer control policies across
different quadrotor platforms for autonomous navigation.

In addition to the above, there are a few other lines of rele-
vant work involving knowledge transfer. One of them is sim-
to-real [17], [18], where the low-cost data from a simulation
is exploited for accelerating the training on physical robots.
Moreover, in meta learning, the learning parameters are

optimized for initializing subsequent learning [19]. In [20],
modularity in learning has also been proposed to maximize
the utility of learned models.

Although recent literature demonstrates the possibility
of transferring knowledge across robots, we address two
additional aspects in our paper. The first aspect is impromptu
knowledge transfer without a-priori data collection on target
systems. The second aspect is the impact of dynamic system
similarity on the feasibility of knowledge transfer. An open
question in the transfer learning literature is the issue of
negative transfer (i.e., when the transfer adversely affects
the target system) [7]. While researchers have investigated
task similarity in the context of task transfer problems [21],
discussions on system similarity for transferring knowledge
across robots are rare. In this paper, we present theoretical
results that associate system similarity to the feasibility of
knowledge transfer across robots.

III. BACKGROUND ON OFFLINE INVERSE LEARNING

In this section, we provide more information about the
DNN module (Fig. 1) to facilitate the discussions in the
following sections. In [9], we considered a nonlinear closed-
loop baseline system represented by

x(k + 1) = f (x(k)) + g (x(k))u(k)

y(k) = h (x(k)) ,
(1)

where k ∈ Z≥0 is the discrete time index, x ∈ Rn is the state
of the system, u ∈ R and y ∈ R are the input and output of
the system, respectively, and f(·), g(·), and h(·) are smooth
functions. System (1) is said to have a relative degree r at a
point (x0, u0) if ∂

∂uh ◦ f
p(f(x(k)) + g(x(k))u(k)) = 0 for

p = 0, ..., r − 2 for all points (x, u) in the neighbourhood
of (x0, u0), and ∂

∂uh ◦ f
r−1(f(x(k)) + g(x(k))u(k)

)
6= 0

at (x0, u0), where (h ◦ f)(x) is h(f(x)), and f i is the i-
th composition of function f with f0(x(t)) = x(t) and
f i(x(t)) = f i−1 ◦ (f(x(t))) [22]. For a system with a
relative degree r, one may relate its input and output by
y(k + r) = h ◦ fr−1

(
f(x(k)) + g(x(k))u(k)

)
. For many

practical systems (e.g., manipulators), the output y(k + r)
can be written as an affine function in the input u(k):

y(k + r) = F (x(k)) + G (x(k))u(k), (2)

where F (x(k)) = h ◦ fr(x(k)) and G (x(k)) = ∂
∂uh ◦

fr−1(f(x(k))+g(x(k))u(k)) [22], [23]. From Eqn. (2), one
can show that the reference signal for exact tracking (i.e.,
y(k + r) = yd(k + r)) is

u(k) =
1

G (x(k))
(yd(k + r)−F (x(k))) . (3)

In more general cases, we can assume that the reference u(k)
for exact tracking is a nonlinear function of the state x(k) and
the future desired output yd(k + r). In [8], [9], we showed
that, for an unknown, minimum-phase, nonlinear baseline
system with a well-defined relative degree, we can train
a DNN module that approximates the closed-loop inverse
dynamics in Eqn. (3) and effectively enhances the tracking
performance of the baseline system. In particular, in the

training phase of the DNN module, we construct a dataset
with input {x(k), y(k + r)} and output {u(k)} based on
the input-output response data from the baseline system. In
the testing phase, the DNN module is pre-cascaded to the
baseline system to adjust the reference u(k) based on the
current state x(k) and desired output yd(k+ r) (see Fig. 1).

Although we considered stable closed-loop baseline sys-
tems in [9], the results can be extended to that for stablizable
open-loop plants. The approach in [9] decouples the problem
of stabilization from the problem of improving tracking per-
formance, which makes the overall learning-based approach
more effective and less prone to instabilities.

IV. PROBLEM FORMULATION

We consider the control architecture in Fig. 1 and study
the knowledge transfer problem that allows the DNN module
trained on a source robot system to enhance the impromptu
tracking performance of a target robot system that has
different dynamics. As in [9], the source and target robot
systems are closed-loop systems whose dynamics can be
represented by Eqns. (1) and (2). We assume that:
(A1) The source and target systems are input-to-state sta-

ble [24].
(A2) The source and target systems (i) have well-defined

and the same relative degree, and (ii) are minimum
phase.

(A3) The desired trajectory yd is bounded, and a preview
of yd(k + r) is available at time step k.

Note that (A1) and (A2) are necessary for safe operations
and for applying the DNN inverse learning [9]. In (A2), we
also assume that the source and target systems have the same
relative degree to simplify the analysis. This condition holds,
for instance, if the two robots have similar structures but
different parameters (e.g., masses and dimensions). For (A3),
the relative degree of a system is typically a small integer
bounded by the system order, and a preview of r time steps
of the desired trajectory can typically be achieved by online
and offline trajectory generation algorithms.

V. THEORETICAL RESULTS

In this section, we consider the control architecture in
Fig. 1 and provide theoretical results related to the knowledge
transfer problem. We denote u1 as the reference from the
DNN module trained on the source system and u2 as the
reference from the online learning module. The overall
reference to the target baseline system u(k) is given by

u(k) = u1(k) + u2(k). (4)

Below we derive an expression of u2(k) for achieving exact
tracking in Sec. V-A, propose a characterization of system
similarity in Sec. V-B, and analyze the stability of the overall
system in the presence of uncertainties in Sec. V-C.

A. Reference Adaptation for Exact Tracking

In this subsection, we derive an expression for u2(k) such
that u(k) achieves exact tracking y(k + r) = yd(k + r),

where y and yd are the desired and actual outputs of the
target system, and r is the system relative degree.

A common approach for high-accuracy trajectory tracking
is to adapt the reference input of a nominal controller
based on the observed tracking errors. For instance, in
PD-type iterative learning control (ILC), proportional and
derivative tracking error terms are added to the reference in
each iteration to improve the tracking performance over a
sequence of trials [25]. In distal teacher inverse dynamics
learning, the tracking error is proposed as the cost function
for updating the weights of a neural-network-based controller
online to achieve improved tracking [26]. In this work, we
similarly consider an online learning approach that adapts the
reference of the DNN module u1(k) based on the tracking
error. In particular, we justify below that the reference u2(k)
can be approximated by

u2(k) = α ep(k + r), (5)

where α is an adaptation gain, and ep(k+ r) is a prediction
of the tracking error r time steps ahead.

We consider a nonlinear target system (1), (2):

y(k + r) = Ft (x(k)) + Gt (x(k))u(k), (6)

where Ft (x(k)) = ht ◦ frt (x(k)) and Gt (x(k)) = ∂
∂uht ◦

fr−1t (ft(x(k))+gt(x(k))u(k)), and ft(·), gt(·), and ht(·) are
the corresponding nonlinear functions in Eqn. (1). In addition
to the target system, we consider a source system, which
the DNN module is trained on. This system is similarly
represented in the form of Eqn. (2). As discussed in [9],
the underlying function approximated by the DNN is

u1(k) =
1

Gs (x(k))
(yd(k + r)−Fs (x(k))) , (7)

where Fs (x(k)) and Gs (x(k)) are defined analogously to
those of the target system. By substituting Eqns. (4) and (7)
into Eqn. (6), one can see that the ideal reference u2(k) for
achieving exact tracking is

u2(k) = α∗e∗p(k + r), (8)

where α∗ = 1
Gt(x(k)) and

e∗p(k + r) = yd(k + r)−Ft (x(k))− Gt (x(k))u1(k).
(9)

Insight 1. Ideal Mapping for Exact Tracking. In order to
achieve exact tracking, the online learning module should
predict the tracking error of the target system that would
result from applying u1(k). The predicted error is scaled by
a gain α∗ = 1

Gt(x(k)) , where Gt(x(k)) = ∂y(k+r)
∂u(k) .

The error prediction in Eqn. (9) depends on the current
state x(k), the reference u1(k) from the DNN module, and
the future desired output yd(k + r). When the dynamics of
the source and the target systems are not known, one may use
supervised learning to train a model online to approximate
Eqn. (9). We present a general approach for training this
online model in Remark 1.

Remark 1. Online Learning for Error Prediction. For
training an online model to approximate Eqn. (9), at each
time step k, one may construct a dataset with paired inputs
{x(p− r), u(p− r), yd(p)} and outputs {yd(p)− y(p)} over
the past N time steps p = k−N, ..., k. The error ep(k+ r)
can then be predicted using the online model with input I =
[x(k), u1(k), yd(k + r)].

Given the predicted error ep(k + r), another component
to be determined for computing u2(k) is the gain α. With
an online model F (x(k), u1(k), yd(k + r)) approximating
Eqn. (9), it can be shown that α∗ can be obtained from α̂∗ =
− (∂F/∂u1)

−1. In practice, due to noise in the systems, the
online estimation of α∗ can be non-trivial. In Sec. V-C, we
provide an analysis to examine the stability of the overall
system when α∗ is approximated by a constant and also when
the estimation of e∗p(k + r) by the online model is inexact.

B. System Similarity
The concept of task similarity has been introduced in the

RL literature to address the issue of negative knowledge
transfer in task transfer learning problems [21]. In this
subsection, we propose a characterization of system simi-
larity for impromptu knowledge transfer problems, where an
inverse module is transferred across two robot systems.

We consider two systems are similar if at any given state
x(k), the application of an input u(k) to the systems results
in similar outputs y(k+r) [27]. For the similarity discussion,
we assume linear or linearized source and target systems to
simplify our analysis:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k),
(10)

where x ∈ Rn is the state, u ∈ R is the input, y ∈ R is the
output, and (A, B, C) are constant matrices. It can be shown
that the input and output of system (10) are related by

y(k + r) = Ax(k) + Bu(k). (11)

where A = CAr and B = CAr−1B, and r is the relative
degree of system (10). From Eqn. (11), the input-output
relationship is fully characterized by A and B, which can
be thought as the state-to-output gain vector and the input-
to-output gain, respectively. Based on the relationship in
Eqn. (11), we define a vector S to characterize the similarity
of the source and target systems:

S =
[
S1 S2

]
, (12)

where S1 = 1 − Bt

Bs
, S2 = At − Bt

Bs
As, and the subscripts

s and t denote the source and the target system. The terms
S1 and S2, respectively, characterize the differences in the
input-to-output gain and state-to-output gain vector of the
source and target systems. Note that S = 0 if and only if
At = As and Bt = Bs (i.e., the state-to-output and input-to-
output gains of the systems are identical).

C. Stability in the Presence of Uncertainties
In this subsection, we use the concept of system similarity

and analyze the stability of the target system when the gain

α∗ is approximated by a constant α and the prediction of the
future error e∗p(k+ r) is not exact. We focus on system (10)
and make the following assumptions:
(A4) The output of the offline DNN u1(k) corresponds

to the inverse of the source system u1(k) =
1
Bs

(yd(k + r)−Asx(k)), where As and Bs are the
gains of the source system, and x(k) and yd(k + r)
are the state and desired output of the target system.

(A5) The error in the prediction Λ = e∗p(k+ r)− ep(k+ r)
can be bounded as follows: Λ ≤ β1||yd(k + r)|| +
β2||x(k)|| + β3, where β1, β2, and β3 are positive
constants, and || · || is the Euclidean norm.

In addition, by (A1), the target system is input-to-state stable.
It can be shown that the state of system (10) can be bounded
as follows: ||x||∞ ≤ L1||u||∞ + L2||x0||, where ||x||∞ =
supk{||x(k)||}, ||u||∞ = supk{||u(k)||}, and L1 and L2 are
positive constants.

Lemma 1. Stability. Consider a target system represented
by Eqn. (10) and the control architecture in Fig. 1, where
the reference of the online learning module u2(k) has the
form of Eqn. (5). Under (A1), (A4), and (A5), the overall
system is bounded-input-bounded-state (BIBS) stable if

|α| (||S2||+ β1) <
β4
L1
, (13)

where β4 = 1− L1

∣∣∣∣∣∣As

Bs

∣∣∣∣∣∣.
Proof. At a time step k, the output of the online learning
module is u2(k) = α ep(k + r), where α is a constant gain
and ep(k + r) is the predicted tracking error. The adjusted
reference u(k) sent to the target baseline system is u(k) =
u1(k) +αep(k+ r), where u1(k) is the output of the offline
DNN module. By (A4) and (A5), we can write u(k) as

u(k) =
1

Bs
(yd(k + r)−Asx(k)) + α

(
e∗p(k + r)− Λ

)
.

(14)
For a target system represented by Eqn. (10), e∗p(k + r) in
Eqn. (9) can be written as e∗p(k+r) = yd(k+r)−Atx(k)−
Btu1(k) = yd(k+ r)−Atx(k)− Bt

Bs
(yd(k + r)−Asx(k)).

By substituting the expression of e∗p(k+r) into Eqn. (14), we

obtain u(k) =
(

1
Bs

+ αS1

)
yd(k+r)−

(
As

Bs
+ αS2

)
x(k)−

αΛ. Moreover, by (A1) and (A5), we can relate ||x||∞ to
||yd||∞ = supk{||yd(k)||} by the following inequality:

||x||∞ ≤ L1

((∣∣∣∣ 1

Bs

∣∣∣∣+ |α| |S1|+ β1|α|
)
||yd||∞

+

(∣∣∣∣∣∣∣∣AsBs
∣∣∣∣∣∣∣∣+ |α| ||S2||+ β2|α|

)
||x||∞

)
+ L1β3|α|+ L2||x0||.

(15)
From Eqn. (15), if 1 − L1

(∣∣∣∣∣∣As

Bs

∣∣∣∣∣∣+ |α| ||S2||+ β2|α|
)
>

0, or equivalently |α| (||S2||+ β2) < β4

L1
, then the state

of the system can be bounded as follows: ||x||∞ ≤
L1(| 1

Bs
|+|α||S1|+β1|α|)||yd||∞+L1β3|α|+L2||x0||

1−L1(||As
Bs
||+|α|||S2||+β2|α|)

. Now, if yd and

hence ||yd||∞ are bounded, then the system state is bounded,

and the overall system is BIBS stable. �
Recall that, in Eqn. (13), α is the gain of the online

learning module, S2 characterizes the similarity between
the two systems, β1 is associated with the uncertainty
in the error prediction, and L1 can be thought of as a
characterization of the aggressiveness of the target system.
The condition in Eqn. (13) can be interpreted for two
scenarios: (i) when |α| = 0 (i.e., the online module is
inactive) and (ii) when |α| 6= 0 (i.e., the online module is
active). In scenario (i), the condition in Eqn. (13) reduces
to L1 < 1

||As/Bs|| , which can be interpreted as an upper
bound on the relative aggressiveness of the source and
target systems. When this condition is satisfied, the target
system with the source system DNN module is stable. In
scenario (ii), when the online learning module is active, the
condition in Eqn. (13) implies that if the source and target
systems are more similar, that is ||S2|| is closer to 0, then
there will be a greater margin for selecting α and higher
tolerance for having uncertainties in the online prediction
model. Moreover, based on the condition in Eqn. (13), one
may use probabilistic learning techniques to estimate the
uncertainties in the predicted error ep(k + r) and calculate
an upper bound on the magnitude of the fixed gain α for
stability.

Remark 2. Generalization to Nonlinear Systems. For
nonlinear systems (1) with inputs and outputs related by
Eqn. (2), one can relate the outputs of the source and target
systems by yt(k + r) = ϑ1 (x(k)) ys(k + r) + ϑ2 (x(k)),
where ϑ1 (x(k)) = Gt(x(k))

Gs(x(k)) and ϑ2 (x(k)) = Ft (x(k)) −
Gt(x(k))
Gs(x(k))Fs (x(k)). The relation between yt(k+r) and ys(k+

r) can be used as an alternative for characterizing the
similarity for the nonlinear systems. It is left for future work
to perform a similar stability analysis for the nonlinear case.

VI. SIMULATION ILLUSTRATION

In this section, we illustrate the proposed online learning
approach with a simulation example. In [9], we considered a
minimum phase closed-loop baseline system represented by

x(k + 1) =

[
0 1

−0.15 0.8

]
x(k) +

[
0
1

]
u(k)

y(k) =
[
−0.2 1

]
x(k),

(16)

and showed that a DNN module (Sec. III) can be designed
to enable the system to achieve exact tracking on untrained
trajectories. In the following simulation study, we consider
system (16) as the source system and leverage its offline
DNN module to enhance the tracking performance of a target
system that is represented by

x(k + 1) =

[
0 1

−0.24 1

]
x(k) +

[
0
1

]
u(k)

y(k) =
[
−0.1 1

]
x(k).

(17)

Note that the source system (16) and the target system (17)
are minimum phase and have relative degrees of 1. The
source system has two poles at {0.3, 0.5} and a zero at 0.2,
while the target system has two poles at {0.4, 0.6} and a zero

at 0.1. When implementing the learning modules, we assume
that the systems are black boxes, and we rely on only their
input-output data and basic properties (e.g., relative degree).

A. Learning Modules

1) Offline Learning of Inverse Module: The offline inverse
module is trained on a source system (e.g., a system that
is similar to the target system or a simulator), from which
abundant data has been collected. The collected data can
often be compactly represented by parametric regression
techniques [8], [9]. For the source system (16), we adopt
the DNN module from [9] and transfer this inverse module
to enhance the target system (17) with the proposed online
learning approach. The DNN module of the source system
is a 3-layer feedforward network with 20 hyperbolic tangent
neurons in each hidden layer. The input and output of
the DNN module are I = [x(k), yd(k + 1)] and O =
u1(k). The training dataset is constructed from the source
system’s response on 25 sinusoidal trajectories with different
combinations of frequencies and amplitudes; Matlab’s Neural
Network Toolbox is used to train the DNN model parameters
offline. More details of the DNN training can be found in [9].

2) Error Prediction with Online Learning: The online
error prediction module is a local model trained on a small
dataset constructed from the latest observations of the target
system. The objective of incorporating the online module is
to achieve fast adaptation to the dynamic differences between
the source and target systems. In the simulation, a Gaussian
process (GP) regression model is utilized for learning the
error prediction module online. Based on Remark 1, the
input and output of the online module are selected to
be I = [x(k), u1(k), yd(k + 1)] and O = ep(k + 1),
respectively. At each time step k, a fixed-sized training
dataset is constructed based on the latest 15 observations;
in particular, the input and output are {(x(p − 1), u(p −
1), yd(p))} and {yd(p) − y(p)} for p = k − 15, ..., k. For
the simulation, the GP model uses the squared-exponential
kernel K(ξ, ξ′) = σ2

1 exp
(
− 1

2

∑
i
(ξi−ξ′i)

2

l2i

)
and polynomial

explicit basis functions {1, ξi, ξ2i }, where ξ denotes the input
to the module and ξi denotes the i-th component of ξ, li is the
length scale associated with the input dimension ξi, and σ2

1 is
the prior variance [28]. The length scales li are identical for
all input dimensions in the simulation; the hyperparameters
of the kernel function and the coefficients of the basis func-
tions are optimized online with Matlab’s Gaussian Process
Regression toolbox. The gain α∗ is estimated based on the
online error prediction module as α̂∗ = − (∂Fgpr/∂u1)

−1,
where Fgpr denotes the function represented by the GP
regression model.

B. Simulation Results

Figures 2 and 3 show the performance of the learning
modules and the target system on a test trajectory yd(t) =
sin
(
2π
8 t
)

+ cos
(
2π
16 t
)
− 1, where t = 1.5 × 10−3k is the

continuous-time variable. This test trajectory is not previ-
ously used in the training of the offline learning module.

Figure 2 compares the predicted error from the online
module and the analytical error prediction of the target
system computed based Eqn. (9). It can be seen that the
online module designed based on Remark 1 is able to
accurately predict the error of the target system that would
result from applying the reference u1 alone. On the test
trajectory, the root-mean-square (RMS) error of the online
module prediction is approximately 2.9× 10−7.

Figure 3 shows the outputs of the target system when (i)
the baseline controller is applied (grey), (ii) the baseline
system is enhanced by the offline module alone (green),
and (iii) the baseline system is enhanced by both the online
and the offline modules (blue). As compared to the baseline
system, the offline module alone reduces the RMS tracking
error of the target system from 3.97 to 0.44. The online
module further reduces the RMS tracking error to 9× 10−5.
Applying the offline and the online learning modules jointly
allows the target system to achieve approximately exact
tracking on a test trajectory that is not seen by the source or
the target system a-priori.

VII. QUADROTOR EXPERIMENTS

With impromptu tracking of hand-drawn trajectories as the
benchmark problem [8], we illustrate the proposed online
learning approach for transferring the DNN module trained
on a source quadrotor system, the Parrot ARDrone 2.0, to a
target quadrotor system, the Parrot Bebop 2. A demo video
can be found here: http://tiny.cc/dnnTransfer

A. Experiment Setup

In [8] and [9], with the ARDrone as the testing platform,
it is shown that a DNN module trained offline can effec-
tively enhance the impromptu tracking performance of the
quadrotor on arbitrary hand-drawn trajectories. In this work,
we leverage the DNN module trained on the ARDrone to
enhance the impromptu tracking performance of the Bebop
and further apply the proposed online learning approach
(Remark 1) to achieve high-accuracy tracking.

1) Control Objective and Baseline Control System: The
dynamics of a quadrotor vehicle can be characterized by
12 states: translational positions p = (x, y, z), translational
velocities v = (ẋ, ẏ, ż), roll-pitch-yaw angles θ = (φ, θ, ψ),
and rotational velocities ω = (p, q, r). The objective is
to design a control system such that the position of the
quadrotor pa tracks desired trajectories pd generated from
arbitrary hand drawings. In this work, we use the RMS error
as the measure for evaluating tracking performance.

The baseline control systems of the quadrotor platforms,
the ARDrone and the Bebop, have an offboard position
controller running at 70 Hz and an onboard attitude con-
troller running at 200 Hz. The offboard position controller
receives the reference position pr and reference velocity vr,
and computes attitude commands φcmd and θcmd, yaw rate
command rcmd, and z-velocity command żcmd. The onboard
attitude controller receives the commands from the offboard
controller, and computes the desired thrusts of the four
motors of the vehicle. In the experiments, we apply the

0 5 10 15 20 25 30

Time

-0.5

 0.0

 0.5

P
re

d
ic

te
d

 E
rr

o
r

Exact Error Prediction Eqn. (9)

Online Learning Module Prediction (RMS Error = 2.9e-07)

Fig. 2: A plot of the error prediction from the online learning module.
The error predicted by an online module trained based on Remark 1 (blue)
coincides with the exact error prediction computed based on Eqn. 9 (red).

0 5 10 15 20 25 30

Time

-15.0

-10.0

 -5.0

 0.0

T
a

rg
e

t
S

y
s
te

m
 O

u
tp

u
t

Desired

Target System Baseline (RMS Error = 3.97)

w/ DNN of Source System (RMS Error = 0.44)

w/ DNN of Source System and Online Module (RMS Error = 9e-05)

Fig. 3: Plots of the target system output when (i) the baseline controller
(grey), (ii) the baseline controller with the offline learning module (green),
and (iii) the baseline controller with both the offline and online learning
modules (blue) are applied. Due to system similarity, the offline learning
module (trained on the source system) significantly reduces the tracking
error of the target system. With the further incorporation of the online
learning module, exact tracking is approximately achieved.

offline and online learning modules to enhance the tracking
performance of the baseline controller of the Bebop (the
target system). In the design of the learning modules, we
assume that the high-level dynamics of the ARDrone and
the Bebop are decoupled in the x, y, and z directions.

2) DNN Module Trained on ARDrone (Source System):
In [8], [9], a DNN module is trained offline to approximate
the inverse of the ARDrone baseline system dynamics. Based
on the theoretical insights in [9], the input and output of
the DNN module are determined to be I1 = [xd(k + 4) −
xa(k), yd(k + 4) − ya(k), zd(k + 3) − zd(k), ẋd(k + 3) −
ẋa(k), ẏd(k + 3) − ẏa(k), żd(k + 2) − ża(k),θa(k),ωa(k)]
and O1 = [pr(k) − pa(k),vr(k) − va(k)]. The DNN
module consists of fully-connected feedforward networks
with 4 hidden layers of 128 rectified linear units (ReLU).
The training dataset of the DNN module is constructed
from the ARDrone baseline system response on a 400-
second, 3-dimensional sinusoidal trajectory. At a sampling
rate of 7 Hz, approximately 2,800 pairs of data points are
collected for training. The DNN module is implemented
using Tensorflow in Python. Further details of the DNN
module implementation can be found in [8], [9]. As shown
in [8], for 30 hand-drawn test trajectories, this offline DNN
module is able to reduce the impromptu tracking error of the
ARDrone baseline system by 43% on average.

3) Online Learning for Bebop (Target System): Based on
Remark 1, the input and output of the online learning module

http://tiny.cc/dnnTransfer

are I2 = [pa(k),va(k),θa(k),ωa(k),pr(k),vr(k), xd(k +
4), yd(k+ 4), zd(k+ 3), ẋd(k+ 3), ẏd(k+ 3), żd(k+ 2)] and
O2 = [xe(k + 4), ye(k + 4), ze(k + 3), ẋe(k + 3), ẏe(k +
3), że(k + 2)], where (·)e denotes the predicted position
and velocity tracking errors of the Bebop system when the
offline DNN trained on the ARDrone system is used. In the
experiment, in order to make online learning more efficient,
instead of predicting the position and velocity errors directly,
we train a GP model to predict the position of the Bebop
pa(k+ r) = [xa(k+ 4), ya(k+ 4), za(k+ 3)] and computes
the predicted error by subtracting the predicted position
from future desired position pd(k + r) − pa(k + r), where
pd(k+ r) = [xd(k+ 4), yd(k+ 4), zd(k+ 3)]. The predicted
position errors are used to compute the corrections for the
position components; the velocity reference corrections are
numerically approximated with a first-order finite difference
scheme. For the experiments, the online learning module is
implemented by using the GPy library in Python. We use
a standard squared-exponential kernel with a fixed length
scale l for all input dimensions, prior variance σ2

1 , and zero
mean Gaussian measurement noise with variance σ2

2 [28]. At
each time step k, the most recent 40 observations are used
for constructing the training dataset. The hyperparameters
of the GP model are l = 20, σ2

1 = 1, and σ2
2 = 2 × 10−5;

these values are manually tuned a-priori for our experimental
setup. If computational resources permit, we expect finer
tuning of the hyperparameters online would lead to lower
generalization errors and better tracking performance. Due
to the measurement noise in the experiment, instead of
estimating the parameter α online, we used constant gains
α = (5, 5, 0.5) for the x, y, and z directions.

B. Experiment Results

Figure 4 compares the tracking performance of three
control strategies on the Bebop on one of the test hand-
drawn trajectories. When comparing the performance of
the Bebop system enhanced by the ARDrone DNN (green)
and the performance of the Bebop baseline system (grey),
the ARDrone DNN reduces the delay and the amplitude
errors in the Bebop tracking response. Along this particular
trajectory, the DNN module alone reduces the RMS tracking
error of the Bebop from approximately 0.42 m to 0.26 m.
When further comparing with the performance of the DNN-
enhanced system with the addition of the online learning
module (blue), the tracking of the Bebop, especially in
the x-direction, is brought close to the desired trajectory.
With the online learning module, the RMS tracking error is
reduced to approximately 0.14 m. Note that, from the plots
in Fig. 4, when the online learning module is applied, there
are small overshoots at the locations with larger curvatures.
The overshoots may be reduced with online tuning of the GP
hyperparameters and online estimations of the α parameters.

Figure 5 summarizes the performance errors of the three
control strategies on 10 hand-drawn trajectories. When com-
pared with the Bebop baseline system performance (grey),
the direct application of the transferred DNN module (green)
reduces the RMS tracking error of the Bebop baseline system

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x (m)

0.5

1

1.5

2

z
 (

m
)

Desired

Bebop Baseline System

w/ DNN

w/ DNN & Online Module

(a) Path of the target system in the x-z plane.

-2.0

 0.0

 2.0

x
 (

m
)

Desired

Bebop Baseline System

w/ DNN

w/ DNN & Online Module

0 2 4 6 8 10 12 14 16 18

Time (s)

0.5

1.0

1.5

2.0

z
 (

m
)

(b) Position trajectories of the target system.

Fig. 4: Comparison of three control strategies for the Bebop target system:
The RMS error is 0.42 m for the Bebop baseline system (grey), 0.26 m for
the baseline system enhanced by the ARDrone DNN (green), and 0.14 m for
the baseline system further enhanced by the online learning module (blue).

by an average of 46%. With the addition of the online
learning module (blue), an average of 74% RMS tracking
error reduction is achieved. Two additional sets of results
are included for comparison: (i) the performance of the
ARDrone enhanced by the DNN module trained on the
ARDrone system (yellow) and (ii) the performance of the
Bebop enhanced by a DNN module trained on the Bebop
system (light blue). Without requiring further data collection
and offline training, the inclusion of the online learning
module effectively reduces the RMS tracking error of the
Bebop to values that are comparable to those of the cases
where the quadrotors are enhanced by their own offline DNN
modules. These results demonstrate the efficiency of the
proposed online learning module to leverage past experience
and reduce data re-collection and training.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we consider the impromptu tracking prob-
lem and propose an online learning approach to efficiently
transfer a DNN module trained on a source robot system
to a target robot system. In the theoretical analysis, we
derive an expression of the online module for achieving exact
tracking. Then, based on a linear system formulation, we
propose an approach for characterizing system similarity and
provide insights on the impact of the system similarity on
the stability of the overall system in the knowledge transfer
problem. We verify our approach experimentally by applying
the proposed online learning approach to transfer a DNN
inverse dynamics module across two quadrotor platforms
(Parrot ARDrone and Bebop). On 10 arbitrary hand-drawn
trajectories, the DNN module of the source system reduces

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5 6 7 8 9 10

RM
S

Er
ro

r (
m

)

Trajectory Number

Bebop Baseline Bebop w/ ARDrone DNN Bebop w/ ARDrone DNN & Online Learning ARDrone w/ Own DNN Bebop w/ Own DNN
Avg. RMS Error = 0.54 m Avg. RMS Error = 0.29 m Avg. RMS Error = 0.13 m Avg. RMS Error = 0.14 m Avg. RMS Error = 0.15 m

Fig. 5: Tracking performance of the target system (Bebop) on 10 hand-drawn trajectories. The ARDrone DNN module alone (green) and the ARDrone DNN
module with the online learning module (blue) reduce the tracking error of the Bebop baseline system (grey) by 46% and 74% on average, respectively.
With the proposed online learning approach, the average RMS error of the Bebop (blue) is comparable to cases where the ARDrone and the Bebop are
enhanced by their own offline DNN modules (yellow and light blue).

the tracking error of the target system by an average of 46%.
The incorporation of the online module further reduces the
tracking error and leads to an average of 74% error reduction.
These experimental results show that the proposed online
learning and knowledge transfer approach can efficaciously
circumvent data recollection on the target robot, and thus,
the costs and risks associated with training new robots to
achieve higher performance in impromptu tasks.

Potential future work includes extending the theoretical
formulation to multi-input-multi-output (MIMO) systems,
extending the stability analysis to nonlinear systems, and
testing the approach in different outdoor conditions and on
different robot platforms.

REFERENCES

[1] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a
survey,” Cognitive Processing, vol. 12(4), pp. 319–340, 2011.

[2] H. B. Ammar, E. Eaton, P. Ruvolo, and M. Taylor, “Unsupervised
cross-domain transfer in policy gradient reinforcement learning via
manifold alignment,” in Proc. of the AAAI Conf. on Artificial Intelli-
gence, 2015.

[3] B. Bócsi, L. Csató, and J. Peters, “Alignment-based transfer learning
for robot models,” in Proc. of the Intl. Joint Conf. on Neural Networks
(IJCNN), 2013, pp. 1–7.

[4] M. K. Helwa and A. P. Schoellig, “Multi-robot transfer learning: A
dynamical system perspective,” in Proc. of the IEEE Intl. Conf. on
Intelligent Robots and Systems (IROS), 2017, pp. 4702–4708.

[5] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, “Learning
invariant feature spaces to transfer skills with reinforcement learning,”
in Proc. of the Intl. Conf. on Learning Representations, 2017.

[6] S. Daftry, J. A. Bagnell, and M. Hebert, “Learning transferable policies
for monocular reactive MAV control,” in Proc. of the Intl. Symposium
on Experimental Robotics. Springer, 2016, pp. 3–11.

[7] M. E. Taylor and P. Stone, “Transfer learning for reinforcement
learning domains: A survey,” Journal of Machine Learning Research
(JMLR), vol. 10, pp. 1633–1685, dec 2009.

[8] Q. Li, J. Qian, Z. Zhu, X. Bao, M. K. Helwa, and A. P. Schoellig,
“Deep neural networks for improved, impromptu trajectory tracking
of quadrotors,” in Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2017, pp. 5183–5189.

[9] S. Zhou, M. K. Helwa, and A. P. Schoellig, “Design of deep neural
networks as add-on blocks for improving impromptu trajectory track-
ing,” in Proc. of the IEEE Conf. on Decision and Control (CDC),
2017, pp. 5201–5207.

[10] J. Blitzer, R. McDonald, and F. Pereira, “Domain adaptation with
structural correspondence learning,” in Proc. of the Association for
Computational Linguistics Conf. on Empirical Methods in Natural
Language Processing, 2006, pp. 120–128.

[11] Z. Wang, Y. Song, and C. Zhang, “Transferred dimensionality reduc-
tion,” in Machine Learning and Knowledge Discovery in Databases,
W. Daelemans, B. Goethals, and K. Morik, Eds., 2008, pp. 550–565.

[12] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no. 10,
pp. 1345–1359, Oct 2010.

[13] J. Fu, S. Levine, and P. Abbeel, “One-shot learning of manipulation
skills with online dynamics adaptation and neural network priors,” in
Proc. of the IEEE Intl. Conf. on Intelligent Robots and Systems (IROS),
2016, pp. 4019–4026.

[14] K. Pereida, D. Kooijman, R. R. P. R. Duivenvoorden, and A. P.
Schoellig, “Transfer learning for high-precision trajectory tracking
through L1 adaptive feedback and iterative learning,” Intl. Journal
of Adaptive Control and Signal Processing, 2018.

[15] M. Hamer, M. Waibel, and R. D’Andrea, “Knowledge transfer for
high-performance quadrocopter maneuvers,” in Proc. of the IEEE
Conf. on Intelligent Robots and Systems (IROS), 2013, pp. 1714–1719.

[16] K. Pereida, M. K. Helwa, and A. P. Schoellig, “Data-efficient multi-
robot, multi-task transfer learning for trajectory tracking,” IEEE
Robotics and Automation Letters, vol. 3(2), pp. 1260–1267, 2018.

[17] A. Marco, F. Berkenkamp, P. Hennig, A. P. Schoellig, A. Krause,
S. Schaal, and S. Trimpe, “Virtual vs. real: Trading off simulations
and physical experiments in reinforcement learning with Bayesian
optimization,” in Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2017, pp. 1557–1563.

[18] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in Prof.
of the IEEE Intl. Conf. on Robotics and Automation (ICRA), 2018, pp.
3803–3810.

[19] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot visual
imitation learning via meta-learning,” in Proc. of Machine Learning
Research (PMLR), vol. 78, 2017, pp. 357–368.

[20] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, “Learning
modular neural network policies for multi-task and multi-robot trans-
fer,” in Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2017, pp. 2169–2176.

[21] A. Lazaric, “Transfer in reinforcement learning: a framework and a
survey,” in Reinforcement Learning. Springer, 2012, pp. 143–173.

[22] T.-J. Jang, H.-S. Ahn, and C.-H. Choi, “Iterative learning control for
discrete-time nonlinear systems,” Intl. Journal of Systems Science, vol.
25(7), pp. 1179–1189, 1994.

[23] M. Sun and D. Wang, “Analysis of nonlinear discrete-time systems
with higher-order iterative learning control,” Dynamics and Control,
vol. 11(1), pp. 81–96, 2001.

[24] E. D. Sontag, “Input to state stability: Basic concepts and results,” in
Nonlinear and optimal control theory. Springer, 2008, pp. 163–220.

[25] A. Hock and A. P. Schoellig, “Distributed iterative learning control
for a team of quadrotors,” in Proc. of the IEEE Conf. on Decision and
Control (CDC), 2016, pp. 4640–4646.

[26] M. I. Jordan and D. E. Rumelhart, “Forward models: Supervised
learning with a distal teacher,” Cognitive Science, vol. 16(3), pp. 307–
354, 1992.

[27] M. Whorton, L. Yang, and R. Hall, Similarity Metrics for Closed Loop
Dynamic Systems, ser. AIAA Guidance, Navigation and Control Conf.
and Exhibit. American Inst. of Aeronautics and Astronautics, 2008.

[28] C. E. Rasmussen, Gaussian Processes for Machine Learning. MIT
Press, 2006.

	Introduction
	Related Work
	Background on Offline Inverse Learning
	Problem Formulation
	Theoretical Results
	Reference Adaptation for Exact Tracking
	System Similarity
	Stability in the Presence of Uncertainties

	Simulation Illustration
	Learning Modules
	Offline Learning of Inverse Module
	Error Prediction with Online Learning

	Simulation Results

	Quadrotor Experiment
	Experiment Setup
	Control Objective and Baseline Control System
	DNN Module Trained on ARDrone (Source System)
	Online Learning for Bebop (Target System)

	Experiment Results

	Conclusion and Future Work
	References

