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Abstract— Inverse dynamics models have been used in robot
control algorithms to realize a desired motion or to enhance
a robot’s performance. As robot dynamics and their operating
environments become more complex, there is a growing trend
of learning uncertain or unknown dynamics from data. While
techniques such as deep neural networks (DNNs) have been suc-
cessfully used to learn inverse dynamics, it is usually implicitly
assumed that the learning modules are trained on sufficiently
rich datasets. In practical implementations, this assumption
typically results in a trial-and-error training process, which
can be inefficient or unsafe for robot applications. In this
paper, we present an active trajectory generation framework
that allows us to systematically design informative trajectories
for training DNN inverse dynamics modules. In particular, we
introduce an episode-based algorithm that integrates a spline
trajectory optimization approach with DNN active learning for
efficient data collection. We consider different DNN uncertainty
estimation techniques and active learning heuristics in our work
and illustrate the proposed active training trajectory generation
approach in simulation. We show that the proposed active
training trajectory generation outperforms adhoc, intuitive
training approaches.

I. INTRODUCTION

In recent years, learning techniques such as deep neural
networks (DNNs) and Gaussian processes (GPs) are increas-
ingly used in robot control to compensate for uncertain
and unmodeled dynamics that would otherwise impact a
robot’s performance. In previous work [1], we studied a
DNN-based approach that enhances the trajectory tracking
performance of black-box control systems. In particular, a
DNN module is trained to approximate the inverse dynamics
of the underlying system, and at test time, it is pre-cascaded
to the system to enhance the tracking performance (Fig. 1).
While we verified the efficacy of our approach with extensive
experiments [1], [2], one open question that requires further
exploration is a systematic trajectory generation approach for
training the DNN inverse dynamics module.

In addtion to our work, various neural network (NN)-based
control architectures have been proposed in the control liter-
ature. In these works, a common assumption is that the NNs
are trained on datasets that sufficiently cover the operational
space [3]. In practical applications, this assumption often
results in a trial-and-error process of collecting data, training
the model, testing in experiment, and repeating this process
until satisfactory control performance is achieved based on
a representative dataset. This trial-and-error process can lead
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Fig. 1. A deep neural network (DNN)-based control architecture (top) was
proposed in [1], [2] to enhance the tracking performance of black-box,
closed-loop control systems. In this work, we study an episode-based active
trajectory generation approach (bottom) for systematically training the DNN
inverse dynamics module. With the proposed approach, the DNN module
is trained in a closed-loop manner, where in each episode, informative
points for training the DNN module are identified and a smooth trajectory
is generated for collecting the data in the next set of robotics experiments.

to unnecessary training and related costs on physical robots,
or safety risks in industrial applications. This fact motivates
us to investigate approaches that guide the data collection
process towards experiments that are the most informative
for (D)NN-based model learning.

From the machine learning literature, a concept that can
be adopted for informative DNN training data collection is
active learning [4]. With active learning, instead of passively
training the learner using a pre-collected dataset, the learner
is allowed to ‘actively select’ the most informative points
to query. This concept has been applied to various machine
learning problems such as segmentation and image/text clas-
sification with the goal of saving the time and cost associated
with manually labelling datasets [4]. In this work, we adopt
the idea of active learning and propose an optimization
framework that allows us to systematically generate feasible
and informative trajectories for training DNN inverse dynam-
ics models. With the proposed active trajectory generation
framework, we aim to (i) improve the efficiency of the data
collection and (ii) provide a means for monitoring when the
training of DNN-based robot model learning is sufficient.

II. RELATED WORK

The concept of active learning is closely tied to the theory
of optimal experimental design (OED), which is a branch
of statistics that outlines the mathematical foundations and



statistical criterion for automating query selections [5]. The
theory of OED has been discussed in a wide range of con-
texts including neuroscience [6], system identification [7],
structural optimization [8], and experimental economics [9].
In these different applications, the shared goal for OED
is to maximize the information content gathered about an
underlying process of interest with limited experiments.

While OED can encompass experimental conditions in
a broader sense, active learning focuses on input design
for black-box models. As shown in [10], common active
learning heuristics such as uncertainty sampling can be
connected mathematically to OED optimality criteria. Exam-
ples of active learning can be found in classification tasks,
where unlabelled images or text are selected heuristically
to minimize prediction errors [11], [12], or in regression
tasks [13]-[15], where regions lacking data are identified
for further exploration. As discussed in [16], in addition
to improved data efficiency, with controlled input selection,
active learning is also a way to enhance generalization of
black-box models. Despite its advantages, it should be noted
that typical frameworks of active learning provide a set
of informative points but do not account for issues such
as continuity or feasibility constraints that are critical to
collecting data on physical robots for model learning.

In the literature, one approach to account for feasibility
constraints is to parametrize an input trajectory and formulate
an optimization problem for trajectory generation [17]. This
approach has been utilized to generate excitation trajectories
for identifying dynamic parameters of manipulators [18]—
[20]. In particular, the identification of the manipulator
dynamics is written as a linear regression problem. The
joint trajectories are parametrized as splines [19] or har-
monic functions [18], [20], and the trajectory parameters are
optimized to minimize the model parameter uncertainty or
the condition number of the linear regression model. In this
paper, we similarly formulate an optimization problem for
generating input trajectories. However, we present a method
that incorporates an active learning objective for training
generic inverse dynamics models parametrized as DNNs.

III. PROBLEM STATEMENT

We consider the DNN-enhanced control architecture
shown in Fig. 1. In this learning-based approach, a DNN
module is trained offline to approximate the inverse dynamics
of a baseline closed-loop system. The trained DNN is then
pre-cascaded to the baseline system at test time to enhance
its tracking performance. The goal of this work is to derive
a framework that allows us to design informative trajectories
for systematically training the DNN inverse module.

A. Preliminaries

We consider a baseline closed-loop system represented by

w(k+1) = [ (2(k)+g (x(k) u(k), y(k) =h(z(k)), (1)

where k is the discrete time index, x € R" is the system
state, © € R is the reference of the closed-loop baseline
system, y € R is the output, and f, g, and h are smooth

Algorithm 1 Episode-based Training Trajectory Optimiza-
tion for DNN Inverse Dynamics Model Learning

1: Initialize with some trajectory {u(k)} for k=1, ..., K

2: while not converged do

3: Run the training trajectory on the baseline
system and record the input-output response data
{z(k),y(k),u(k)} for k=0,..,K

4: Extend DNN training dataset with input & =
[z(k),ya(k + )] and output v = u(k)

5: Train DNN inverse dynamics model on the dataset

Select training points that maximize an active learn-

ing utility function

7: Form a quadratic program (QP) to obtain a feasible
training trajectory {u(k)} for k =0,..., K

8: end while

functions with consistent dimensions. System (1) is said to
have a relative degree r around an operating point (g, ug) if
(i) ZhofP(f(x(k))+g(z(k))u(k)) =0,Yp =0,...,r—2 for
each point in the neighbourhood of (xg,ug), and (ii) %h )
S H(f(2(k))+g(z(k))u(k)) # 0 at (o, ug), where ho f is
the composition of the functions h and f, and fP(-) denotes
the pth composition of f, with fO(z(t)) = =(t) [21]. As
shown in [1], if a system has a well-defined relative degree
r, and y(k+r) is affine in u(k), we can derive the reference
for exact tracking (i.e., y(k + 1) = ya(k +1)):

_1
g (z(k))

where F (z(k)) = ho fr(z(k)) and G (z(k)) = Zho
FT Y (f(x(k)) + g(z(k))u(k)). When the exact dynamics of
the baseline system (1) is unknown but it is minimum phase
and has a well-defined relative degree, then we can train a
DNN module to approximate Eqn. (2) to effectively enhance
the tracking performance of the baseline system [1], [2]:

u(k) =To (iE(k), yd(k + T)) ’ (3)

where 1g(-) denotes the nonlinear function represented by the
DNN module, and 6 denotes the DNN module parameters.

u(k) = (a(k +r) = F (z(k))), 2

B. Episode-based Active Learning Framework

We consider an episode-based training trajectory genera-
tion framework outlined in Alg. 1 for systematically training
the DNN inverse module. In each episode, we first identify
the informative points for training the DNN module and
formulate an optimization problem to generate a training
trajectory {u(k)}, kK = 0,..., K, where K is the predefined
training trajectory length. The generated training trajectory
is sent to the baseline system, and the input-output response
data {z(k),y(k),u(k)} is recorded. The training dataset
for the DNN model is extended using the obtained system
response data, where the paired input and output of the
training dataset are { = [z(k),y(k + r)] and v = u(k),
respectively. Given this dataset, the DNN module is trained
with standard stochastic gradient descent (SGD) algorithms.
In the next sections, we derive the details of the proposed
active training trajectory generation in Ln. 6-7 of Alg. 1.



IV. BACKGROUND ON ACTIVE LEARNING FOR DNNS

In this section, we provide a brief summary of the active
learning literature for DNNs to facilitate our discussion.

A. DNN Model Preliminaries

We consider a L-layer fully-connected DNN denoted by
v = np(§), where ¢ is the input to the network, ~ is its
output, and 6 = (wq,...,wr,b1,...,b) is an augmented
vector of weights and biases parametrizing the network. We
can express an L-layer network 7y as

CO = 57
G =o0(wG-1+b),
v=wrlr-1+ b,

oL —1, 4)

where w; € RV *Ni-1 and b, € RM, N; is the number of
neurons in a hidden layer, o : RV — R™ is the element-
wise activation operation applied in a hidden layer, and (;
forl = 1,...,L — 1 is the output of a hidden layer. Given
a training dataset with D paired input-output points D =
{€4,7va}E.,, SGD algorithms can be used to find a set of
parameters 6 that minimizes the network prediction error.

B. Predictive Uncertainty Estimation for DNNs

Common active learning heuristics are based on the un-
certainty of the learner’s output predictions (i.e., the predic-
tive uncertainty). For each input, there is a corresponding
prediction of mean and variance of the output. Intuitively,
with active learning, we wish to collect data at inputs which
the learner is uncertain about. We review three common
predictive uncertainty estimation techniques for DNNs.

1) Fisher Information: In the Fisher information ap-
proach, we assume that the conditional probabilities p(y|, 0)
at distinct inputs ¢ are independent Gaussian distribu-
tions with expectations E, |¢0)[v | £,0] = 19(&), where
E,(+ | ¢,0) -] denotes the expectation over p(7y |, 0). We can
approximate the predictive variance at a given input £ as

Var(y | £,0) = Von(&)" M~ Von(€), (5)

where Vjy denotes the gradient with respect to the pa-
rameters 0, and M = %Z(?:l Von(€a)Ven(£q)T with
52 = & ZdDzl l[m9(£4) — ~vall®> approximates the Fisher
information matrix [22].

2) Bagging: Bagging is one of the common methods for
empirically estimating the predictive variance of DNNs. In
typical implementations, an ensemble of DNN models is
trained, and randomization is introduced to the DNN ensem-
ble via randomized batch samples and/or initial weights [23].
The predictive variance at a given input is estimated based
on the empirical variance of the DNN outputs.

3) Dropout Approximate Inference: An alternative ensem-
ble uncertainty estimation technique is based on dropout
approximate inference, which can be interpreted as a vari-
ational approximation of the Bayesian inference performed
with deep Gaussian processes [13]. In this approach, a single
DNN is trained with stochastic dropout [24]. The predictive
variance of the DNN at test time is estimated based on

multiple forward passes with independently sampled dropout
units: .
Var(y[§,0) = 8%+ 7711, (6)

where 52 is an empirical estimate of the predictive variance

2
found via multiple forward passes, 7 = % is the model
precision, pieep is the dropout Bernoulli distribution param-

eter, K is the data size, and I is the identity matrix [13].

C. Measures of Informativeness

With active learning, our goal is to collect data D that
maximizes the information we gain about the underlying
process. We denote a generic active learning problem as

U(s, ), (7

& = arg mgax

where U denotes an utility function that measures the amount
of information provided by querying £. We briefly review the
common active learning heuristics for DNNs. More thorough
discussions can be found in review papers such as [4].

1) Uncertainty Sampling: Uncertainty sampling is an
active learning heuristic that encourages selecting an input
&* which the model is currently the most uncertain about.
The utility function can be written as Uys = H(y | &, 6),
where H(-) denotes the entropy of a random variable and is
a monotonic function of variance for a Gaussian distribution.

2) Ensemble-based Approach: In an ensemble-based ap-
proach, multiple DNN models are trained for making predic-
tions, and the extent of disagreement is used as the measure
of information. This approach can be thought as a variation
of uncertainty sampling, where the uncertainty is estimated
by the empirical variance of the DNN ensemble [4].

3) Information Gain: Information gain is another com-
mon utility function used for DNN regression problems.
It characterizes the expected regression error reduction
for an unbiased learner [25] and is defined as U;g =
Epery [H(v [€,0) — Epy | e.0)[H(v | €,67)]], where 7 is
the parameter if the DNN is trained on a candidate input &.

V. FORMULATION OF AN ACTIVE TRAINING
TRAJECTORY GENERATION FRAMEWORK

In this section, we formulate the active training trajectory
generation framework for DNN inverse dynamics learning.

A. Spline Trajectory Generation

We adopt a trajectory generation framework similar
to [17]. In particular, we consider reference trajectories
parametrized by Nth-order polynomial splines Ti(t) =
22;0 Ps,nt™ joined at prescribed times {¢1, ..., ts_1 }, where
T, is the sth polynomial of the spline, ¢ is the continuous
time, and p,, are the coefficients of the sth polynomial.
The smoothness of the reference trajectories is enforced by
penalizing the mth derivative of the spline:

ts 2
/ ‘ ‘T(’”) (t) ( ‘ dt
p to

min

st. To(r)=T(1),Vs =1,....8,7 = {ts_1,ts}, (8)
TO(t) =TV, (), Vs = 1,...,5 — 1,

=1, ooy Tmax,



where T'(t) denotes the spline trajectory, T'(¢) is the pre-
defined waypoint at ¢, || - || denotes the Euclidean norm,
p = (p1,..-,ps) is an augmented vector with p, containing
the coefficients of the sth polynomial segment (in ascending
order), tg,...,ts are the times corresponding to the interior
points of the spline trajectory, and [, is the order of
continuity enforced at the interior points.

By substituting the definition of T(t) into Eqn. (8) and
computing the derivatives, one can show that the spline
trajectory generation in Eqn. (8) can be formulated as

S
: T
p1I~,I-1-1.,r;s Z;ps Qsps
o 9
s.t Asps*bs:(), VSZI,...,S,
Ap =0,

where Qs is a matrix enforcing smoothness of the sth
polynomial segment, and the pairs (A, bs) and the matrix A
enforce continuity constraints at the interior points of the
spline. The matrix ()5 for the sth polynomial is

OanL ‘ OmX(N—m+1)

0(N—m+1)><m ‘ 5T@sé

where C' = diag(c(m), ..., ¢(N)), ¢(q) = [I.Z4 ¢ — i, and

Qs = ) (10)

Nem+1l_ ,N—m+1
tg —ts

ts —ts-1 N—m+1
Qs = .
t.1€\77”m+17ti\1771m+1 ti(me)“*ti(f\mel
N—m+1 2(N—m)+1

(1)

For the continuity constraints, we note that the /th derivative
of T evaluated at time ¢ is Ts(l)(t) = Ay ps, where Ay =
[0y c(l) c(l+1)t - ¢(N)N7], where 0; is a zero row
vector with dimension indicated by the subscript. The zero-
order continuity constraint can be enforced by setting

_ AsOts_l _ T(tsfl)
A, = { Asor, ] and by = [ T(t,) |

The higher-order continuity constraints at the interior points
are introduced with A. For instance, the [th-order continuity
enforced at ¢ between the sth and (s + 1)th polynomials can
be introduced by augmenting the following row to the matrix

12)

[Al; = [0s—ny(v+1)  Aste —Ariue Os—s—1)(N+1)] »
(13)
where [A]; denotes the ith row of A.

B. Integrating Active Learning and Trajectory Optimization

In this subsection, we integrate the active learning concept
discussed in Sec. IV and the spline trajectory generation
approach presented in Sec. V-A.

Based on the approaches discussed in Sec. IV, in each
episode, we estimate the DNN module predictive uncertainty
and calculate the utility over the DNN input space. This

allows us to identify a set of points in the DNN input space
that are the most informative for training the DNN module:

&= arg max U, 0), (14)
where & = [z(k),y(k + r)] and v = u(k) for our problem.

In contrast to typical active learning applications, where
the input £* is directly used as the next point to query, for our
inverse learning problem, we need to identify the informative
DNN outputs v* (i.e., the informative references) to be sent
to the baseline system. To this end, given the informative
input(s) &*, we evaluate the corresponding outputs of the
DNN module v* = 19 (£*) and the associated standard devi-
ations A~y at these inputs. A set of candidate DNN outputs
are sampled from N (v*, aA~), where NV (v*, «A~) denotes
a Gaussian distribution with a mean of v* and a standard
deviation of «A~y, and o > 1 is a parameter that controls the
range of exploration. Intuitively, if the uncertainty estimates
of the DNN module are sufficiently accurate, the samples 2
encourage explorations over regions where the DNN module
is currently uncertain, where the range of exploration is
proportional to the extent of uncertainty. We treat ) as the
informative reference points that are used in the generation
of the training trajectory for the DNN inverse module.

The samples v; are incorporated into the spline trajectory
generation algorithm as constraints at the interior points. In
particular, we formulate the following problem:

S
. T
,min ;ps Qsps
st. Asps =72, Vs=1,...,5, (15)
Ap =0,

Vt; € T,

where T is a set of sample times along the trajectory,
and the inequality constraints introduced with the pairs
(Asit; , bsi,max) can be used to account for additional feasibil-
ity constraints (e.g., bounds on velocities and accelerations).

Note that we optimize a continuous-time trajectory 7'(¢).
The trajectory is discretized at a defined sampling interval
At to obtain the sequence of references {u(k)} for training.

Aslt,;ps < bsl,max»

VI. SIMULATION RESULTS

In this section, we use a numerical example to illustrate the
proposed active training trajectory generation. We consider
a minimum phase baseline system represented by

o(k+1) = [_0915 0%8} (k) + m u(k)

y(k) = [-0.2 0.5] z(k).

(16)

Following Eqn. (3), we can train a DNN module with input
& = [z(k),ya(k + 1)] and output v = u(k) to approximate
the exact inverse of the baseline system (Eqn. (2)). In [1],
with a similar system, we showed that the DNN inverse
learning approach can reduce the tracking error of the
baseline system to approximately zero.
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Fig. 2. A comparison of the references u and the tracking errors, e = y4 — y, of three DNN-enhanced systems implemented based on different

uncertamtg/ estimation techniques: (i) Fisher 1nf0rmat10n (ii) bagging, and (iii) dropout approximate inverse. The results correspond to a test trajectory

ya(t) = 5v:os( )+Sm( )+sm(10t)

. From the plots, it can be seen that at time steps where the DNNs are uncertain (blue shadings in the

top row), we correspondmg]y observe relatively large tracking errors (regions shaded in grey); conversely, at time steps where the DNNs are certain, the
tracking errors of the DNN-enhanced systems are close to zero (unshaded regions). Given the correlation between the DNN uncertainty and the tracking
error, we can then exploit the uncertainty information to efficiently design trajectories for training the DNN inverse modules.

Although being effective at test time, the DNN module in
our previous work was trained on hand-designed sinusoidal
trajectories; the quality of the training could only be validated
when the DNN module is tested on the baseline system.
In the following simulation study, we illustrate the active-
learning-based framework for systematically designing DNN
training trajectories. This framework allows us to (i) infer
training quality prior to testing the DNN module on the
system and (ii) efficiently collect data that is needed for good
generalization. In the following subsections, we first present
a set of simulations to examine the correlation between the
predictive uncertainty of the DNN module and the system’s
tracking performance (Sec. VI-A) and then utilize the uncer-
tainty estimates in the proposed active learning framework
for DNN training trajectory design (Sec. VI-B).

A. DNN Predictive Uncertainty Estimation

In this subsection, we examine three techniques for es-
timating the DNN inverse dynamics module’s predictive
uncertainty: (i) Fisher-information-based estimation, (i) bag-
ging, and (iii) dropout approximate inference (see Sec. IV-B).

1) Architecture of the DNN Inverse Module: For the three
techniques we implement in this simulation study, the DNNs
are three-layer feedforward networks, and each hidden layer
of the networks has ten hyperbolic tangent neurons. There are
overall 161 weight and bias parameters in each network. The
DNN modules are initially trained on a sinusoidal trajectory
ya(t) = sin (5t) sampled at At = 0.015. The training
dataset is constructed from the system response data with
paired input and output D = {z(k),y(k + 1);u(k)}E,,
where K is the size of the training dataset. Standard SGD
algorithms are used for optimizing the network parameters.

2) Implementation of the Different Uncertainty Estima-
tion Techniques: The Fisher-information-based approach is
implemented for a DNN module with a single network.
The predictive uncertainty of the DNN module at test time
is computed based on Eqn. (5), where the module input
and output are ¢ [(k),ya(k+1)] and v = wu(k),
respectively. The inverse of the Fisher information matrix

M is independent of the input &, and we pre-compute M ~*
from the training data to minimize the computational load
at test time. For the bagging approach, we use a committee
of 20 DNNs trained with different randomly sampled initial
parameters [23]. The uncertainty of the DNN module at test
time is estimated based on the empirical variance of the
committee outputs. For the dropout approximate inference
approach, we train a DNN with stochastic dropout [13], [24].
The uncertainty of the DNN at test time is estimated using
Eqn. (6). Here, we use 300 forward passes with independent
weight dropout samples, and the dropout probability is 0.05.
3) Simulation Results: We show the results of the DNN
predictive uncertainty estimation techniques on a test trajec-
tory ya(t) = 2 cos (§t) +sin (Zt) +sin (75t) — 2. This test
trajectory differs from the training trajectory, and the DNN
inputs encountered at test time are only partially covered
by the training dataset. Fig. 2 shows the predictions of the
DNN modules (top row) and the resulting tracking errors
of the corresponding DNN-enhanced systems (bottom row).
The time intervals where the systems have relatively larger
tracking errors are shaded in grey. From the unshaded regions
of the plots, we see that when the uncertainty of the DNN
module is small, the reference computed by the DNN module
coincides with the reference computed based on the exact
inverse of the system (Eqn. (2)), and the tracking error of
the DNN-enhanced system is close to zero. From the shaded
regions, for each technique, we see a correlation between the
uncertainties of the DNN modules and the tracking errors of
the DNN-enhanced systems. Given this correlation, we can
then exploit the uncertainty information to efficiently design
trajectories for training the DNN inverse module.

B. Active Training Trajectory Generation

In previous work [1], [2], we trained the DNN inverse
modules based on hand-designed trajectories. In this sub-
section, we illustrate the proposed active training trajectory
generation with the system considered in Sec. VI-A.

1) Simulation Setup: In this simulation study, we examine
four approaches for training trajectory generation:
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Fig. 3. Illustration of the proposed active trajectory generation approach
with Fisher-information-based uncertainty estimation. The plots shown
above correspond to the first training episode. The informative points for
training the DNN module are identified based on the utility function (left).
The informative points are then passed to the trajectory generation algorithm
(Eqn. (15)) to generate a smooth training trajectory (right).

(M1) Baseline approach: We consider a baseline train-
ing trajectory generation approach that resembles previous
work [1]. In particular, in consecutive episodes, the DNN
module is trained on sinusoidal trajectories with increasing
amplitudes and frequencies. For the results in this subsection,
the amplitudes of the sinuosoidal trajectories range from 1
to 5.5, and the frequencies range from 0.02 Hz to 0.2 Hz.

(M2) Fisher-information-based  approach: In each
episode, the uncertainty of the DNN module is estimated
based on Eqn. (5) and is used in the active trajectory
generation framework proposed in Sec. V-B. The DNN
module is a three-layer feedforward network with ten
hyperbolic neurons in each hidden layer.

(M3) Bagging-based approach: A committee of 20 DNNs
is used to estimate the predictive uncertainty of the DNN
module in each training episode, and the proposed active
trajectory generation framework is similarly applied. The
architectures of the DNNs are identical to that used in (M2).
To reduce the computation load in the testing phase, we use
a subset of five DNNs for reference computation.

(M4) Dropout-inference-based approach: A single net-
work is trained with stochastic dropout, and the uncertainty
of the DNN module is estimated based on the dropout
approximate inference technique [13]. The DNN architecture
is identical to that used in (M2), and the proposed active
training trajectory generation approach is similarly applied.

For approaches (M2)-(M4), we use a grid search to
identify informative points for training the DNN modules.
For the system we consider (Eqn. (16)), the input space of
the DNN module is £ = [z(k),ya(k + 1)]. In order for
the approach to be efficient, we restrict the grid search to
a subset of the DNN input space that excludes regions with
implausible combinations of z(k) and yq(k + 1).

2) Simulation Results: We illustrate the proposed active
DNN training trajectory generation approach in Fig. 3. As
shown in the left panel, in each episode, the utility function
is evaluated over a set of points of the DNN input space. The
four points with the highest utilities are selected. The DNN
output mean and uncertainty are evaluated at these selected
points and are sent to the training trajectory generation
algorithm formulated in Eqn. (15). As shown in the right
panel, the generated reference trajectory passes through the
informative points and is sufficiently smooth for the baseline
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Fig. 4. The average RMS tracking errors of the DNN-enhanced systems on
ten test trajectories for an increasing number of the DNN training episodes.
system to be able to execute.
We test the generalizability of the DNN modules trained
with the different training trajectory generation approaches
on ten test trajectories. The test trajectories have the form

%—T %t) + a9, and the

parameters («;, 3;) are randomly generated from uniform
distributions a; ~ U(0,5) and j; ~ U(5,50) for i = {1,2},
where U denotes a uniform distribution. We initialize the
training with a sinusoidal trajectory yq(t) = sin (#t). Fig. 4
shows the average root-mean-square (RMS) tracking error of
the DNN-enhanced systems on the ten test trajectories after
the algorithm in Alg. 1 is ran for an increasing number of
training episodes. From the plot, it can be seen that all the
training trajectory generation approaches are effective in the
sense that the corresponding DNN-enhanced systems con-
verge to small RMS tracking errors. In comparison, the DNN
modules trained with the active training trajectory generation
approaches (M2)-(M4) generally have faster convergence as
compared to the baseline sinusoidal trajectory generation
approach (M1). This means that a lower number of training
trajectories is needed to learn an effective inverse model.

It should be noted that even though, with (M), the
designed sinusoidal trajectories in the training dataset ap-
proximately cover the frequencies and amplitudes of the test
trajectories, the DNN module has relatively high generaliza-
tion errors in the last episodes. The imperfect result of (M1)
is partially due to the fact that the references corresponding to
the exact inverse of the system do not necessarily lie within
the desired output space which the training trajectories are
initially designed to cover. This mismatch between the exact
references and desired outputs makes designing training tra-
jectories based on strategies such as (M1) non-intuitive. The
active trajectory generation approaches circumvent this issue
by incorporating the learning module in the loop and actively
identifying the uncertain references (the DNN outputs) that
are required to cover the operational space of interest.

In addition to the improved learning efficiency, it should be
noted that, with the active trajectory generation approaches,
the evaluation of the utility function over the DNN input
space in each episode (Fig. 3) provides us with a means
to monitor or infer the quality of training prior to testing
the DNN module on the baseline system. On the contrary,

of yq(t) = alsin( ) - OégCOS(



with typical hand-designed training trajectory generation
approaches, the DNN training process is open-loop, and the
quality of training may incorrectly be assumed to be good,
which is unsafe for practical applications.

VII. DISCUSSION

We proposed and illustrated a DNN training trajectory
generation framework that integrates active learning and a
spline trajectory optimization algorithm for smooth refer-
ence trajectory generation. This guided training trajectory
generation approach circumvents the need to hand design
training trajectories, which often involves intuition-based
decision making (e.g., choosing parameters of sinusoidal
training trajectories) and results in inefficient data collection
and DNN training. While showing great promise, there are
two limitations with the current approach to be aware of.

One limitation is related to the predictive uncertainty esti-
mation for DNNs. Typical DNNs do not possess parameters
to characterize their uncertainties. Although it is shown in
Sec. VI-A that common predictive uncertainty estimation
techniques can be used to identify regions with insufficient
training data, these techniques can lead to non-conservative
uncertainty estimates. In future work, we aim to further
investigate alternative uncertainty estimation techniques for
DNNs, which is an active research area in machine learning.

Another limitation of the current approach is the search
over the DNN input space used to determine informative
points. For system (1), the DNN inverse module input is
& = [z(k),ya(k + r)]. Constrained by the system dynamics
and any actuation limits, the desired DNN input space
encompasses regions with plausible combinations of z(k)
and yq(k + r). In this work, the region of interest excludes
the implausible DNN inputs. A potential improvement of the
current approach is to automate the search of the DNN input
space by simultaneously training a forward model to account
for the dynamic constraints.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an active trajectory generation
framework for systematically training DNNs that represent
inverse dynamics modules deployed to enhance the tracking
performance of black-box baseline systems. In simulation,
we showed that, by using an active trajectory generation
and training approach (Fig. 1), we can significantly improve
the data efficiency for training the DNN inverse module.
Moreover, the proposed active training trajectory generation
framework allows us to infer the training quality of the DNN
module prior to testing on the physical system, which can
be important for safe operation in practical applications.

Future work includes automating the search of plausible
DNN inputs for identifying informative references, exploring
non-conservative uncertainty estimates, as well as testing the
proposed approach in experiments.
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