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Abstract— This paper introduces deep neural networks
(DNNs) as add-on blocks to baseline feedback control systems to
enhance tracking performance of arbitrary desired trajectories.
The DNNs are trained to adapt the reference signals to the
feedback control loop. The goal is to achieve a unity map
between the desired and the actual outputs. In previous work,
the efficacy of this approach was demonstrated on quadrotors;
on 30 unseen test trajectories, the proposed DNN approach
achieved an average impromptu tracking error reduction of
43% as compared to the baseline feedback controller. Moti-
vated by these results, this work aims to provide platform-
independent design guidelines for the proposed DNN-enhanced
control architecture. In particular, we provide specific guide-
lines for the DNN feature selection, derive conditions for when
the proposed approach is effective, and show in which cases
the training efficiency can be further increased.

I. INTRODUCTION

High-accuracy trajectory tracking is an essential require-
ment for many industrial applications including robot-aided
inspection and advanced manufacturing [1], [2]. Classical
control methods for trajectory tracking, such as model
predictive control (MPC) or PID control, either require
a sufficiently accurate dynamic model of the plant [3],
which may not be available, or rely on manual tuning of
the system controller parameters, which can be difficult
and time-consuming, and may result in overly conservative
behavior [4]. Learning methods such as iterative learning
control (ILC) have been successfully applied to many robotic
applications to improve the tracking performance through re-
peated trials [5], [6]. However, this requires repeated training
of the known, desired trajectory. In this paper, we consider
a more challenging problem: impromptu tracking; that is, to
accurately track an arbitrary reference in a single attempt.

Given the ability of deep neural networks (DNNs) to
generalize knowledge, a DNN-enhanced control architecture
has been proposed in [7] to improve the tracking per-
formance of traditional feedback controllers for any given
desired trajectory. In this proposed architecture (illustrated
in Fig. 1), a DNN module is pre-cascaded to a baseline
feedback control system to adjust the reference inputs to
the feedback control system with the goal of achieving
perfect output tracking. On 30 test trajectories, the DNN-
based approach led to an average of 43% tracking error
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Fig. 1. An illustration of the proposed control architecture and training
process considered in this work. During the testing phase, at a particular time
step t, the selected desired output {yd(t+∆1), yd(t+∆2),..., yd(t+∆L)}
and the current state x(t) (or the current output y(t)) are inputs to the DNN
module to generate reference signals u(t) for the baseline system, where
t ∈ Z≥0 is the discrete-time index and ∆i ∈ Z≥0 for all i. During the
training phase, a set of training trajectories are performed on the baseline
system, and u(t), y(t), and x(t) are stored for training the DNNs offline.

reduction as compared to the baseline controller [7]. Though
the effectiveness of the architecture was well-illustrated on
quadrotor vehicles, general DNN design guidelines were
not provided in [7]. In particular, the inputs and outputs
of the DNN module were determined through experimental
trial-and-error. Similar to the fundamental work on feature
selection for image classification and speech recognition, in
this work we derive rules for feature selection in the context
of tracking control. In addition, we derive conditions under
which the proposed approach is effective and identify cases
for which the training efficiency can be further improved.
These contributions together provide a platform-independent
formulation of the approach utilized in [7].

Below we first provide a brief review of the relevant
literature (Section II). We then define our problem (Sec-
tion III), derive theoretical insights on the DNN module
design (Section IV), and present simulation and experimental
results (Sections V and VI).

II. RELATED WORK

In the literature, there are many examples where machine
learning techniques have been successfully integrated with
control system designs to improve the tracking performance
in uncertain environments [5], [8]–[10]. As discussed in [7],
examples of these machine learning techniques include, but
are not limited to, Gaussian Processes (GPs), ILC, and
DNNs. In comparison, DNNs are flexible modeling frame-
works capable of approximating highly nonlinear functions
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and generalizing learned experience to unseen situations [11].
As compared to GPs specifically, DNNs have the advantage
that their computation time and memory requirement do not
increase with the size of the training dataset [7]; as compared
to ILC, DNN-based approaches can be more conveniently
generalized to untrained tasks [9].

As summarized in early review papers [11], [12], DNNs
have been combined with various control techniques such
as predictive control and adaptive control to directly or
indirectly account for uncertainties and non-idealities in
the overall system. In the recent literature, there are many
advanced works illustrating the efficacy of utilizing DNNs in
different control applications. For instance, in [13], it is illus-
trated that DNNs can approximate the unmodeled dynamics
of quadrotors to assist linear quadratic regulators (LQR) in
trajectory tracking control. In [14] and the references therein,
DNNs are used to compensate for the model uncertainties in
impedance control of manipulators. Moreover, in [10], for
single and double pendulums, DNN models are utilized in
nonlinear model predictive control (NMPC) for determining
the optimal control input. In [15], simulations on several
aerospace systems illustrate that DNNs can also be used
to approximate solutions of the Hamilton-Jacobi-Bellman
(HJB) equations to save the online computation time.

Adding to this body of work, [7] proposes pre-cascading a
DNN module to a feedback control system of a quadrotor to
achieve a unity mapping from the desired output to the actual
output. By aiming for a unity map, this methodology is simi-
lar to direct inverse control and adaptive inverse control [11],
[16]–[19]. However, there are several major differences. One
of the major differences is that the DNN models in [7] are
not directly applied to the open-loop plant. Instead, they
modify the reference of a stable closed-loop system and can
run at a lower rate, as compared to the underlying baseline
controller, which makes the approach less prone to stability
issues. Moreover, in adaptive inverse control, the weights
of the DNN models must be updated online to ensure the
stability of the overall system [17], and the convergence of
the weights requires good initializations [19]. In contrast,
with the proposed architecture in [7], improving tracking
performance is decoupled from achieving stability. Stability
is guaranteed by appropriately designing the controller of the
baseline closed-loop system. Improvements to the tracking
performance are achieved by the DNNs. Furthermore, as
opposed to [18], where recurrent neural networks (RNNs)
are used, in the proposed architecture, feedforward neural
networks (FNNs) are used for model learning. This makes
the proposed architecture less prone to instability issues
and simplifies practical implementations [20]. Given these
advantages and further motivated by the successful results
in [7], in this work, we aim to further analyze the DNN-
enhanced control architecture of [7], and identify conditions
where the proposed approach is most effective and efficient.

III. PROBLEM STATEMENT

We consider the control architecture shown in Fig. 1.
A DNN is introduced as an add-on module to a closed-

loop, stable system in order to improve the tracking control
performance. We aim to derive general guidelines for the
design of the DNN module. This includes:

1) identification of conditions under which the add-on
DNN module improves the system’s tracking perfor-
mance,

2) rules for the DNN feature selection, and
3) characterization of conditions under which the effi-

ciency of the training can be further improved.
In order to address the aspects outlined above, we first
assume that the underlying closed-loop system can be de-
scribed by a linear time-invariant (LTI), single-input-single-
output (SISO) system. This discussion is then extended to
nonlinear systems. In particular, we assume the discrete-time
dynamics of the baseline system can be represented by

x(t+ 1) = Ax(t) + bu(t), y(t) = cx(t) (1)

in the linear scenario, and by

x(t+ 1) = f (x(t)) + g (x(t))u(t), y(t) = h (x(t)) (2)

in the nonlinear scenario, where t ∈ Z≥0 is the discrete-time
index, x ∈ Rn is the state, y ∈ R is the output, u ∈ R is the
reference, A, b, and c are constant matrices of appropriate
dimensions, and f(·), g(·), and h(·) are smooth functions.

IV. MAIN RESULTS

In this section, given the system representations (1) and
(2), we first identify the function that the DNN would need
to represent. We then use this result to derive (i) necessary
conditions for the add-on DNN module to be effective
(Section IV-A) and (ii) the DNN input features necessary to
model the underlying function (Section IV-B). Moreover, we
derive necessary conditions enabling further improvements
of the efficiency of the DNN training (Section IV-C). Even
though these discussions start from known dynamics of the
baseline feedback loop, in practice only minimal knowledge
of the closed-loop system is needed. As will be discussed
in detail, this knowledge can be either obtained from simple
identification experiments such as step response tests or from
basic knowledge about the system.

A. Underlying Function Modeled by the DNNs

The DNN add-on module aims to establish an identity
mapping from the desired output yd to the actual output y.
In this part, we will show that the function approximated
by the DNN module is the output equation of the inverse
dynamics of the feedback control loop. Stable zero dynamics
of the baseline system is consequently a necessary condition
for the proposed approach to be effective.

For the convenience of discussion, we first state the
definition of the relative degree of a dynamical system. For
the linear SISO system (1), the relative degree is the smallest
integer r for which cAr−1b 6= 0 [21]. Using this definition,
it can be shown that the input and output of (1) are related
by

y(t+ r) = cArx(t) + cAr−1bu(t). (3)



Then, at time step t, by selecting

u(t) =
1

cAr−1b
(−cArx(t) + yd(t+ r)) , (4)

y(t + r) = yd(t + r) is satisfied as desired. By considering
yd(t + r) as the input and u(t) as the output, Eqn. (4) is
in fact the output equation of the inverse dynamics of the
baseline system (1). Thus, recalling the architecture in Fig. 1,
by training the DNN module to approximate Eqn. (4), exact
tracking can be achieved in theory.

Note that there is an inherent delay of r time steps from
the input to the output in Eqn. (3), which is a known fact for
discrete-time systems with relative degrees r. From Eqn. (4),
at a particular time step t, the computation of u(t) depends
on yd(t+r) to compensate for the inherent delay. In practice,
for off-line or on-line trajectory generation algorithms, a
preview of r steps of the desired trajectory yd is typically
available; hence, the non-causality in Eqn. (4) is not an issue
in practice.

The above analysis can be extended to nonlinear systems.
Following the discussion outlined in [22], we use h ◦ f to
denote the composition function of f and h, and f i to denote
the ith composition of the function f with f0(x(t)) = x(t)
and f i(x(t)) = f i−1 ◦ (f(x(t))). Around an operating
point (x0, u0), the relative degree of system (2) is defined
as the smallest integer r such that ∂

∂uh ◦ f
r−1(f(x(t)) +

g(x(t))u(t)) 6= 0 for each point in the neighborhood of
the operating point. We assume that system (2) has a well-
defined relative degree r in the operating region. Then, it
can be shown that the input and the output of system (2) are
related by

y(t+ r) = h ◦ fr−1
(
f(x(t)) + g(x(t))u(t)

)
. (5)

Assuming y(t+r) is affine in u(t), Eqn. (5) can be simplified
to

y(t+ r) = ĥ(x(t)) +D(x(t))u(t), (6)

where ĥ(x(t)) = h ◦ fr(x(t)) and D(x(t)) = ∂
∂uh ◦

fr−1(f(x(t))+g(x(t))u(t)) [22], [23]. Note that in Eqn. (6),
D(x(t)) 6= 0 by the definition of the relative degree.
Following the same argument as for linear systems, the
control law for achieving y(t+ r) = yd(t+ r) is

u(t) =
1

D(x(t))

(
−ĥ(x(t)) + yd(t+ r)

)
(7)

for the affine case in Eqn. (6), and it is reasonable to assume
that

u(t) = F (x(t), yd(t+ r)) (8)

for the general case in Eqn. (5), where F is a nonlinear
function to be approximated by the DNN module.

From Eqn. (7) and Eqn. (8), the required information for
computing u(t) remains the same as that for linear systems.
In particular, the function depends on the current state x(t)
and the desired output r steps in the future yd(t+ r), where
r is the relative degree of the baseline system.

Insight 1a. Underlying Function: In order to achieve an
identity mapping from the desired output to the actual output,

the DNN module should approximate the output equation
of the inverse dynamics of the baseline system, which
corresponds to Eqn. (4) for the linear scenario and Eqn. (8)
for the nonlinear scenario.
Insight 1b. Necessary Conditions for the Effectiveness
of the Approach: The effectiveness of our proposed DNN
architecture depends on two conditions: (i) the baseline
system has a well-defined relative degree r (within the
defined operating region) and (ii) the inverse dynamics of
the system are stable.

As a result, for implementing the proposed DNN-enhanced
architecture, we only need to identify the relative degree of
the feedback system rather than its exact dynamics. For linear
and nonlinear discrete-time systems, the relative degree is the
number of time steps of delay between a change in the input
and the resulting change in the output, which can be easily
determined from the system’s step response in practice.
In [7], it is proposed to run the DNN module at a lower
sampling frequency as compared to the baseline system
to avoid instability problems; in this case, relative degrees
should be determined with respect to the DNN sampling
frequency. For nonlinear systems, since relative degrees are
locally defined [21], having multiple DNN modules for
different operating regions may be required.

For linear systems, the stability of the inverse dynamics
is equivalent to the stability of the system’s zero dynamics,
which is characterized by the zeros of the system’s transfer
function; this can be also checked experimentally using
the system’s step response [21]. For nonlinear systems, a
necessary condition for the stability of the inverse dynamics
is the stability of the system’s zero dynamics, which are the
invariant dynamics of (2) when the input u(t) is selected such
that the output y(t) is forced to be 0 at all time steps. Note
that for nonlinear systems, this condition is, however, not
sufficient [24], [25]. Therefore, for both systems (1) and (2), a
necessary condition for the stability of the inverse dynamics,
and hence for the effectiveness of the DNN-based approach,
is the stability of the zero dynamics of the baseline system.

B. Feature Selection
In this subsection, we discuss the correct selection of

input features for the DNN module to achieve high tracking
performance. Based on the state space representation in
the previous section, and from Eqn. (4) and Eqn. (8), the
information for the DNN module to correctly generate the
reference u(t) consists of the current state x(t) and the future
desired output yd(t + r), where r is the system’s relative
degree. For linear systems, an alternative feature selection
can be obtained using the transfer function of the system (1).
In particular, assuming zero initial conditions, the equivalent
z-transform of system (1) is

Y (z)

U(z)
=
βn−rz

n−r + βn−r−1z
n−r−1 + · · ·+ β0

zn + αn−1zn−1 + · · ·+ α0
, (9)

where Y (z) and U(z) are the z-transforms of the output and
reference of the system, n is the system’s order and r is its
relative degree, and αi and βi are constants. Assuming both



the dynamics and the zero dynamics of (9) are stable, it can
be easily verified that by choosing the following control law

u(t) =
1

βn−r
yd(t+ r) +

αn−1

βn−r
yd(t+ r − 1) + · · ·

+
α0

βn−r
yd(t− n+ r)− βn−r−1

βn−r
u(t− 1)

− βn−r−2

βn−r
u(t− 2)− · · · − β0

βn−r
u(t− n+ r),

(10)
exact tracking is achieved. Based on Eqn. (10), the input
features of the DNN can be selected as {yd(t + r), yd(t +
r− 1),..., yd(t−n+ r), u(t− 1), u(t− 2),..., u(t−n+ r)}.
Insight 2. Feature Selection: By associating the DNN
module with the inverse dynamics of the baseline feedback
control loop, the state space and transfer function representa-
tions provide two approaches for selecting the input features
of the DNN module to achieve exact tracking. In particular,
for the state space representations of linear and nonlinear
systems, the input features to the DNN module are x(t) and
yd(t + r). For the transfer function representation of linear
systems, the input features are {yd(t+ r), yd(t+ r − 1),...,
yd(t− n+ r), u(t− 1), u(t− 2),..., u(t− n+ r)}.

The transfer function approach does not require the knowl-
edge of the internal state x(t) of the system, but is limited
to linear systems. In practice, this approach may be applied
to cases where the baseline system can be approximated
by linear dynamics (e.g., [26], [27]). For general nonlinear
control problems, one may utilize the state space approach
to implement the DNN module together with standard state
estimation techniques. The inclusion of the state in the DNN
inputs also allows this approach to partially compensate for
initial errors or disturbances in the system. Furthermore, the
dimension of the input to the DNN is (n + 1) for the state
space approach and (2n − r + 1) for the transfer function
approach. For high-dimensional systems with low relative
degrees, the state space approach may be preferable because
of the relatively smaller DNN input dimension.

C. Improvement of Training Efficiency

In the implementation of [7], the position components
of the input and output of the DNN module were taken
relative to the current position (referred to as the difference
learning scheme) to simplify the training process. By using
relative terms, the function learned by the DNN module
is translationally invariant with respect to position. Con-
sequently, the amount of data needed for the training is
reduced, and the training process becomes more efficient. In
this subsection, we prove that there is an implicit assumption
for the difference learning scheme to be valid. In particular,
we consider the linear system (1) using both transfer function
and state space formulations. For the state space formulation,
we assume that the output y = x1, the first element of
the state vector x, and that for step inputs, the steady state
values of the remaining states x2, · · · , xn are all zeros. This
assumption is valid, for instance, for mechanical systems
with position-velocity state space.

Lemma 1. A Necessary Condition for Difference Learn-
ing: Consider system (1) and the DNN-enhanced architecture
in Fig. 1. Then, the DNN-enhanced approach with a differ-
ence learning scheme is able to achieve exact tracking only
if the baseline system has a unity DC gain.

Proof. We first consider the transfer function formulation
in Eqn. (10), which corresponds to the exact inverse of
system (1). By defining ∆u(t+ k) := u(t+ k)− yd(t) and
∆yd(t+ k) := yd(t+ k)− yd(t) for k ∈ Z, it can be shown
that Eqn. (10) can be rewritten as

∆u(t) =
1

βn−r
∆yd(t+ r) +

αn−1

βn−r
∆yd(t+ r − 1) + · · ·

+
α0

βn−r
∆yd(t− n+ r)− βn−r−1

βn−r
∆u(t− 1)

− βn−r−2

βn−r
∆u(t− 2)− · · · − β0

βn−r
∆u(t− n+ r)

+
1

βn−r

(
1−

n−r∑
i=0

βi +

n−1∑
i=0

αi

)
yd(t)︸ ︷︷ ︸

,s(yd(t))

.

(11)
On the right-hand side of Eqn. (11), the only term containing
the non-difference, time-dependent variable yd(t) is s(yd(t)).
It is possible to express ∆u(t) as a function of the remaining
∆yd and ∆u terms and hence utilize the difference learning
scheme if and only if s(yd(t)) = 0. For arbitrary yd(t), this
condition implies

∑n−r
i=0 βi = 1 +

∑n−1
i=0 αi. By examining

the transfer function in Eqn. (9), this is equivalent to the
condition of having a baseline system with a unity DC gain.

The same condition can be derived for the state space
formulation in (4). For this case, in order to introduce
translational invariance with respect to yd, the inputs to the
DNN module are defined as ∆yd(t+ r) := yd(t+ r)− yd(t)
and ∆x(t) := x(t) −

[
yd(t) 0 · · · 0

]ᵀ
, and the output is

∆u(t) = u(t) − yd(t). For proving Lemma 1 in this case,
we show that if the DC gain of the feedback system (1)
is not unity, then the DNN trained based on the difference
learning scheme cannot correct constant errors (offsets) and
the overall DNN-enhanced system will not be able to achieve
zero steady state errors for constant references. Consider a
baseline feedback system with a DC gain K0 6= 1. Suppose,
by contradiction, that we have zero steady state error for
the desired step reference yd(t) = K, for all t ≥ 0 and
arbitrary constants K. For this case, for all t ≥ 0, yd(t+r) =
yd(t) = K and ∆yd = 0 uniformly. Also, since the steady
state error is zero by assumption, ∆x = 0 at the steady
state. Thus, at the steady state, the inputs to the DNN are
all zeros, and ∆u = b̄, where b̄ is the network constant bias,
which is preselected in the training phase. This implies that
the input to the baseline feedback system at the steady state
is K + b̄, and consequently, the steady state output of the
system is yss = K0(K + b̄). Since yss = K by assumption,
we have b̄ = (K/K0)−K. Since K0 6= 1 by assumption, b̄
is dependent on the arbitrary value K, a contradiction to the
fact that b̄ is a constant value. �



From the proof above, the correct output of the DNN
module at steady state to achieve zero steady state error for a
step reference K is ∆u = (K/K0)−K. Since K is arbitrary,
then, except for the case that K0 = 1, the mapping from
∆x(t) = 0 and ∆yd(t + r) = 0 to ∆u(t) is one-to-many,
which cannot be effectively learned by DNNs [28].

In the above discussion, we used yd(t) as the reference
point in the difference learning scheme. In practice, during
the testing phase, yd(t) on either or both input and output
sides of the DNN module can be replaced with y(t) to
additionally compensate for initial errors and disturbances.

Insight 3. A Necessary Condition for Difference Learn-
ing: Based on the above theoretical study for linear systems,
for the difference learning scheme utilized in [7] to be valid,
the baseline system must have a unity DC gain. If one
plans to use the difference learning scheme to improve the
DNN training efficiency, then the baseline system should be
designed to achieve zero/small steady state errors for step
references.

In Section VI, we verify the necessity of this condition for
nonlinear systems through experiments.

V. SIMULATION RESULTS

In order to illustrate Insight 1, we consider two LTI, SISO
systems, representing the baseline, closed-loop dynamics in
Fig. 1:

x(t+ 1) =

[
0 1

−0.15 0.8

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
−0.2 1

]
x(t),

(12)

x(t+ 1) =

[
0 1

−0.15 0.8

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
−450.9 450

]
x(t).

(13)

The two systems have the same poles but different zeros.
System (12) has a stable (minimum phase) zero at 0.2,
and (13) has an unstable (non-minimum phase) zero at
1.002. For the purpose of illustrating Insight 1, the state
space approach is used for selecting the features of the
DNN module. At a particular time step t, the input to the
DNN module is I = {x(t), yd(t + r)}, and the output is
O = {u(t)}. The equation to be approximated by the DNN
module is Eqn. (4). For this simulation study, with known
system matrices (A, b, c), Eqn. (4) can be computed at each
time step and utilized to examine Insight 1.

A. DNN Architecture and Training

For this simulation example, Matlab’s Neural Network
Toolbox is used for constructing and training the DNN
models. For both systems, the DNN models are fully-
connected FNNs with 2 hidden layers of 20 hyperbolic
tangent neurons. The training data is generated from the
baseline system response to sinusoidal trajectories with
25 different combinations of amplitudes {1, 2, 3, 4, 5} and
frequencies {0.024, 0.032, 0.048, 0.091, 1.000} Hz. To avoid
overfitting a particular training trajectory, the training dataset
is constructed using a balanced number of randomly chosen
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Fig. 2. The references and outputs of the closed-loop systems (12) and
(13) for the test trajectory yd(t) = sin

(
2π
15

t
)
+cos

(
2π
12

t
)
−1. From (a), the

DNN accurately learns the output equation of the inverse dynamics of the
baseline systems. From (b), for system (12), the DNN-enhanced approach
is able to approximately achieve exact tracking; however, for system (13),
which has an unstable zero, the inherent instability causes numerical issues
and prevents the DNN-enhanced approach from being effective.

data points from each trajectory. The Levenberg-Marquardt
algorithm is used for DNN model parameter training to
minimize the mean squared error between the DNN’s output
and the target from the training dataset. For both systems,
the DNN training converges within 1000 iterations. We test
the overall DNN-enhanced systems on a set of untrained
trajectories.

B. Testing Results

In order to illustrate Insight 1, the baseline and DNN-
enhanced performance of system (12) and system (13) are
tested for the trajectory yd(t) = sin

(
2π
15 t
)

+ cos
(
2π
12 t
)
− 1.

From Fig. 2(a), it can be seen that for both systems, the
reference signal outputted by the DNN module (blue) and
that computed based on Eqn. (4) (red) almost coincide. This
verifies our theoretical insight that the underlying function
learned by the DNN module is the output equation of the in-
verse dynamics of the baseline feedback control system. This
also shows that a well-trained DNN module can accurately
approximate the output equation of the inverse dynamics of
the baseline feedback control system. Along this particular
test trajectory, the root-mean-square (RMS) modeling errors
of the DNN for systems (12) and (13) are approximately
2 × 10−6 and 0.06, respectively. In spite of having good
modeling accuracy, one can see from Fig. 2(b) that for the
non-minimum phase system (13), when the DNN module is
pre-cascaded to the system, the output response of the system
(blue) suffers from numerical issues. Indeed, even when
Eqn. (4) is used to calculate the reference and propagate
the system forward in time, due to the inherent instability,
the precision of the computation quickly falls and leads
to unbounded output. Thus, as reflected in this example,
even with an unstable zero very close to the unit circle, the
associated numerical issues prevent the DNN module from
effectively improving the performance of the closed-loop
system. In contrast, for the minimum phase system (12), the
DNN module approximates the output equation of the inverse



dynamics, and the corrected reference signal generated by the
DNN module approximately achieves an identity mapping
from the desired output (red) to the actual output (blue).
The RMS tracking error for this DNN-enhanced system is of
the order of 10−6 m, which is only limited by the modeling
accuracies and numerical precision in this simulation setting.

VI. QUADROTOR EXPERIMENTS

In this section, Insight 2 and Insight 3 are illustrated using
experiments on a quadrotor vehicle.

A. Experiments Setup

The full state of the quadrotor consists of the translational
positions p = (x, y, z) and velocities v = (ẋ, ẏ, ż), the
roll-pitch-yaw Euler angles θ = (φ, θ, ψ), as well as the
rotational velocities ω = (p, q, r). The control problem is to
design a controller such that the translational position of the
center of mass of the quadrotor precisely tracks the desired
trajectories xd(t), yd(t), zd(t).

The baseline controller (grey box in Fig. 1) is a standard
nonlinear controller consisting of a nonlinear transformation
and a PD controller (see [7] for more details). In the DNN-
enhanced scenario, a DNN module is used to correct the
position and velocity reference signals sent to the base-
line controller. For the experiments, the DNNs are fully-
connected FNNs with 4 hidden layers of 128 rectified linear
units (ReLU). The inputs to the DNN module are selected
based on Insight 2 and compared to the selection in [7]. The
outputs of the DNN module are the translational position
and velocity references (pr and vr) given to the baseline
controller.

B. DNN Feature Selection

In [7], through experimental trial-and-error, the DNN
module input selection that led to efficacious performance
was found to be I = {pd(t + 4) − pa(t),pd(t + 6) −
pa(t),va(t),vd(t + 4),vd(t + 6),θa(t),θd(t + 4),θd(t +
6),ωa(t),ωd(t + 4),ωd(t + 6), z̈a(t), z̈d(t + 4), z̈d(t + 6)},
where the subscripts a and d denote the actual and desired
values, respectively. In this subsection, we show that by
following Insight 2, a similar performance as in [7] can
be obtained with significantly less DNN inputs. For the
fairness of the comparison, the baseline controller, the DNN
architecture, and the training process are identical to [7]; the
only difference is the selected inputs to the DNN module.

For implementing the state space approach of Insight 2,
we first examined the step responses of the baseline feedback
system, and the relative degrees of the system are determined
to be 4, 4, and 2 in the x-, y-, and z-directions, respectively.
Moreover, following Insight 3, since the step responses of the
baseline system have zero steady state errors, we apply the
difference learning scheme as in [7]. Based on Insight 2 with
the difference learning scheme and by assuming that exact
tracking is approximately achieved using the DNN-enhanced
architecture, the DNN module inputs are selected to be I =
{xd(t+4)−xd(t), yd(t+4)−yd(t), zd(t+2)−zd(t), ẋd(t+
3)− ẋd(t), ẏd(t+3)− ẏd(t), żd(t+1)− żd(t),θa(t),ωa(t)}.
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Fig. 3. Comparison between the DNN-enhanced systems based on the
feature selection in [7] (DNN with 36 inputs) and the one using Insight 2
(DNN with 12 inputs). From the path (top) and the trajectory (bottom) plots,
despite having only 1/3 of the inputs, the DNN module designed based on
Insight 2 leads to similar tracking performance improvements.

TABLE I
PERCENTAGE REDUCTION IN RMS TRACKING ERROR

Traj. ID ‘DSL’ 2 3 4 5 Avg.
12 Inputs 52.4% 48.4% 42.0% 46.6% 36.9% 45.2%
36 Inputs 55.6% 61.4% 39.7% 43.9% 26.6% 45.5%

In comparison, the DNN module designed based on Insight 2
with the difference learning has 12 inputs, while that in [7]
has 36 inputs. Fig. 3 shows the performance of the two
DNN modules on a 2D test trajectory. Similar comparisons
are carried out on four additional test trajectories; Table I
summarizes the RMS tracking error reduction achieved by
the two DNN-enhanced systems. From these results, it can
be seen that despite having significantly less input features,
the DNN trained with features selected based on Insight 2
leads to comparable performance to that in [7]. From the
trajectory plots in Fig. 3, it can be seen that the delay in the
z-direction is reduced with the new feature selection, where
relative degrees are properly identified.

C. Difference Learning

In Section VI-B, we showed that when the baseline system
satisfies the condition specified in Insight 3, the DNN module
trained with the difference learning scheme effectively im-
proved the tracking performance. In this subsection, in order
to illustrate the necessity of the condition in Insight 3, the
same input features, DNN architecture, and training process
are applied to a modified feedback control system, namely
the same baseline system with a factor of 0.5 multiplied to
the reference input zr. For this modified baseline system,
the steady state value of the output in the z-direction,
denoted zss, is approximately 0.5 m for a unit step reference.
Fig. 4 shows the performance of the DNN-enhanced system
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Fig. 4. Comparison of applying the difference learning scheme to the
DNN for the two baseline systems – one achieves zero steady state error
for step references, which is the necessary condition specified in Insight 3,
and the other one does not. When this necessary condition is not achieved,
the application of the difference learning scheme prevents the DNN module
from properly compensating for biases in the response.

for the original and modified baseline system scenarios.
For the original scenario (blue), the DNN module trained
with the difference learning scheme results in good tracking
performance; however, for the modified scenario (green), the
DNN module cannot fully compensate for the bias in z. This
result is consistent with the discussion in Section IV-C.

VII. CONCLUSIONS AND FUTURE WORK

We provided theoretical insights into a DNN-enhanced
control architecture for achieving high-accuracy, impromptu
tracking. These insights represent general design guidelines
for applying the DNN-enhanced architecture to any practical
system. Through theoretical derivations, simulations and ex-
periments, we showed that the DNN module in the proposed
architecture is an approximation of the output equation of
the inverse dynamics of the baseline system. Due to this
association, we illustrated that the DNN-enhanced control
architecture (initially proposed in [7]) may not be effective
for closed-loop systems with unstable zero dynamics. We
also provided guidelines for efficiently selecting the DNN
features, which led to a performance similar to previous trial-
and-error techniques [7] but had a significantly lower DNN
input dimension. Moreover, it is shown through theory and
experiments that the applicability of the difference learning
scheme in [7] relies on a necessary condition: the baseline
system achieves zero steady state errors for step references.

Potential extensions of this work include the exploration
of approaches for adapting the proposed DNN-enhanced
architecture to non-minimum phase systems, and the in-
corporation of uncertainty estimations in the DNN-based
learning approach.
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