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Learning-based Bias Correction for Time Difference
of Arrival Ultra-wideband Localization of

Resource-constrained Mobile Robots
Wenda Zhao1, Jacopo Panerati1, and Angela P. Schoellig1

Abstract—Accurate indoor localization is a crucial enabling
technology for many robotics applications, from warehouse
management to monitoring tasks. Ultra-wideband (UWB) time
difference of arrival (TDOA)-based localization is a promising
lightweight, low-cost solution that can scale to a large number
of devices—making it especially suited for resource-constrained
multi-robot applications. However, the localization accuracy of
standard, commercially available UWB radios is often insufficient
due to significant measurement bias and outliers. In this letter,
we address these issues by proposing a robust UWB TDOA
localization framework comprising of (i) learning-based bias
correction and (ii) M-estimation-based robust filtering to handle
outliers. The key properties of our approach are that (i) the
learned biases generalize to different UWB anchor setups and
(ii) the approach is computationally efficient enough to run on
resource-constrained hardware. We demonstrate our approach
on a Crazyflie nano-quadcopter. Experimental results show that
the proposed localization framework, relying only on the onboard
IMU and UWB, provides an average of 42.08% localization
error reduction (in three different anchor setups) compared to
the baseline approach without bias compensation. We also show
autonomous trajectory tracking on a quadcopter using our UWB
TDOA localization approach.

Index Terms—Aerial Systems: Perception and Autonomy;
Localization

I. INTRODUCTION AND RELATED WORK

OVER the last few decades, global navigation satellite
systems (GNSS) have become an integral part of our

daily lives, providing localization—under an open sky—with
sub-meter accuracy anywhere on Earth [1]. Today, indoor
positioning solutions promise to enable similar capabilities
for a plethora of indoor robotics applications (e.g., in ware-
houses, malls, airports, underground stations, etcetera). Small
and computationally-constrained indoor mobile robots have
led researchers to pursue localization methods leveraging
low-power and lightweight sensors. Ultra-wideband (UWB)
technology, in particular, has been shown to provide sub-
meter accurate, high-frequency, obstacle-penetrating ranging
measurements that are robust to radio-frequency interference,
using tiny integrated circuits [2]. UWB chips have already
been included in the latest generations of smartphones [3] with
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Fig. 1. Sketch of our localization system setup (top) and block diagram
of the proposed localization framework (bottom)—including the neural-
network-based bias compensation and an M-estimation-based Kalman filter.
Autonomous flight footage using the proposed localization scheme can be
found at http://tiny.cc/uwb-tdoa-bias-ral21.

the expectation that they will support faster data transfer and
accurate indoor positioning, even in cluttered environments.

In autonomous indoor robotics [4], [5], the two main
ranging schemes used for UWB localization are (i) two-way
ranging (TWR) and (ii) time difference of arrival (TDOA).
The first is based on the time of flight (ToF) of a signal
between an anchor (a fixed UWB radio, Figure 1) and a
tag (a mobile robot). The second uses the difference between
the arrival times of two signals—from different anchors—to
one tag. One of the perks of TDOA is that, unlike TWR, the
number of required radio packets does not increase with the
number of tracked robots/tags—as tags only passively listen
to the messages exchanged between fixed UWB anchors [6].
This enables TDOA localization to scale to a large number of
devices, beyond what TWR could achieve.

Nonetheless, many factors can hinder the accuracy of UWB
measurements, for either of the two schemes. Non-line-of-
sight (NLOS) and multi-path radio propagation, for example,
can lead to erroneous, spurious measurements (so-called out-
liers, Figure 1). Even line-of-sight (LOS) UWB measurements

http://www.dynsyslab.org
https://vectorinstitute.ai/
http://tiny.cc/uwb-tdoa-bias-ral21
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exhibit error patterns (i.e., bias), which are typically caused by
the UWB antenna’s radiation characteristic [7]. The ability to
effectively (i) remove outliers and (ii) compensate for bias is
essential to guarantee reliable and accurate UWB localization
performance.

Multiple approaches have been proposed for the mitigation
of UWB outlier measurements when using the TWR scheme.
In [8], a channel impulse response-based approach detects
NLOS propagation from the received UWB waveforms, with-
out the need for prior knowledge of the environment. In [9], the
measurement error caused by NLOS is estimated directly from
the received radio waveform using support vector machines
(SVM) and Gaussian processes (GP).

Concerning the bias of TWR localization, the authors of
[10] and [11] model and correct UWB pose-dependent biases
using sparse pseudo-input Gaussian processes (SPGP) and
demonstrate their approach on a quadrotor platform equipped
with a Snapdragon Flight computer. An iterative approach to
estimate bias in TWR measurements is presented in [12].

As TDOA localization involves three UWB radios instead of
two, modeling the measurement error is inherently more chal-
lenging. Most existing works focus on mitigating errors caused
by NLOS and multi-path propagation. Pioneering research
was conducted in [13], [14], where an online expectation
maximization (EM) algorithm addresses TDOA NLOS mea-
surement errors. In [15], a semi-definite programming method
is applied to the same problem. Much of the research on UWB
TDOA localization including [13]–[15] has been conducted in
2D scenarios and demonstrated using ground robots. In [16],
the authors mention that UWB TDOA measurements are also
affected by a systematic, position-dependent bias in line-of-
sight conditions. Yet, to the best of our knowledge, no existing
work focuses on addressing this spatially varying source of
bias.

In this work, we propose a framework to improve the accu-
racy and robustness of TDOA-based localization for resource-
constrained mobile robots. We separately tackle the challenges
posed by (i) systematic bias and (ii) outlier measurements. We
leverage the representation power of neural networks (NN)
to compensate for the bias. With the multi-radio nature of
TDOA measurements in mind, we select appropriate input
features to our NN model; in particular, we show that the
bias is affected by the complete anchor pose and not just its
position. Bypassing the need for raw UWB waveforms [9],
we use M-estimation based Kalman filtering [17] to handle
outliers and improve localization robustness. We finally de-
ploy our proposed approach on-board a Crazyflie 2.0 nano-
quadcopter with limited computational resources. We evaluate
the proposed approach in flight experiments, and demonstrate
the generalization capabilities of our approach by flying using
three different, not previously seen UWB anchor setups.

Our main contributions can be summarized as follows:
1) We propose a learning-based bias correction approach

for UWB TDOA measurements, which generalizes to
previously unobserved UWB anchor placements.

2) We present a lightweight TDOA-based localization
framework for resource-constrained mobile robots—
combining bias correction and M-estimation [17].

3) We implement the proposed framework on a nano-
quadcopter and demonstrate the effectiveness and gener-
alizability of our method by flying the nano-quadcopter
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Fig. 2. Two-dimensional comparison of TWR (left) and TDOA (right)
multilateration of one tag using three anchors. The same measurement
uncertainty yields larger localization uncertainty for TDOA localization.

using different UWB anchor setups. We show that our
approach runs in real-time and in closed-loop on-board
a nano-quadcopter yielding enhanced localization perfor-
mance for autonomous trajectory tracking.

We use localization performance with the proposed M-
estimation technique alone as our baseline (note that a
Crazyflie nano-quadcopter cannot take off reliably using the
raw UWB TDOA measurements). Even compared to this base-
line, the proposed localization framework achieves an average
of 42.08% reduction in the root-mean-square (RMS) error of
the position estimate for three previously unobserved UWB
anchor constellations, providing an accuracy of approximately
0.14m (RMS error). To the best of our knowledge, this work
is the first demonstration of a lightweight UWB TDOA bias
correction and robust localization framework on-board a nano-
quadcopter for closed-loop flights.

II. UWB TDOA MEASUREMENTS

Our TDOA-based localization setup is sketched in Figure 1
(top). UWB localization systems can either rely on the time-of-
flight of a signal—as in TWR—or the difference between the
arrival times of two signals—as in TDOA—to compute range
(w.r.t. one anchor) or range difference (w.r.t. two anchors),
respectively. In TWR, two-way communication between an
anchor and a tag is required to compute the range distance.
For TDOA, similar to a satellite positioning system, a set
of stationary UWB anchors (whose positions are known)
transmit radio signals into the surrounding space. Mobile
robots equipped with UWB radio tags passively listen to
these signals and localize themselves by comparing the arrival
time of signals from each pair of anchors. Since the tags do
not need active communications (unlike TWR), TDOA-based
localization systems scale better with the number of tags and
are the more appropriate choice for large-scale, multi-robot
applications. To motivate our proposed approach—detailed in
Section III and IV—we start by analyzing some of the known
limitations of existing UWB TDOA localization systems.

A. Time Difference of Arrival Principles

For TWR-based localization, two-way communication be-
tween anchor and tag is required to compute a range measure-
ment. In the ideal case, in a TWR localization system with
m UWB anchors at positions ai = [xi, yi, zi]

T ∈ R3, i =
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Fig. 3. Definition the relative poses between tag T and anchors A0, A1
through ranges (∆p’s), azimuth (α’s), and elevation angles (β’s).

1, . . . ,m and one tag at position p = [x, y, z]T ∈ R3, each of
the m range measurements ri can be written as:

ri = ‖p− ai‖, (1)

where ‖ ·‖ is the Euclidean norm. TWR measurements can be
used to solve the multilateration problem as the intersection
of spheres (see Figure 2).

In TDOA localization, the tag listens to messages from
anchor i and j and compares the difference of arrival times
of these two messages. The ideal TDOA measurement dij can
be written as:

dij = ‖p− ai‖ − ‖p− aj‖. (2)

Geometrically, the locus of points with a fixed distance differ-
ence from two given points (foci) is a hyperbola (Figure 2).

However, in real world scenarios, UWB measurements (for
both TWR and TDOA) are corrupted by systematic errors,
also called bias, and measurement noise. Therefore, a more
realistic UWB TDOA measurement d̄ij is:

d̄ij = ‖p− ai‖ − ‖p− aj‖+ bij(χ) + nij

= dij + bij(χ) + nij ,
(3)

where bij(χ) indicates the systematic bias parametrized by a
feature vector χ and nij ∼ N (0, σ2

ij) is a zero-mean Gaus-
sian noise with variance σ2

ij . Since hyperbolic localization
(Figure 2) is more sensitive to imperfect measurements than
TWR [18], [19]—especially outside or near the edges of the
anchors’ convex hull—compensating for the systematic bias
is even more crucial for TDOA-based localization.

B. UWB TDOA Measurement Bias

As reported in previous work on TWR localization [7], [10],
[12], off-the-shelf, low-cost UWB modules exhibit distinctive
and reproducible error patterns. TDOA measurements suffer
from a similar systematic bias [16].

To demonstrate and characterize the TDOA bias in our
experimental setup, we devised experiments using one tag and
two Decawave DW1000 UWB anchors. First, we placed two
DW1000 UWB anchors at a distance of 4.5m from one an-
other, in line-of-sight conditions. A Crazyflie nano-quadcopter
mounted with a tag was commanded to spin around its z-
axis while hovering at the midpoint between the two anchors.
The TDOA measurements d̄01 from the tag was collected

at 50Hz. Ground truth values—for both UWB measurements
and tag/anchor poses—were obtained through a millimeter-
accurate motion capture system. We used the range-azimuth-
elevation (RAE) model to uniquely define the relative pose
between the tag and each of two anchors (see Figure 3). We
repeated this experiment three times, each time changing the
angles (αA0

, βA0
) of anchor A0.

The TDOA measurement biases b01 resulting from these
experiments are presented in Figure 4 (left). These measure-
ments show that both the pose of the tag and the anchors
have a non-negligible influence on the resulting bias pattern.
Furthermore, these biases proved consistent and reproducible
through repeated experiments as they are ascribable to UWB
radio’s doughnut-shaped antenna pattern [20].

In a second experiment, to assess the influence of the UWB
chips’ manufacturing variability, we repeated the experiment
with five different DW1000 UWB tags, for fixed poses of the
two anchors. The resulting biases are shown in Figure 4 (right).
We note that the patterns created by the five different UWB
chips are extremely similar to one another. This is in contrast
with the UWB TWR bias reportedly affected by small tag
manufacturing differences in [10], [11].

The results of the two experiments above suggest that the
systematic bias in UWB TDOA measurements bij(χ) depends
on the poses of the anchors and tags—i.e. they should appear
in χ—but that it is consistent among different off-the-shelf
DW1000 UWB tags—i.e. function bij(·) is the same for
different tags.

C. UWB TDOA Outlier Measurements
Beyond the systematic biases observed in the previous

section, TDOA measurements are often corrupted by outliers
caused by multi-path and NLOS signal propagation. The multi-
path effect is the result of the reflection of radio waves,
leading to longer ToF and wrong TDOA measurements [21]. In
indoor scenarios, metal structures, walls, and obstacles are the
major causes of multi-path propagation. NLOS propagation
can occur because of the obstacle-penetrating capability of
UWB radios, with delayed or degraded signals resulting also
leading to outlier measurements [14], [15].

NLOS and multi-path propagation often result in extremely
improbable TDOA measurements, which should be rejected
as outliers. In Section IV, we devise a robust localization
framework to reduce the influence of outliers and achieve
reliable and robust localization performance.

III. UWB TDOA BIAS MODEL LEARNING WITH A
NEURAL NETWORK

Knowing that TDOA hyperbolic localization is especially
sensitive to measurement bias, we aim to show that compensat-
ing for the systematic bias can greatly improve the localization
accuracy.

As highlighted in Section II-B, the TDOA systematic bias
has a nonlinear pattern and is dependent on the relative poses
between UWB anchors and tags. Since two anchors and one
tag are involved in each TDOA measurement (unlike one
anchor and one tag in TWR), the TDOA systematic bias is
the result of a complex relative-pose relationship between
multiple UWB radios. We model this pose-dependent bias as
a nonlinear function bij(∆p,α,β) of the relative positions
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∆p =
[
∆pTi ,∆pTj

]
with ∆pi = [xi − x, yi − y, zi − z]T ,

relative azimuth angles α =
[
αAi , αAj , αTi , αTj

]T
, and

relative elevation angles β =
[
βAi

, βAj
, βTi

, βTj

]T
between

two anchors and the tag (see Figure 3). The UWB TDOA
measurement model (3) can then be written as:

d̄ij = dij + bij(∆p,α,β) + nij . (4)

In Section V-D, we further show the effectiveness and general-
izability of the bias model learned from these features (across
previously unseen DW1000 tags and novel anchor placements)
compared to a model with a less rich input feature vector.

Since our work targets resource-constrained platforms, we
propose to use a feed-forward neural network to learn a
computationally efficient model for the complex UWB TDOA
bias. For TWR bias compensation, an SPGP was previously
proposed in [10]. However, the time complexity of mean
and variance prediction of an SPGP with M pseudo-input
points is O(M) and O(M2), respectively [22]. On resource-
constrained platforms, the memory and power requirements of
SPGP inference are often unattainable. To highlight this point,
we compare the computational resources of the STM32F405
MCU used in many mobile robots (including the Crazyflie
nano-quadcopter in our work) against those of (i) the Odroid
XU4 single board computer for quadcopters (used in [23]),
and (ii) the Qualcomm Snapdragon (used for TWR bias
compensation in [10]) in Table I.

Both the Odroid XU4 and the Qualcomm Snapdragon board
are equipped with powerful CPUs/GPUs and have large (2GB)
system memories, making them much more suited for compu-
tationally intense tasks, even during flight. The STM32F405
has significantly less memory (196kB RAM) and a low-power
CPU (1-core 168MHZ) and cannot run demanding SPGP-
based bias compensation.

In contrast, the prediction time and memory requirements
of a trained feed-forward neural network are fixed and only

TABLE I
COMPUTATIONAL RESOURCES COMPARISON

Name STM32F405 Odroid XU4 Snapdragon Board

CPU 1-core
168MHz

Exynos 5422
Quad-core 2GHz

Krait
Quad-core 2.26GHz

GPU n/a Mali-T628 MP6 Qualcomm Adreno 330
DSP n/a n/a Hexagon DSP
RAM 196kB 2GB 2GB

depend on the network architecture (rather than the amount
of training data). Thus, the scalable (and potentially lower)
computational and memory requirements make neural nets a
fitting choice for resource-constrained platforms [24].

Below, the localization framework using the neural network
with the proposed input feature χ = [∆p,α,β]T ∈ R14 is
called “proposed approach”. The output of the network is the
predicted TDOA measurement bias bij(χ) ∈ R. We integrate
the bias compensation into a Kalman filter (KF) framework for
indoor localization. The architecture of the proposed network
can be chosen to fit the computational limitations of the mobile
robot platform.

In the results section, the proposed approach is compared to
both (i) a bare M-estimation-based EKF baseline (introduced
in the next section) and (ii) a NN-enhanced framework that
does not account for the anchors’ orientations in χ.

The anchors’ position and orientation are measured in
advance using a Leica total station theodolite and stored on-
board of the mobile robot. The details about data collection,
the neural network architecture design, the training process,
and the on-board implementation are provided in Sections V-B
and V-C. In Section V-E, we also show that, with a fairly small
network, we can model the impact of anchor-tag relative poses
on the measurement bias, thus enabling real-time TDOA bias
compensation on-board of a Crazyflie.

IV. LOCALIZATION FRAMEWORK

In addition to pose-dependent bias, UWB TDOA localiza-
tion is often plagued by outliers caused by unexpected NLOS
and multi-path radio propagation. Unlike bias, these cannot
be modeled without precise prior knowledge of the robots’
trajectories and their surrounding environment. To reduce the
influence of outliers, we use robust M-estimation. Further,
our approach can handle sparse UWB TDOA measurements,
which can be a challenge for conventional Random Sample
Consensus (RANSAC) approaches [25]. A complete derivation
of the M-estimation-based Kalman filter is beyond the scope
of this paper. While we provide the necessary equations for
this paper, readers are referred to [17] for further details.

A. M-estimation-based Extended Kalman Filter
For our UWB TDOA-based localization system, the system

state x consists of the position p, velocity v, and the orienta-
tion of the tag. We first apply bias compensation to the TDOA
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measurements. After bias correction, the TDOA measurement
w.r.t. anchors i and j is given by:

d̃ij = d̄ij − bij(χ) + nij

= ‖p− ai‖ − ‖p− aj‖+ nij .
(5)

Since the tag only receives one TDOA measurement at a time,
assuming the measurement noise is identically distributed for
all anchor pairs, the TDOA measurement dk at timestep k can
be written as:

dk = g(xk, nk), (6)

where g(·) is the TDOA measurement model and nk ∼
N (0, σ2) is the measurement noise. Then, we consider the
following discrete-time, nonlinear system for TDOA localiza-
tion (that is of general applicability to mobile robots):

xk = f(xk−1,uk,wk),

dk = g(xk, nk),
(7)

where xk ∈ RN is the system state at timestep k with
covariance matrix Pk ∈ RN×N , f(·) is the motion model
for a mobile robot with input uk ∈ RN and process noise
wk ∼ N (0,Qk).

Due to the model nonlinearity, we use an M-estimation
based extended Kalman filter (EKF) to estimate the states in
(7). Replacing the quadratic cost function in a conventional
Kalman filter with a robust cost function ρ(·)—e.g. Geman-
McClure (G-M), Huber or Cauchy [25]—we can write the
posterior estimate as:

x̂k = argmin
xk

(
N∑
i=1

ρ(ex,k,i) + ρ(ed,k)

)
, (8)

where ed,k = dk−g(xk,0)
σ and ex,k,i is the element of:

ex,k(x) = S−1k (xk − x̌k) (9)

with prior estimates denoted as x̌k, and Sk being computed
through the Cholesky factorization over the prior covariance
matrix P̌k.

By introducing a weight function w(e) , 1
e
∂ρ(e)
∂e for

the process and measurement uncertainties—with e ∈ R as
input—we can translate the optimization problem in (8) into
an Iterative Reweight Least-Square (IRLS) problem. Then,
the optimal posterior estimate can be computed by iteratively
solving the least-square problem using the robust weights
computed from the previous solution.

To initialize the iterative algorithm, we set x̂k,0 =
x̌k, P̃k,0 = P̌k, σ̃

2
k,0 = σ2

k. For brevity, we drop the timestep
subscript k in subsequent equations. In the l-th iteration,
the rescaled covariance of the prior estimated state and the
measurement can be written as:

P̃l = Sl (Wx,l)
−1

(Sl)
T
,

σ̃2
l =

σ2
l

w (ed,l)
,

(10)

where Wx,l is the weighting matrix for process uncertain-
ties with w (ex,i,l) in the diagonal entries, and w (ed,l) is
the weight for the measurement uncertainty. Following the
conventional EKF derivation, the weighted Kalman gain K̃l is

K̃l = P̃lG
T
l

(
GT
l P̃lGl + σ̃2

l

)−1
, (11)

where Gl is the Jacobian of the measurement model at x̂l,

Gl =
∂g(x, 0)

∂x

∣∣∣∣
x̂l

, (12)

The following IRLS iteration updates K̃l, P̃l, σ̃2
l . For

resource-constrained platforms, one can set a maximum num-
ber of iterations as a stopping criterion instead of conver-
gence [17]. After the final iteration L, the posterior state and
covariance matrix can be computed as:

x̂ = x̌k + K̃L (dk − g(x̌k, 0)) ,

P̂ =
(
1− K̃LGL

)
P̃L.

(13)

B. NN-Enhanced Robust Localization Framework
Coupling the method in Section IV-A with the learning-

based bias compensation proposed in Section III, our overall
localization framework (Figure 1, bottom) aims at improving
both the accuracy and robustness of UWB TDOA localization.
The on-board neural network corrects for bias before the M-
estimation update step, thus making the measurement model
in (7) compliant with the zero-mean Gaussian distribution
assumption. Because of its general system formulation and
the moderate computational requirements of both a pre-
trained NN and the M-estimation-based EKF, the proposed
neural network-enhanced TDOA-based localization framework
is suitable for most resource-constrained platforms including
mobile phones.

V. EXPERIMENTAL RESULTS

To demonstrate the effectiveness and generalizability of
the proposed localization framework, we implemented it on-
board a Crazyflie 2.0 nano-quadcopter. We used eight UWB
DW1000 modules from Bitcraze’s Loco Positioning System
(LPS) to set up the UWB TDOA localization system. The
ground truth position of the Crazyflie nano-quadcopter was
provided by a motion capture system comprising of ten Vicon
cameras. Note that the motion capture system is only used
to collect training data and validate the localization perfor-
mance. It is not required to set up the UWB localization
system nor to fly the robot. The Crazyflie nano-quadcopter
is equipped with a low-cost inertial measurement unit (IMU)
and a UWB tag. All the software components of the proposed
localization framework run onboard the Crazyflie microcon-
troller. Footage of the autonomous flights is available at
http://tiny.cc/uwb-tdoa-bias-ral21.

A. Motion Model of the Nano-quadcopter
The Crazyflie nano-quadcopter is modelled as a rigid body

with double integrator dynamics, which is a simplified dy-
namic model for a quadcopter with an underlying position
controller. The system is parameterized by a state x consisting
of the nano-quadcopter’s position p, velocity v, and orienta-
tion with respect to the inertial frame CIB ∈ SO(3). Under
this simplified dynamic model, the system’s state evolves as:

ṗ = v, v̇ = CIBa+ g,

ĊIB = CIB [ω]× ,
(14)

where g is the gravitational acceleration, a ∈ R3 and ω ∈ R3

are acceleration and the angular velocity in the body frame

http://tiny.cc/uwb-tdoa-bias-ral21
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const. #1,#2,#3, from left to right) with examples of training trajectories.
Test constellation #1 (used in Section V-E) is also overlaid.

measured by the onboard IMU, and [·]× is the skew-symmetric
operator defined as [ω]× c = c×ω,∀ω, c ∈ R3. Discretizing
the dynamic model (14) gives the motion model in (7), where
IMU measurements are the system inputs.

After the (i) EKF prediction and (ii) NN bias compensation
steps, we perform (iii) M-estimation-based filtering using the
G-M robust cost function.

B. Data Collection and Network Training
To train our NN, we collected UWB TDOA measurements

(and the associated ground truth labels) during a cumulative
∼ 135 minutes of real-world Crazyflie flights, using the three
different UWB anchors setups (training constellations) shown
in Figure 5 and different training trajectories (products of
multiple trigonometric functions whose amplitude, period and
phase were randomized) to cover the indoor space. We also
varied yaw along the trajectory to improve the representative
power of our data set. We chose different constellations to
represent a range of different geometries for our 7m×8m×3m
flying arena. The positions of anchors were measured using
a total station with an accuracy of 5mm root-mean-square
(RMS) error, when compared to the motion capture system
results. By measuring three non-coplanar points attached to
the anchor at known positions, the orientations of the anchors
were computed by point-cloud alignment [26], leading to
azimuth and elevation angles within 1 degree of the motion
capture system measurements. Our dataset consists of over
800′000 UWB measurements logged at 50 Hz and is available
at http://tiny.cc/ral21-tdoa-dataset. From these, we subtracted
the motion capture position information to compute the cor-
responding measurement error labels. Measurement outliers
caused by NLOS and multi-path effects with more than 1m
error were dropped from the dataset to focus on learning the
antenna biases and not any outlier characteristics. Then, we
partitioned this dataset into training, validation, and testing
sets using a 70/15/15 split. The network was trained using
PyTorch [27] and halted when the error on the validation
set increased over five consecutive iterations (early stopping)
to prevent overfitting. As an optimizer, we chose mini-batch
gradient descent [28]. The testing set was used to evaluate the
performance of the trained network. The computing resources
were provided by the Vector Institute.

C. Implementation Onboard of a Nano-quadcopter
The Crazyflie’s limited memory is a major challenge for

the on-board implementation of a sophisticated localization
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Fig. 6. Distribution of the TDOA measurement errors from Figure 4
(left) before bias compensation (grey), after correction with the NN
not using anchor orientations (red) and the proposed approach (teal). Using
the proposed approach (bottom plot), the fitted Gaussian probability density
function (PDF), the blue dashed line, shows a lower bias and smaller standard
deviation.

scheme. A Crazyflie 2.0 nano-quadcopter has 1MB of flash
storage and 196kB of RAM, including 128kB of static RAM
and 64kB of CCM (Core Coupled Memory). The default
onboard firmware occupies 182kB flash and 102kB of static
RAM are used by the basic estimation and control algorithms.
To meet the memory constraints, we set our NN architecture to
be a three-layer feed-forward network with 30 neurons in each
layer and fixed the number of iterations for the M-estimation
update step to 2. Both the NN and the M-estimation-based
filter were implemented in plain C. The proposed localization
framework software only takes approximately 12kB of static
RAM and 13kB of flash storage, leaving 12% and 81% of the
RAM and flash memory, respectively, free. We integrated this
framework into the Crazyflie onboard EKF, running at 100Hz.

D. Input Features Selection Evaluation
The existing work in the literature [10], [11] does not

propose to use the anchor orientations for TWR bias modeling.
Yet, as we showed in Section II-B, the anchor orientation has
an impact on the systematic bias of TDOA measurements. In
this subsection, we verify this observation by comparing the
performance of a neural network trained with anchor orienta-
tions as part of its input features—our proposed approach—
and one without them. Both networks have the same number
of hidden layers and units, hyperparameters, and use the same
training dataset.

In Figure 6 we present the normalized frequency distri-
bution histograms of the TDOA measurement errors before
and after bias correction (using the experimental data from
Figure 4). Bias correction using the NN not having the anchor
orientations as input improves the mean of the measurement
error by 3.5 cm (from −5.5 cm to −2.0 cm). However,
the standard deviation σ increases slightly, from 12.5 cm to
14.1 cm. Comparing to the NN without anchor orientation, the
proposed approach provides 75.0% and 21.3% improvements

http://tiny.cc/ral21-tdoa-dataset
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Fig. 7. Root mean square (RMS) error of the nano-quadcopter position
estimate with (i) M-estimation based EKF-baseline (gray), (ii) estimation
enhanced through an NN without anchor orientations (red), and (iii) estimation
enhanced through the proposed NN approach (teal). Closed-loop flights on
reference trajectories A and B were conducted using one training constellation
and three different test constellations. The proposed localization framework
(iii) achieves 42.08% and 20.32% reduction of average RMS errors, w.r.t. (i)
and (ii) in the test constellations.

in mean (0.5 cm) and the standard deviation (11.1 cm) of the
measurement errors, respectively, better matching a narrower
(less uncertain) zero-mean Gaussian distribution.

E. Flight Experiments with Unseen Anchor Constellations

To demonstrate the effectiveness of the proposed localiza-
tion framework, we fly a Crazyflie nano-quadcopter using test
anchor constellations that are different from those used for
training (see Figure 5). Without any of the components in
our proposed localization framework, the Crazyflie quadcopter
cannot reliably and repeatedly take off from the ground, due to
the severe multi-path effect caused by the floor. With just the
addition of the M-estimation-based EKF (to get rid of multi-
path outlier measurements), the Crazyflie can take off and land.
Therefore, we select the performance of the M-estimation-
based EKF-only approach as our baseline and compare it
against (i) the estimation enhanced through the proposed NN,
and (ii) the estimation enhanced through an NN without anchor
orientations. Both networks were trained using the process in
Section V-B.

We conducted flight experiments using training constella-
tion #1 and three entirely new anchor test constellations to
show the generalization capability of the proposed localization
framework. The Crazyflie nano-quadcopter was commanded to
fly (i) a planar (in x-y) circular trajectory, called trajectory A,
and (ii) a circular (in x-y) trajectory with sinusoidal height
(i.e. with varying z position), called trajectory B. Neither of
these two trajectories was among the training trajectories. The
RMS errors of the three localization methods (M-estimation-
based EKF alone, EKF plus bias correction with the proposed
approach, or EKF plus NN without anchor orientations) are
summarized in Figure 7.

In the training constellation setup, the proposed method
provides 52.71% and 27.65% average RMS error reduction
comparing to (i) M-estimation-based EKF alone and (ii)
M-estimation-based EKF enhanced through an NN without
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Fig. 8. Closed-loop flight paths for reference trajectory A with estimation
enhanced through an NN without anchor orientations (red) and estimation
enhanced through the proposed approach (teal), in test constellation #1.

anchor orientations. In the three test constellations, the pro-
posed framework achieves 42.08% and 20.32% reduction of
average RMS errors, w.r.t. (i) and (ii), leading to an accuracy
of approximately 0.14m RMS localization error on-board
a Crazyflie nano-quadcopter. We demonstrate the on-board
estimation results of trajectory A (see Figure 8) using test
anchor constellation #1 as an example.

The onboard estimation errors computed with respect to the
ground truth and the estimated three-σ uncertainty bounds for
the three approaches during the closed-loop flight are shown
in Figure 9. Both NN-enhanced approaches show a reduction
of the RMS estimation error compared to the baseline (M-
estimation-based EKF), especially along the z-axis. The larger
estimation error in the z direction, before bias correction, can
be partly attributed to our setup’s specific geometry, having
a narrower anchor separation in z (∼2.8 meters). We also
observe that, with the M-estimation based EKF alone, the
estimation errors are out of the estimated three-σ error bounds.
This phenomenon is caused by the uncompensated UWB
measurement biases. With biased measurements, KF-type
estimators will provide biased estimates and overconfident
uncertainty, leading to inconsistent estimation results [26].
With NN bias compensation, most of the estimation errors
are within three-σ error bounds. Also, compared to the NN
without anchor orientations, the proposed approach provides
an improved and unbiased estimation along the z-axis.

VI. CONCLUSIONS

In this article, we presented a learning-enhanced, robust
TDOA-based localization framework for resource-constrained
mobile robots. To compensate for the systematic biases in the
TDOA measurements, we proposed a lightweight neural net-
work model and selected appropriate input features based on
the analysis of the TDOA measurement error patterns. For ro-
bustness, we used the M-estimation technique to down-weight
outliers. The proposed localization framework is frugal enough
to be implemented on-board a Crazyflie 2.0 nano-quadcopter.
We demonstrated the effectiveness and generalizability of our
approach through real-world flight experiments—using multi-
ple different anchor test constellations. Experimental results
show that the proposed approach provides an average of
42.09% localization error reduction compared to the baseline
method without bias compensation. In summary, our approach
(i) allows for real-time execution on-board a nano-quadcopter
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Fig. 9. Estimation error (blue) and 3-σ error bounds (red) for reference trajectory A using test const. #1. Without bias compensation, the error can exceed
the 3-σ bound (e.g. in z). Compared to the NN without anchor orientations, the proposed NN improves and debiases estimation along the z-axis.

during flight, (ii) yields enhanced localization performance
for autonomous trajectory tracking, and (iii) generalizes to
previously unobserved UWB anchor constellations.
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