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Abstract— Ultra-wideband (UWB) time difference of arrival
(TDOA)-based localization has emerged as a low-cost and
scalable indoor positioning solution. However, in cluttered
environments, the performance of UWB TDOA-based local-
ization deteriorates due to the biased and non-Gaussian noise
distributions induced by obstacles. In this work, we present a
bi-level optimization-based joint localization and noise model
learning algorithm to address this problem. In particular, we
use a Gaussian mixture model (GMM) to approximate the
measurement noise distribution. We explicitly incorporate the
estimated state’s uncertainty into the GMM noise model learn-
ing, referred to as uncertainty-aware GMM, to improve both
noise modeling and localization performance. We first evaluate
the GMM noise model learning and localization performance in
numerous simulation scenarios. We then demonstrate the effec-
tiveness of our algorithm in extensive real-world experiments
using two different cluttered environments. We show that our
algorithm provides accurate position estimates with low-cost
UWB sensors, no prior knowledge about the obstacles in the
space, and a significant amount of UWB radios occluded.

I. INTRODUCTION

Over the last decade, ultra-wideband (UWB) radio tech-
nology has been shown to provide high-accuracy time of
arrival (TOA) measurements, making it a promising indoor
positioning solution. UWB chips have been integrated in
the latest generations of consumer electronics including
smartphones and smartwatches to support spatially-aware
interactions [1], [2]. During the FIFA World Cup 2022, UWB
localization technology was used, for the first time, in an
official football tournament to enhance the Video Assistant
Referee (VAR) system by providing reliable, low-latency, and
decimeter-level accurate ball tracking information [3], [4].

Similar to the Global Positioning System (GPS) [5], an
UWB-based positioning system requires UWB radios (also
called anchors, see Figure 1) to be pre-installed in the
environment as a constellation with known positions, which
in turn serve as landmarks for positioning. In robotics [6],
the two main ranging schemes used for UWB localization
are (i) two-way ranging (TWR) and (ii) time difference of
arrival (TDOA). In TWR, the UWB module mounted on the
robot (also called tag) communicates with an anchor and
acquires range measurements through two-way communica-
tion. In TDOA, UWB tags compute the difference between
the arrival times of the radio packets from two anchors as
TDOA measurements. Compared with TWR, TDOA does
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Fig. 1: Diagram of the proposed joint localization and noise model learn-
ing framework (top) and our localization system setup with one of our
experimental results in the first cluttered environment, Env. #1 (bottom).
Our proposed algorithm estimates the robot trajectory through a bi-level
optimization framework with the maximum a posteriori (MAP) estimation
and uncertainty-aware Gaussian mixture model learning.

not require active two-way communication between an an-
chor and a tag, thus enabling localization of a large number
of devices [7].

Nonetheless, UWB TDOA-based localization systems still
encounter difficulties in cluttered environments. As TDOA
localization involves three UWB radios instead of two, the
UWB TDOA measurements are easily corrupted by obstacle-
induced non-line-of-sight (NLOS) and multi-path propaga-
tion in complex environments [8], leading to degraded posi-
tioning accuracy. Recent developments in Gaussian mixture
model (GMM)-based residual representation [9]–[11] have
shown to achieve robust and improved localization perfor-
mance. However, in these works, the GMM noise model
learning process does not account for the noise associated
with the measurement residuals induced by the state un-
certainty, which can result in inaccurate location estimates
when the state is uncertain. In this work, we evaluate the
uncertainties of measurement residuals through the covari-
ance of the estimated state and leverage this information to
improve the GMM noise model learning. Then, we formulate
a bi-level optimization to simultaneously perform UWB
TDOA localization and uncertainty-aware GMM (U-GMM)
noise modeling. We first evaluate the proposed noise model
learning and localization performance in numerous simulated
problems. Then, we demonstrate the effectiveness of our
algorithm with extensive real-world experiments using low-



cost UWB sensors in two different cluttered environments.
We show that our algorithm, compared to conventional
methods, provides improved position estimates without prior
knowledge about the obstacles in the space and a significant
amount of UWB radios occluded. Our main contributions
can be summarized as follows:

1) We explicitly leverage the uncertainty of the estimated
state to improve the GMM noise model learning perfor-
mance.

2) We present a bi-level optimization framework for joint
localization and uncertainty-aware noise model learning
to improve UWB TDOA localization performance.

3) We evaluate the proposed noise model learning and
localization performance in numerous simulated prob-
lems. We further demonstrate the effectiveness of our
proposed method in extensive real-world experiments
using two different cluttered environments.

II. RELATED WORK

Multiple approaches have been proposed to improve UWB
localization performance with biased and non-Gaussian mea-
surement noises. Gaussian processes [12] and neural net-
works [13] trained with the ground truth measurements
from a motion capture system have been used to model
the UWB measurement biases. The proposed method in [14]
learns a Gaussian process noise model without ground truth
information, but still requires training data to learn the
model beforehand. The iterative measurement bias learning
approach proposed in [15] does not have an offline training
step, but requires repeating the same trajectory multiple
times to learn the bias model. More generic mechanisms
to reduce the influence of the biases and measurement
outliers are M-estimators [16], which apply robust cost
functions to downweight large measurement residuals. For
biased and asymmetric non-Gaussian noise distributions, the
performance of M-estimators could deteriorate due to the
symmetric nature of the robust cost functions [11].

More recently, authors in [9], [10] leverage Gaussian
mixture models (GMM) to represent the distribution of
measurement residuals and improve the localization perfor-
mance. GMMs are flexible enough to represent asymmetric,
multimodal, and skewed measurement noise distributions,
which also can be used for efficient nonlinear least squares
optimization [11], [17]. In the context of state estimation,
the measurement residuals, which are computed based on
the estimated state and used for GMM noise modeling, are
often associated with uncertainties. However, the standard
GMM noise model learning approaches in [9], [10] disregard
the uncertainties associated with the residuals, which can
result in degraded GMM noise modeling performance. Con-
sequently, it is necessary to leverage the uncertainty of the
estimated state to jointly improve the GMM noise modeling
and localization performance.

In this work, we present a bi-level optimization-based
joint localization and uncertainty-aware GMM noise model
learning algorithm, which explicitly leverages the uncertainty
of the estimated state to improve the noise modeling and
localization performance. We demonstrate the effectiveness

of the proposed method in numerous simulated problems
and real-world experiments. To the best of our knowledge,
this is the first work to incorporate the uncertainty of the
estimated state into GMM noise model learning to improve
the accuracy and robustness of UWB TDOA localization.

III. PROBLEM FORMULATION

We consider an UWB TDOA localization system in a
cluttered indoor environment. The set of ma UWB anchors
are divided into TDOA anchor pairs Γ = {(1, 2), · · · , (ma−
1,ma)} and are assumed to be fixed in the space P ∈ Rnd

with nd = {1, 2, 3} indicating the dimension. To facilitate
our analysis, we define a vector a =

[
aT
1 ,a

T
2 , · · · ,aT

ma

]T ∈
Rnd·ma that contains all anchor positions. The general state
to be estimated is represented as X , which contains the
robot’s poses along the trajectory. We refer to the absolute
coordinate frame created by the UWB anchors as the inertial
frame FI and denote the robot body frame as FB.

Our problem is described as follows. The robot is assumed
to be equipped with an UWB tag together with a source
of odometry providing incremental motion information. We
indicate the odometry measurements as U and the noisy
UWB TDOA measurements as D. In cluttered environments,
UWB measurements are often affected by obstacles, leading
to biased and non-Gaussian measurement errors. We use
Gaussian mixture models (GMMs), parameterized by θ, to
approximate the UWB error distributions. Our goal is to
estimate the state X and the noise parameters θ through
maximizing the joint likelihood:

X ⋆,θ⋆ = argmax
X ,θ

p (X ,U ,D|θ) . (1)

IV. METHODOLOGY

Gaussian mixture models (GMMs) are well-suited to
representing the biased and non-Gaussian UWB TDOA
measurement noises in cluttered environments, which enable
accurate and robust localization performance. However, the
conventional GMM noise model learning often ignores the
uncertainties of the measurement residuals, which deterio-
rates the modeling performance. In this section, we incorpo-
rate the uncertainty of the estimated state into measurement
noise model learning to jointly improve the noise modeling
and localization performance.

A. UWB TDOA Localization via Maximum a Posteriori
Considering a general UWB TDOA-based localization

system, the noisy UWB TDOA measurement between the
robot pose xtn ∈ X at discrete time tn and anchor pair
{ai,aj} is modeled as

dij,tn = d̄j(xtn)− d̄i(xtn) + ηij,tn

= d̄ij(xtn) + ηij,tn ,
(2)

where d̄i(xtn) and d̄j(xtn) are the error-free range mea-
surements between the robot pose xtn and anchor positions
{ai,aj}, (i, j) ∈ Γ and ηij,tn is the measurement error.

We denote the set of odometry measurements as U =
{ut} at discrete times t = 1, · · · , T and the set of
TDOA measurements from anchor pair {ai,aj} as Dij =
{dij,t1 , · · · , dij,tN }. We summarize all the observed UWB



measurements as D = {Dij}, (i, j) ∈ Γ. Assuming odometry
and UWB TDOA measurements are independent, the joint
likelihood of the robot poses and the observations is

p(X ,U ,D) = p(x0)

T∏
t=1

p(xt|xt−1,ut)
∏

(i,j)∈Γ

N∏
n=1

p(dij,tn |xtn),

(3)
where p(x0) is a prior on the initial state, p(xt|xt−1,ut)
is the motion model, and p(dij,tn |xtn) is the UWB TDOA
measurement model. The UWB TDOA-based localization
problem corresponds to maximizing the joint likelihood

X̂ = argmax
X

p(X ,U ,D), (4)

leading to a Maximum a Posteriori (MAP) estimation result.

B. Gaussian Mixture Model for Nonlinear Least Squares
In cluttered environments, the UWB measurement errors

{ηij,tn} often show biased and non-Gaussian distributions
due to degraded radio signals caused by NLOS and multi-
path radio propagation [8], [15]. We use Gaussian mixture
models (GMMs) to model those distributions due to their
flexibility. At each time step tn, we compute the TDOA
measurement residual based on the estimated state x̂tn and
the observed TDOA values dij,tn as

rij,tn(dij,tn , x̂tn) = dij,tn − d̄ij(x̂tn). (5)

For the TDOA measurements Dij , we use a GMM with K
Gaussian components parameterized by the hyperparameter
θij = [π1

ij , · · · , πK
ij , µ

1
ij , · · · , µK

ij , σ
1
ij , · · · , σK

ij ] to model the
distribution of the measurement noise ηij,tn , (i, j) ∈ Γ. The
parameter {πk

ij , µ
k
ij , σ

k
ij} indicates the weight, mean, and

standard deviation of the k-th Gaussian component, respec-
tively. The set of hyperparameters is denoted as θ = {θij}.
The factor graph for the GMM-based UWB localization is
shown in Figure 2. We indicate the odometry binary factor
as ϕut

and the UWB TDOA unary factor parameterized by
the hyperparameter θij as ϕdij,tn |θij

.
We apply the Max-Sum-Mixture approach proposed

in [11] to convert a GMM-based maximum likelihood es-
timation into a nonlinear least squares optimization. With
the GMM hyperparameter θij , the likelihood of dij,tn has
the following relationship

p(dij,tn |x̂tn ,θij) ∝
K∑

k=1

sk exp (ek(rij,tn)), (6)

where sk =
πk
ij

σk
ij

, ek(rij,tn ) = − 1
2

(
rij,tn−µk

ij

σk
ij

)2

, and we drop
the functional dependencies in Equation (5) and indicate the
residual as rij,tn for short. Following the derivation in [11],
we define k̃ = argmaxk sk exp (ek(rij,tn)), indicating the
index of the dominant Gaussian mode, and compute the
square root of the cost function ρ(rij,tn) as:

ρ(rij,tn ) =


rij,tn − µk̃

ij

σk̃
ij√√√√−2 ln

(
1

ζ

K∑
k=1

sk exp (ek(rij,tn )− ek̃(rij,tn ))

)
 ,

(7)
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Fig. 2: The factor graph for the GMM-based UWB localization. The prior
estimate of the initial state is added as an unary factor ϕ0 to the graph.
Odometry binary factors are indicated as ϕut and the UWB TDOA unary
factors ϕdij,tn |θij

are parameterized by the GMM hyperparameter θij .

where ζ = K ·maxk(sk) + c is the normalization constant
that guarantees the expression inside the square root to be
positive and c is set to be 10 following the suggestion in [11].

Now, we formulate the nonlinear least squares problem.
We denote a general motion model as

xt = f(xt−1,ut) +wt, (8)

where wt ∼ N (0,Σu) is the additive white Gaussian noise
(AWGN). Denoting the prior estimate for the initial state as
x0 ∼ N (x̌0, Σ̌0), we convert the UWB localization problem
with GMM measurement noises into a nonlinear least square
problem as follows:

X̂ = argmax
X

p(X ,U ,D|θ)

= argmin
X

{
∥x̌0 − x0∥2Σ̌0

+

T∑
t=1

∥f(xt−1,ut)− xt∥2Σu

+
∑

(i,j)∈Γ

N∑
n=1

∥ρ(rij,tn)∥
2

 ,

(9)

where ∥·∥2Σn
is the squared Mahalanobis distance given a co-

variance matrix Σn and ∥ρ(rij,tn)∥2 = ρ(rij,tn)
Tρ(rij,tn).

C. Uncertainty-aware GMM Noise Model Learning using
Variational Inference

Conventional GMM noise model learning methods [9],
[10] often disregard the uncertainties of the measurement
residuals, resulting in degraded modeling performance. In
the context of state estimation, we are able to quantify the
uncertainties of the measurement residuals using the covari-
ance of the estimated state. To improve the measurement
noise model learning performance, we explicitly incorpo-
rate the estimated state’s uncertainty into the GMM noise
model learning using a variational inference framework. In
the proposed uncertainty-aware GMM noise model learning
method, we wish to estimate the hyperparameter θij of
the GMM noise model ηij,tn ∼ GMM(θij) through a set
of noisy measurement residuals. For ease of notation, we
consider a general GMM noise model learning and drop the
anchor pair subscript ij. Moreover, we simplify the time
step subscript from tn to n for brevity. We indicate the set
of N observed measurement residuals as R = {r1, · · · , rN}.
The noise-free measurement residuals E = {η1, · · · , ηN} are
the corresponding latent variables. We indicate the estimated
state at time tn as xn ∼ N (x̂n, Σ̂n) where Σ̂n is the
covariance matrix of the state. According to Equation (5),
the measurement residual rn is computed by the estimated
state x̂n and the observed TDOA measurement dn. We



propagate the covariance matrices of the estimated state
Σ̂ = {Σ̂1, · · · , Σ̂N} through the nonlinear residual model to
approximate the residuals’ uncertainties Φ = {φ1, · · · , φN}
using the sigma-point transformation [18]. Hence, each ob-
served residual can be modeled as a noisy sample drawn from
a Gaussian distribution N (rn|ηn, φn), where the mean is the
error-free residual value ηn and the variance φn represents
the sample uncertainty.

We use a Gaussian mixture model with K Gaussian
components to represent the latent noise-free measurement
residuals E = {η1, · · · , ηN}. Under a latent variable model,
we associate each residual rn with a binary latent variable
zn = [zn1, · · · , znK ]T , in which only one element is set to
one to indicate that the true residual ηn was generated from
that Gaussian component. We indicate the latent variables as
Z = {z1, · · · , zN} and the sets of the GMM parameters
as Π = {π1, · · · , πK}, M = {µ1, · · · , µK}, and Λ =
{λ1, · · · , λK}, where λk = 1

σ2
k

is the precision of the k−th
Gaussian component.Therefore, we follow a similar approach
in [19] and have the following probabilistic models

p(R|E ,Φ) =
N∏

n=1

N (rn|ηn, φn), p(Z|Π) =

N∏
n=1

K∏
k=1

πznk

k ,

p(E|Z,M,Λ) =

N∏
n=1

K∏
k=1

N (ηn|µk, λ
−1
k )znk .

(10)

We follow [20] and place a Dirichlet distribution and a
Gaussian-Wishart distribution as the prior distributions for
p(Π) and p(M,Λ)

p(Π) = Dir(Π|α0) = C(α0)

K∏
k=1

πα0−1
k

p(M,Λ) =

K∏
k=1

N (µk|m0, (β0λk)
−1)W(λk|w0, ν0),

(11)

where C(α0) is the normalization constant for the Dirichlet
distribution with parameter α0, N (µk|m0, (β0λk)

−1) is the
Gaussian distribution with mean m0 and precision β0λk,
and W(λk|w0, ν0) is the Wishart distribution with scale
variable w0 and degrees of freedom ν0. We assume the set
of residuals’ uncertainties Φ is observed through uncertainty
transformation and the joint probability distribution can be
factorized as

p(R, E ,Z,M,Λ,Π|Φ) =p(R|E ,Φ)p(E|Z,M,Λ)p(Z|Π)

p(Π)p(M|Λ)p(Λ). (12)

We provide a detailed derivation of the uncertainty-aware
GMM parameter learning in the supplementary document1.
Readers may also refer to [19], [20] for further information.

In variational inference, we approximate the posterior
distribution of the latent variable with a variational dis-
tribution, which is commonly chosen through minimiz-
ing the Kullback-Leibler (KL) divergence. In our prob-
abilistic model, we denote the latent variables as H =

1http://tiny.cc/iros23_supplementary_doc

{E ,Z,Π,M,Λ} and the KL divergence is computed as

KL(q||p) = −
∫
q(H) ln

(
p(H|R,Φ)
q(H)

)
dH. (13)

Based on the mean-field-approximation, we assume the vari-
ational distribution can be factorized as

q(H) = q(E ,Z,Π,M,Λ) = q(E|Z)q(Z)q(Π,M,Λ),
(14)

which can be further factorized as

q(E|Z) =

N∏
n=1

K∏
k=1

q(ηn|znk = 1)znk

q(Π,M,Λ) = q(Π)

K∏
k=1

q(µk|λk)q(λk).
(15)

We apply the general expression in variational inference [20]
to compute the optimal solution of q(E|Z), q(Z), and
q(Π,M,Λ). Based on the general expression, we have

ln q⋆(Z, E) = E
Π,M,Λ

[ln p(R, E ,Z,M,Λ,Π|Φ)] + const

ln q⋆(Z) = E
E
[ln q⋆(Z, E)]− E

E
[ln q⋆(E|Z)] .

(16)

The constant term on the right-hand side indicates terms in-
dependent of the latent variable Z and E . Since we select the
conjugate prior distribution for q(µk, λk), the optimal varia-
tional distribution has the same Gaussian-Wishart form, in-
dicated as q(µk, λk) = N (µk|mk, (βkλk)

−1)W(λk|wk, νk).
Therefore, we have the following expression

ln q⋆(E|Z) = ln q⋆(Z, E)− ln q⋆(Z)

=
N∑

n=1

K∑
k=1

znk

(
lnN (rn|ηn, φn) + lnN (ηn|mk, (νkwk)

−1)
)
+ const.

(17)

and the optimal solution q⋆(ηn|znk = 1) is a Gaussian
distribution [19]

q⋆(ηn|znk = 1) = N (ηn|k|τn|k, ψn|k), (18)

where the mean and the variance are computed as:

τn|k = ψn|k

(
rn
φn

+ νkwkmk

)
, ψn|k =

φn

1 + φnνkwk
.

(19)
We make use of the expression of Equation (17) to compute
the optimal solution for q⋆(Z)

q⋆(Z) =

N∏
n=1

K∏
k=1

γ
znk
nk , γnk =

ϱnk∑K
l=1 ϱnl

= E[znk], (20)

where γnk is the responsibility of the k-th component for
the n-th residual sample, and ϱnk can be computed as

ln ϱnk =E
E
[lnN (rn|ηn, φn)] + E

E,M,Λ

[
lnN (ηn|µk, λ

−1
k )

]
+ E

Π
[lnπk]− E

E

[
lnN (ηn|τn|k, ψn|k)

]
.

(21)

The optimal solutions for q⋆(Π) and q⋆(M, λ) are similar
to the derivation in [19] and [20] and we only provide the
final expressions in here:

q⋆(Π) = Dir(Π|α)

q⋆(M,Λ) =

K∏
k=1

N (µk|mk, (βkλk)
−1)W(λk|wk, νk),

(22)

http://tiny.cc/iros23_supplementary_doc


where α = [α1, · · · , αK ] with αk = α0 + Nk, Nk =∑N
n=1 γnk and the Gaussian-Wishart parameters are com-

puted as follows:

βk = β0 +Nk, mk =
1

βk
(β0m0 +Nk τ̄k),

τ̄k =
1

Nk

N∑
n=1

E
zn
[znk]τn|k, νk = ν0 +Nk,

w−1
k = w−1

0 +NkSk +
β0Nk

β0 +Nk
(τ̄k −m0)

2,

Sk =
1

Nk

N∑
n=1

E
zn
[znk](τn|k − τ̄k)

2 +
1

Nk

N∑
n=1

E
zn
[znk]ψn|k.

(23)

The optimization of the variational distributions involves
alternating between the variational E and M steps. In the
variational E step, we evaluate the responsibilities E[znk]. In
the variational M step, we keep the responsibilities fixed and
use them to compute the variational distributions q⋆(E|Z),
q⋆(Π), and q⋆(M,Λ). The convergence of the iterative
process is monitored by computing the variational evidence
lower bound (ELBO)

L(q) =
∫
q⋆(H) ln

(
p(H,R|Φ)
q⋆(H)

)
dH, (24)

which should monotonically increase after each iteration.

D. Bi-level Optimization for Joint Localization and Noise
Model Learning

To jointly solve the UWB localization problem and learn
the GMM noise parameters, we propose a bi-level optimiza-
tion algorithm [21] shown as follows:

Inner loop : X̂ = argmax
X

p(X ,U ,D|θ),

Outer loop : q̂(θ) = argmax
q(θ)

L(q(θ)|X ,Σ),

θ̂ = E
θ
[q̂(θ)],

(25)

where we introduce the functional dependencies of θ, X ,
and Σ to the outer loop optimization for clarity.

In the inner loop optimization, we solve the factor graph-
based least squares optimization in Equation (9) and achieve
the MAP estimate X̂ based on the current noise parameter θ.
The covariance Σ̂ is then built from the curvature of the log-
posterior at the maximum [22], which is also known as the
Laplace approximation [20]. In the outer loop optimization,
we optimize the variational distribution q(θ) = q(Z,M,Λ)
by maximizing the ELBO in Equation (24). The GMM
parameters θ are obtained through the expectation over the
estimated variational distribution q̂(θ). The algorithm can
be initialized by an odometry dead-reckoning, conventional
MAP estimations with Gaussian assumptions, or other meth-
ods that can provide an initial estimate of {X ,Σ}.

We perform the bi-level optimization iteratively and check
the convergence based on the loss value of the inner loop cost
function in Equation (9). The designed bi-level optimization
algorithm aims to find the state and noise parameter that
maximize the joint likelihood of the state and observations.
The algorithm terminates when the loss value increases,

which indicates the joint likelihood decreases, or the maxi-
mum number of iterations is reached.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we present simulation and experimental
results of the proposed joint localization and uncertainty-
aware noise model learning algorithm. In all the simulations
and experiments, we use Gaussian mixture models with three
Gaussian components (K = 3), as it is typically sufficient
for UWB noise modeling [8], [10]. We first demonstrate the
performance of the proposed algorithm on simulated 1-D, 2-
D, and 3-D TDOA localization problems. Then, we evaluate
the uncertainty-aware GMM (U-GMM) model learning per-
formance under different uncertainty levels with simulated
data. Finally, we conducted extensive real-world experiments
in two different cluttered indoor environments for 3-D pose
estimation. We demonstrate the effectiveness of the proposed
method through the improvement of localization performance
compared to conventional methods. Readers may refer to
the supplementary material1 for detailed descriptions of the
methods to which we compared and the hyperparameters
used in all the simulations and experiments.

A. Simulation Results on Localization Problems

As our proposed method is a general localization frame-
work, we validate the localization accuracy and GMM model
learning performance in simple 1-D and 2-D simulated
problems as well as a more realistic 3-D pose estimation
problem. In the 1-D simulation setup, we consider a TDOA
localization problem for a mobile robot moving along a line
with one pair of anchors {a1, a2}. We assume the robot state
xt is between the anchors with xt ∈ (a1, a2) to obtain the
following linear motion and measurement models:

motion model : xt = xt−1 + ut + wt

meas. model : d12,t = (a1 + a2)− 2xt + η12,t,
(26)

where wt ∼ N (0, σ2
u) is the noise of the odometry measure-

ment ut and η12,t is the simulated GMM measurement noise.
In the 2-D simulation setup, we consider the robot state as
xt = [xt, yt]

T and two pairs of anchors Γ = {(1, 2), (3, 4)}
for localization. We keep a linear motion model but the
TDOA hyperbolic measurement model is nonlinear:

motion model : xt = xt−1 + ut +wt

meas. model : dij,tn = ∥xtn − aj∥ − ∥xtn − ai∥+ ηij,tn ,
(27)

where ∥·∥ is the ℓ2 norm, wt ∼ N (0,Σu) is the noise of the
odometry measurement ut = [∆xt,∆yt]

T and ηij,tn is the
simulated GMM noise. In both 1-D and 2-D simulations, the
GMM noise distributions are simulated as mixture models
with two Gaussian components.

We initialize the proposed algorithm with odometry dead-
reckoning and then apply the iterative bi-level optimization
until convergence. We compare to two alternative noise
modeling methods (1) Gaussian bias modeling, referred
to as Gauss., which assumes the measurement residuals
follow a single Gaussian distribution and (2) conventional
GMM modeling, referred to as C-GMM, that uses the
measurement residuals directly for GMM parameter learning
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Fig. 3: KL-divergence values between the estimated noise model and
the simulated noise model (top) and localization root-mean-square errors
(RMSE) for 1-D, 2-D, and 3-D simulated problems. The proposed algorithm
achieves better noise modeling performance and lower localization RMSE.

(similar to the methods presented in [9], [10]). Note we
also use the terms Gauss. and C-GMM to represent the
conventional joint localization and noise model learning
methods using the corresponding noise modeling approaches.
To verify the model learning performance, we compute the
KL-divergence between the estimated noise models and the
simulated ground truth GMM models. We demonstrate both
the KL-divergence and the overall localization performance
in Figure 3. In the 1-D and 2-D problems, we can exactly
propagate the uncertainty of the state through the linear mo-
tion models. Therefore, the proposed algorithm is initialized
with the true state uncertainty information. We observe that
our proposed noise modeling method (U-GMM) is able to
achieve better GMM noise models (lower KL-divergence)
and around 41.10% and 34.78% localization root-mean-
squared error (RMSE) reductions compared to Gauss. and
C-GMM, respectively.

We then evaluate our algorithm on a simulated 3-D
quadrotor pose estimation problem. The quadrotor is as-
sumed to be equipped with a visual-inertial odometry
(VIO) and an UWB tag. Four pairs of anchors Γ =
{(1, 2), (3, 4), (5, 6), (7, 8)} are simulated for TDOA local-
ization. We use the standard special orthogonal group SO(3)
to represent the rotation and special Euclidean group SE(3)
to represent the robot’s pose (rotation and translation). The
robot pose TIB w.r.t. the inertial frame FI is parameterized
as TIB = {CIB,p

BI
I } ∈ SE(3) with the robot position

pBI
I ∈ R3 and orientation CIB ∈ SO(3). For brevity,
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Fig. 4: The KL-divergence improvements of the proposed uncertainty-
aware GMM (U-GMM) with uncertainty levels ranging from zero to ten
compared to the conventional GMM (C-GMM), (left). The proposed U-
GMM consistently outperforms C-GMM. The noise modeling performance
comparison of U-GMM and C-GMM with ω = 5 is shown on the right.

we drop frame indicators in the following equations. We
represent the uncertainties on 3-D poses with the right
perturbation convention [23], leading to the following motion
model:

Tt = Tt−1∆Tt exp (ξ
∧
t ), (28)

where the odometry noise is indicated as a pose perturbation
ξt ∼ N (0,Σu) and the ∧ is the hat operator that maps ξt ∈
R6 to an element of the Lie algebra se(3). The corresponding
UWB TDOA measurement model is

dij,tn = ∥Ctn lub+ptn−aj∥−∥Ctn lub+ptn−ai∥+ηij,tn , (29)

where ηij,tn is sampled from a simulated GMM distribution
with two Gaussian components and lub is the position of
the UWB radio in the body frame, also called lever arm.
We initialize the algorithm with the VIO dead-reckoning
and follow the sigma-point transformation in [24] for state
uncertainty propagation. The KL-divergence values and the
localization RMSE are shown in the third column of Fig-
ure 3. Similarly, we observe that the proposed joint localiza-
tion and uncertainty-aware noise model learning algorithm
achieves better noise models and provides 31.98% and
19.91% localization RMSE reductions compared to Gauss.
and C-GMM, respectively.

B. U-GMM Noise Model Learning Evaluation

We further evaluate the proposed U-GMM noise model
learning method with different levels of state uncertainty.
We demonstrate the simulation results on the 3-D problem
setup while 1-D and 2-D results follow the same trend
and can be found in the supplementary material1. We first
simulated each estimated pose along the trajectory T̂n

with pose perturbation ξn ∼ N (0, Σ̂n), where Σ̂n =
diag(ξ1n, ξ

2
n, ξ

3
n, ξ

4
n, ξ

5
n, ξ

6
n) with {ξ1n, ξ2n, ξ3n} and {ξ4n, ξ5n, ξ6n}

sampled from the uniform distribution U(0, 0.035ω) in meter
and U(0, 0.05ω) in radian, respectively. The parameter ω ∈
{0, · · · , 10} is the uncertainty level. We apply the proposed
U-GMM method for noise modeling and visualize the KL-
divergence improvements compared to C-GMM as the green
curve in Figure 4 (left). One model performance comparison
example with ω = 5 is shown in Figure 4 (right). We can
observe that U-GMM consistently outperforms C-GMM in
noise modeling performance.

Moreover, as it is hard to access the exact uncertainty
of the state in practice, we additionally evaluate the per-
formance of U-GMM without precise state uncertainty in-
formation. We multiply the covariance matrix Σ̂n with
δ ∈ {0.1, 0.5, 1.5, 1.9} to simulate the scenarios when the
state uncertainty is under- or over-estimated. We apply the
same evaluation process and summarize the KL-divergence
improvements in Figure 4 (left). It can be observed that even
with inaccurate state uncertainty U-GMM outperforms the
conventional method in almost all testing scenarios.

C. Experimental Results for Indoor Localization

We conducted extensive real-world experiments on a
quadrotor platform for 3-D pose estimation to validate our
proposed method. Two different cluttered environments, an
indoor flying arena (Env. #1) and a cafeteria (Env. #2),



TABLE I: Summary of the localization performance, shown by root-mean-square error (RMSE) in centimeters (cm), in the flying arena (Env. #1). The
trials are indicated as T for short. The visual-inertial odometry (VIO) dead-reckoning performance are shown in gray.

Alg.
Env. #1, LOS

RMSE (cm)
Env. #1, Cluttered Con. #1

RMSE (cm)
Env. #1, Cluttered Con. #2

RMSE (cm)

T #1 T #2 T #3 T #4 T #1 T #2 T #3 T #4 T #5 T #1 T #2 T #3 T #4 T #5

VIO 11.49 13.94 10.07 15.39 8.56 12.26 11.84 14.09 10.52 8.51 10.31 7.38 9.94 12.88

Gauss. 6.45 8.51 8.65 11.55 6.22 9.11 9.26 10.72 8.23 8.49 9.33 5.75 8.39 11.77

6.61 7.22 6.61 9.78 5.25 6.33 7.49 9.92 6.54 5.87 7.84 7.11 6.40 7.86

Ours 5.66 6.69 6.32 8.82 4.32 5.63 6.86 8.73 6.04 5.34 8.07 6.94 6.99 7.33

C-GMM

were selected for the experiments. We used eight low-cost
DW1000 UWB radios from Bitcraze as anchors to set up the
UWB TDOA-based localization system. The UWB anchors
were set to communicate in a round-robin network topol-
ogy with Γ = {(8, 1), (1, 2), · · · , (7, 8)}. Our experimental
platform is a customized quadrotor equipped with a DW1000
UWB radio and an Intel Realsense T261 stereo camera which
provides odometry measurements. The T261 camera only
runs visual-inertial odometry (VIO) as we disabled the map
building and the loop closure feature during experiments.

We first conducted flight experiments in a 7m×8m×3m
indoor flying arena (Env. #1). The VIO and raw UWB
measurements were collected during flights. The raw VIO
provides the dead-reckoning pose estimation w.r.t. the ini-
tial VIO frame. During the experiments, we aligned the
VIO frame to the inertial frame at the starting point and
converted the VIO measurements into incremental odome-
try between consecutive time steps: {∆T1, · · · ,∆Tt} with
∆Tt = T−1

t−1Tt. The ground truth pose of the quadrotor
was provided by a motion capture system comprising of ten
Vicon cameras. The flight experiments were conducted in
three different conditions: (1) LOS condition, (2) cluttered
condition #1 (with one metal and two wooden obstacles,
see Figure 5a), and (3) cluttered condition #2 (with extra
two chairs and one desk, see Figure 5b). We initialized the
algorithm with the VIO dead-reckoning and then performed
the bi-level optimization until convergence for offline batch
estimation. We conducted a total of 14 trials of experiments
in Env. #1 and summarize the localization RMSE of the
VIO dead-reckoning, Gauss., C-GMM, and our proposed
algorithm in Table I. In the four LOS experiments, the pro-
posed method provides 20.04% and 9.0% RMSE reductions
compared to Gauss. and C-GMM, respectively, leading to
an average localization accuracy of 6.87 centimeters. This
performance improvement is due to the UWB systematic
biases caused by hardware imperfection [13]. In Cluttered

(a) Env. #1, Cluttered Con. #1 (b) Env. #1, Cluttered Con. #2
Fig. 5: The two cluttered conditions in the flying arena (Env. #1). The extra
two chairs and a desk are highlighted with a red dashed box in (b). The
anchor positions are shown in Figure 1.

Env. #2

Fig. 6: The cluttered cafeteria (Env. #2) with the anchors and the extra
wooden obstacles highlighted by blue circles and red boxes, respectively.

Con. #1, our proposed algorithm demonstrates a similar lo-
calization accuracy (6.31 cm) as in LOS scenarios, resulting
in 27.98% and 11.39% error reductions compared to Gauss.
and C-GMM, respectively. However, in Cluttered Con. #2,
the proposed method achieves similar localization accuracy
(6.93 cm) compared to C-GMM (7.02 cm). The reason is
that the extra desk and chairs provided more visual features
and helped to improve the VIO performance. This can be
observed by that the average VIO dead-reckoning RMSE in
Cluttered Con. #2 is 9.8 cm, which is lower than the other
two conditions. As we demonstrated in Section V-B, our
proposed method provides more improvements with larger
state uncertainty. In contrast, when the state associated with
small uncertainty due to less odometry drifts, both C-GMM
and U-GMM result in similar localization performance.
TABLE II: Localization performance shown by root-mean-square error
(RMSE) in centimeters (cm), in a cluttered cafeteria. The trials are indi-
cated as T for short. The visual-inertial odometry (VIO) dead-reckoning
performance are shown in gray.

Alg.
Env. #2, Cluttered Cafeteria, RMSE (cm)

T #1 T #2 T #3 T #4 T #5 T #6 T #7

VIO 41.66 30.13 26.19 25.92 24.66 16.63 34.19

31.60 25.17 21.53 24.23 19.65 23.02 29.61

33.19 24.06 20.20 24.99 16.89 18.84 27.33

Ours 17.04 17.67 14.88 20.20 18.59 16.69 24.35

Gauss.

C-GMM
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Fig. 7: Histograms of UWB TDOA measurement residuals in the cluttered
cafeteria. A significant amount of UWB anchors are occluded in this
challenging environment and UWB residuals demonstrate non-Gaussian and
multi-model distributions due to the NLOS and multi-path propagation.

To further verify our proposed algorithm, we conducted
seven trials of experiments in a 10m×10m×5m real-world
cafeteria (Env. #2, see Figure 6). To create more NLOS
conditions, we introduced two wooden obstacles (highlighted
with red boxes in Figure 6, bottom) to block the UWB
anchors along with the default tables and chairs in the space.
For ground truth data, we use a Leica total station in the
tracking mode, which tracks the prism on the quadrotor and
provides the position measurements at 5 Hz. To quantify the
localization accuracy, we manually moved the quadrotor at
low speed to prevent the total station from losing track of
the prism. The UWB measurement error histograms of one
experiment are shown in Figure 7. It can be observed that
all eight UWB TDOA measurements were heavily corrupted
due to this complex and cluttered environment. Similarly, we
initialized the algorithm with the VIO dead-reckoning and
performed the offline batch estimation. We summarize the
localization performance of each experiment in the cafeteria
in Table II. The visual odometry performance degrades
significantly in the cafeteria with an average dead-reckoning
accuracy of 28.48 cm. This is a very challenging environment
as (1) the visual odometry drifts more due to the large space
and (2) UWB measurements deteriorate greatly due to NLOS
and multi-path radio propagation induced by different kinds
of obstacles. In this cafeteria environment, our proposed
method still achieves an average of 18.49 cm localization
accuracy, leading to 24.97% and 19.11% error reductions
compared to Gauss. and C-GMM, respectively.

VI. CONCLUSIONS

In this work, we present a bi-level optimization-based
localization and uncertainty-aware GMM noise model learn-
ing algorithm for UWB TDOA positioning systems. We
explicitly incorporate the uncertainty of the estimated state
into the GMM noise model learning to improve both noise
modeling and localization performance. We demonstrate
the effectiveness of our algorithm in numerous simulation
scenarios and real-world experiments. In a laboratory setup,
the proposed algorithm achieves an average of 6.70 cm
localization RMSE with low-cost UWB radios. We also
evaluate our algorithm in a cluttered cafeteria and show
that the proposed algorithm is able to achieve an average
of 18.49 cm localization accuracy, leading to 24.97% and

19.11% error reductions compared to conventional Gaussian
and GMM-based methods, respectively.
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