
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 4, OCTOBER 2020 5291

Variational Inference With Parameter Learning
Applied to Vehicle Trajectory Estimation

Jeremy Nathan Wong , David Juny Yoon , Angela P. Schoellig , and Timothy D. Barfoot

Abstract—We present parameter learning in a Gaussian vari-
ational inference setting using only noisy measurements (i.e., no
groundtruth). This is demonstrated in the context of vehicle tra-
jectory estimation, although the method we propose is general.
The letter extends the Exactly Sparse Gaussian Variational In-
ference (ESGVI) framework, which has previously been used for
large-scale nonlinear batch state estimation. Our contribution is to
additionally learn parameters of our system models (which may be
difficult to choose in practice) within the ESGVI framework. In this
letter, we learn the covariances for the motion and sensor models
used within vehicle trajectory estimation. Specifically, we learn
the parameters of a white-noise-on-acceleration motion model and
the parameters of an Inverse-Wishart prior over measurement
covariances for our sensor model. We demonstrate our technique
using a 36 km dataset consisting of a car using lidar to localize
against a high-definition map; we learn the parameters on a train-
ing section of the data and then show that we achieve high-quality
state estimates on a test section, even in the presence of outliers.
Lastly, we show that our framework can be used to solve pose graph
optimization even with many false loop closures.

Index Terms—SLAM, localization.

I. INTRODUCTION

PROBABILISTIC state estimation is a core component of
mobile robot navigation. While the estimation machinery

is reasonably mature, there are robot model parameters that are
difficult to determine from first principles and vary with each
new platform and sensor. Our vision is to develop a learning
framework that allows the deployment of a robot with arbitrary
sensors onboard, and have it learn the model parameters required
for estimation (and planning/control) solely from the sensor
data. This can be viewed as a form of nonlinear system iden-
tification, although we will approach the problem using modern
machine learning techniques.

In this letter, we show that we can learn the parameters
of a nonlinear system in concert with a nonlinear batch state
estimation framework, namely Exactly Sparse Gaussian Vari-
ational Inference (ESGVI) [1]. ESGVI exploits the fact that
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the joint likelihood between the observed measurements (data)
and the latent state can be factored, which provides a family
of scalable state estimation tools starting from a variational
inference objective. To extend this to parameter learning, we use
Expectation Maximization (EM). In the E-step, we fix all model
parameters and optimize a bound on the data log-likelihood, the
so-called Evidence Lower Bound (ELBO); this is equivalent
to ESGVI latent state inference. In the M-step, we hold the
latent state estimate fixed and optimize the ELBO for the pa-
rameters. Our method is general and applicable to any nonlinear
system identification problem, even when the factorization of
the joint likelihood has cycles (e.g., Simultaneous Localization
and Mapping (SLAM)). Barfoot et al. [1] hint at the ESGVI
extension to parameter learning, but do not demonstrate it in
practice.

Our demonstration of parameter learning focuses on robot
noise models. The noise models of the motion prior and observed
measurements are often assumed to be known or tuned by trial
and error. Our previous work demonstrated parameter learning
for vehicle motion priors, but required accurate and complete
(i.e., observation of the complete latent state) groundtruth [2].
However, often times, collecting such groundtruth is not possible
or extremely expensive. We demonstrate the ability to learn these
noise models from only noisy measurements. If groundtruth is
available, we treat it simply as another (noisy) measurement that
can be included in the framework. We also demonstrate that an
Inverse-Wishart (IW) prior over the time-varying measurement
covariances, using a Maximum A Posteriori (MAP) treatment in
the variational setting, achieves outlier rejection in both param-
eter learning and latent state inference. We then demonstrate our
parameter learning method on a real-world lidar dataset and a
pose graph optimization problem created from a front-end pose
graph SLAM algorithm. We show that our parameter learning
method is able to handle both noisy measurements and outliers
during training and testing.

In summary, the main contribution of this letter is a detailed in-
vestigation and experimental demonstration of parameter learn-
ing as part of ESGVI. Our application focuses on trajectory
estimation, where we show nonlinear system identification us-
ing noisy measurements, without groundtruth. We also include
outlier rejection in the variational setting by placing an IW prior
over covariances.

In Section II we review previous work. An overview of the
ESGVI framework with parameter learning is provided in III.
Section IV presents the noise models we use and how we learn
their parameters. An experimental evaluation of our parameter
learning method is presented in V. In Section VI, we provide
concluding remarks and discuss future work.
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II. RELATED WORK

System identification has been an active research area for
decades [3]–[6]. In the interest of space, we restrict our review
of related work to the techniques that are most similar to our
proposed approach. In the domain of parameter learning, the
most common approach is to find parameters that maximize the
likelihood of the data. One way to do this is to directly maximize
the likelihood function with respect to the parameters [2], [7],
[8]. This can be a difficult problem to solve, particularly when
the model depends on missing or unobserved variables. In this
case, an indirect approach can be taken by introducing a latent
state to the problem, which can be estimated alongside of the
parameters. This is known as Expectation Maximization (EM),
an iterative algorithm that alternates between optimizing for a
distribution over the latent state and the parameters.

Past work has shown how to estimate all the parameters of a
linear dynamical system using EM, with Kalman smoothing in
the E-step to update states and calculating analytic equations for
parameter updates in the M-step [9]. There have also been meth-
ods that attempt parameter learning for nonlinear systems with
EM. Ghahramani and Roweis [10] learn a full nonlinear model
using Gaussian Radial Basis Functions (RBFs) to approximate
the nonlinear expectations that would otherwise be intractable
to compute. This method was applied to learn a simple sigmoid
nonlinearity. Other methods approximate the required expecta-
tion using particle smoothing [11] or sigmapoint smoothing [7],
[8], [12]. These methods, however, did not learn a full nonlinear
model, but only learned parameters of a mostly predefined model
(e.g., calibration parameters), and were tested only in simulation.

Unlike all these other methods, we use ESGVI within the EM
parameter learning framework, which is a more general method
not limited to problems with a specific factorization of the joint
likelihood between the data and the latent state (e.g., smoothing
problems with a block-tridiagonal inverse covariance). We also
demonstrate a practical application of parameter learning by
estimating the parameters of our motion prior and measurement
noise models in a batch estimation framework.

While we are interested in batch estimation, previous work
has investigated learning the noise model parameters of filters.
Abbeel et al. [13] learn the noise model parameters of the
Kalman Filter offline. However, these parameters are assumed
to be static and do not vary with time. One popular area of
study that handles changing covariances is Adaptive Kalman
Filtering, where the measurement covariance is updated in an
online fashion based on the statistics of the measurement inno-
vation [14]–[16]. The measurement covariance in these cases is
updated based solely on the data seen during inference, whereas
we incorporate a prior.

Ko and Fox [17] apply Gaussian process regression to learn
robot measurement and motion models, but because they do not
exploit sparsity, need to resort to using their learned models
in a filter estimation framework. We exploit sparsity for batch
estimation. Recent methods take advantage of deep neural net-
works (DNNs) to learn the robot noise models [18]–[20] but in
many cases require groundtruth to train the DNN. We bypass this
requirement by simultaneously estimating a distribution over the
latent state.

Barfoot et al. [1] show how to learn a constant covariance
using ESGVI through EM but do not demonstrate it in prac-
tice. Our main contributions compared to [1] is demonstrating

parameter learning for a specific application and learning time-
varying covariances by introducing an IW prior over our covari-
ances, which enables outlier rejection. As an alternate method for
outlier rejection, Chebrolu et al. [21] use EM to learn a tuning
parameter for M-estimation but treat their latent variables as
point estimates. The IW distribution has been used as a prior
over covariances before, but the parameters were assumed to be
known [22]. We seek to learn at least some of the parameters of
the prior.

To the best of our knowledge, the work we present in this
letter is the first attempt at wrapping parameter learning into the
ESGVI framework to solve a practical problem, and shows that
we can achieve a robust extension of ESGVI (with an outlier
rejection scheme) by placing an IW prior on our measurement
covariances. We also show comparable trajectory estimation
performance between learning parameters with and without
groundtruth.

III. ESGVI WITH PARAMETER LEARNING

A. Variational Setup

We begin with the maximum-likelihood problem for the given
data, z, which is expressed as

θ� = argmax
θ

p(z|θ), (1)

where θ represents the parameters of our system that we wish
to learn.

We define the loss that we wish to minimize as the negative
log-likelihood of the data and introduce the latent state, x.
Applying the usual EM decomposition results in

L = − ln p(z|θ) =
∫

q(x) ln

(
p(x|z,θ)
q(x)

)
dx

︸ ︷︷ ︸
≤ 0

−
∫

q(x) ln

(
p(x, z|θ)
q(x)

)
dx

︸ ︷︷ ︸
upper bound

, (2)

where we define our approximate posterior as a multivariate
Gaussian distribution, q(x) = N (μ,Σ). We now proceed it-
eratively in two steps, the expectation step (E-step) and the
maximization step (M-step).1

As commonly done in the EM framework, in both the E-step
and the M-step, we optimize the upper bound term in (2), which
is also known as the (negative) Evidence Lower Bound (ELBO).
Using the expression for the entropy, − ∫

q(x) ln q(x)dx, for
a Gaussian and dropping constants, the upper bound term is
written as the loss functional of ESGVI,

V (q|θ) = Eq[φ(x|θ)] + 1

2
ln
(|Σ−1|) , (3)

where we define φ(x|θ) = − ln p(x, z|θ), Eq[·] is the expecta-
tion conditioned on the distribution q(x), and | · | is the matrix
determinant. We drop z in the notation for convenience as our
expectation is over x.

Taking the derivatives of the loss functional with respect to μ
and Σ−1, Barfoot et al. [1] developed a Newton-style iterative

1We are working with the negative log-likelihood so we are technically
applying Expectation Minimization, but the acronym stays the same.
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optimizer to update our estimate of q(x). We summarize the
optimization scheme here as

(
Σ−1

)(i+1)
=

K∑
k=1

PT
k E

q
(i)
k

[
∂2φk(xk|θ)
∂xT

k ∂xk

]
Pk, (4a)

(
Σ−1

)(i+1)
δμ = −

K∑
k=1

PT
k E

q
(i)
k

[
∂φk(xk|θ)

∂xT
k

]
, (4b)

μ(i+1) = μ(i) + δμ, (4c)

where superscript i is used to denote variables at the ith iteration.
We have exploited the factorization of the joint log-likelihood
into K factors as

φ(x|θ) =
K∑

k=1

φk(xk|θ). (5)

For generality we have each factor, φk, affected by the entire
parameter set, θ, but in practice it can be a subset. Pk is a
projection matrix that extracts xk from x (i.e. xk = Pk x). The
marginal of q associated with xk is

qk(xk) = N (Pkμ,PkΣPT
k ). (6)

Critical to the efficiency of the ESGVI framework is the ability
to compute the required marginals in (4a) and (4b), without
ever constructing the complete (dense) covariance matrix, Σ.
A sparse solver based on the method of Takahashi et al. [23] is
used to achieve this in [1].

The expectations in (4a) and (4b) can be approximated using
Gaussian cubature samples (e.g., sigmapoints) of the marginal
posterior. Importantly, approximating the expectations at only
the mean of the posterior is equivalent to the MAP batch opti-
mization with Newton’s method. Barfoot et al. [1] also provide
a derivative-free optimization scheme with only Gaussian cuba-
ture, which we do not show here.

In the M-step, we hold q(x) fixed and optimize the upper
bound for the parameters, θ. We can optimize for θ by taking
the derivative of the loss functional as follows:

∂V (q|θ)
∂θ

=
∂

∂θ
Eq[φ(x|θ)] = ∂

∂θ
Eq

[
K∑

k=1

φk(xk|θ)
]

=

K∑
k=1

Eqk

[
∂

∂θ
φk(xk|θ)

]
. (7)

In the last step, the expectation reduces from being over the full
Gaussian, q, to the marginal associated with the variables in each
factor, qk. We can then set the derivative to zero and isolateθ for a
critical point, formulating an M-step. If isolation is not possible,
we can use the gradient in (7) for a partial M-step, which is
known as Generalized Expectation Maximization (GEM) [24].

B. Alternate Loss Functional

In the E-step, we hold θ fixed and optimize q(x) for the best
possible Gaussian fit. Barfoot et al. [1] present an alternate,
Gauss-Newton-style loss functional for when the negative log-
likelihood takes the form

φ(x|w) =
1

2

(
e(x)Tw−1e(x)− ln(|w−1|)) , (8)

where θ is now a covariance matrix, w. With Jensen’s inequal-
ity [25] and dropping the second term since w is a constant in
the E-step, we can write

Eq[e(x)]
Tw−1Eq[e(x)] ≤ Eq

[
e(x)Tw−1e(x)

]
. (9)

Motivated by this relationship, we can define a new loss func-
tional for the E-step as

V ′(q) =
1

2
Eq[e(x)]

Tw−1Eq[e(x)] +
1

2
ln(|Σ−1|), (10)

which is a conservative approximation of V (q), appropriate for
mild nonlinearities and/or concentrated posteriors. The alternate
loss functional is simpler to implement in practice as it does
not require the second derivative of the factors.2 Also note how
evaluating the expectation only at the mean of the posterior is
equivalent to MAP Gauss-Newton.

IV. PARAMETER LEARNING FOR ROBOT NOISE MODELS

A. Constant Covariance

Barfoot et al. [1] outline parameter learning (M-step) for
constant covariance noise models, which we summarize here.
Our loss functional is

V (q|w) = Eq[φ
m(x|w)] +

1

2
ln
(|Σ−1|) . (11)

This expression is similar to (8), but we can exploit the factor-
ization of φm(x|w) to write:

φm(x|w) =

K∑
k=1

φm
k (xk|w)

=
K∑

k=1

1

2

(
ek(xk)

Tw−1ek(xk)− ln(|w−1|)) ,
(12)

where theK factors (in practice, it could be a subset) are affected
by the unknown parameter w, a constant covariance matrix.
Evaluating the derivative, as shown in (7), with respect to w−1
and setting to zero for computing a minimum results in the
optimal w to be

w =
1

K

K∑
k=1

Eqk

[
ek(xk)ek(xk)

T
]
, (13)

which can be approximated with Gaussian cubature if the error
functions, ek(xk), are nonlinear.

Alternatively, we can choose to linearize ek(xk) at the pos-
terior marginal, qk = N (μk,Σk), resulting in the following
M-step:

w ≈ 1

K

K∑
k=1

Eqk

[
(ek(μk) + ek δxk) (ek(μk) + ek δxk)

T
]

=
1

K

K∑
k=1

(
ek(μk)e

T
k (μk) + ekΣke

T
k

)
, (14)

2Another alternative is the derivative-free optimization scheme with cubature
sampling, at the cost of requiring more cubature samples (i.e., more com-
putation). A derivative-free scheme for the alternate loss functional is also
possible [1].
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where ek = ∂ek(xk)
∂xk

|xk=μk
.

B. White-Noise-on-Acceleration Prior on Latent State

We next demonstrate parameter learning for the situation
where the covariance of a factor is indirectly estimated through
another quantity. Consider the example of a white-noise-on-
acceleration (WNOA) motion prior on the latent state, where
the parameter we wish to estimate is the power-spectral density
matrix, Qc [26]. More specifically, let us study the application
of the prior in SE(3) [27], which is defined as follows:

Ṫ(t) = �(t)∧T(t),

�̇ = w(t), w(t) ∼ GP(0,Qcδ(t− t′)), (15)

where T(t) ∈ SE(3) is the pose expressed as a transformation
matrix, �(t) ∈ R6 is the body-centric velocity, w(t) ∈ R6 is
a zero-mean, white-noise Gaussian process, and the operator,
∧, transforms an element of R6 into a member of Lie algebra,
se(3). The state at time tk is xk = {Tk,�k}, and similarly,
xk−1,k is the state at two consecutive times, tk−1 and tk.

We express the factors of our loss functional from (3), but
with only WNOA prior factors for simplicity:

φp(x|Qc) =

K∑
k=2

φp
k(xk−1,k|Qc)

=

K∑
k=2

1

2

(
eTp,kQ

−1
k ep,k + ln |Qk|

)
, (16)

where

ep,k =

[
ln(TkT

−1
k−1)

∨ − (tk − tk−1)�k−1
J −1(ln(TkT

−1
k−1)

∨)�k −�k−1

]
, (17)

and the covariance of the prior, Qk, is defined as [26]

Qk = QΔt ⊗Qc, Q−1k = Q−1Δt ⊗Q−1c ,

QΔt =

[
1
3Δt3 1

2Δt2

1
2Δt2 Δt

]
, Q−1Δt =

[
12Δt−3 −6Δt−2

−6Δt−2 4Δt−1

]
,

where ⊗ is the Kronecker product. Solving for the derivative
with respect to Qcij , the (i, j) matrix element of Qc, we have

∂V (q|θ)
∂Qcij

=
1

2
tr

(
K∑

k=2

Eqk−1,k [ep,ke
T
p,k](Q

−1
Δt ⊗ 1ij)

)

−1

2
(K − 1)dim(QΔt)Qcij , (18)

where qk−1,k is the marginal posterior at two consecutive times,
tk−1 and tk. Setting the derivative to zero, the optimal estimate
of our parameter is then

Qcij =
tr
(∑K

k=2 Eqk−1,k [ep,ke
T
p,k](Q

−1
Δt ⊗ 1ij)

)

dim(QΔt)(K − 1)
. (19)

As explained for (13), the expectation in (19) can be approxi-
mated with Gaussian cubature or linearization.

C. Inverse-Wishart Prior on Covariance

We further extend covariance estimation by incorporating a
prior. Instead of treating the covariance as a static parameter, we
treat it as a random variable and place an IW prior on it. We then
learn some of the parameters of the prior. In order to do so, we
redefine our joint likelihood as

p(x, z,R) = p(x, z|R)p(R), (20)

where now we also include the covariances, R =
{R1,R2, . . .RK}, as random variables. We also redefine
our posterior estimate to be

q′(x) = q(x)s(R), (21)

a product between a Gaussian q(x) and a posterior distribution
for the covariances, s(R).

The upper bound term in the EM decomposition of (2) can
now be written as

−
∫ ∫

q(x)s(R) ln

(
p(x, z|R)p(R)

q(x)s(R)

)
dx dR. (22)

We define the posterior over the covariances as

s(R) = δ(R−Υ), (23)

where δ(·) is the Dirac delta function (interpreted as a proba-
bility density function) and Υ = {Υ1,Υ2 . . .ΥK} is the set of
optimal covariances. The upper bound now simplifies to

−
∫

q(x) ln (p(x, z|Υ)p(Υ)) dx

+

∫
q(x) ln q(x) dx+

∫
s(R) ln s(R)dR

︸ ︷︷ ︸
indep. of Υ

, (24)

where we have abused notation and written p(R = Υ) as p(Υ),
and similarly will later write p(Rk = Υk) as p(Υk). We view
our selection of the delta function as a convenient way of
showing how we can approximate a Gaussian distribution for
the trajectory and a MAP approximation of the covariances in
a single variational framework. The last term is the differential
entropy of a Dirac delta function, and because it is independent
of our variational parameter, Υ, we choose to drop it from our
loss functional.

We assume p(Υ) factors as p(Υ) =
∏K

k=1 p(Υk). We apply
an IW prior over our covariances by defining

p(Υk) =
|Ψ|ν/2
2

νd
2 Γd(

ν
2 )
|Υk|−

ν+d+1
2 exp

(
−1

2
tr(ΨΥ−1k )

)
, (25)

where d is the dimension of Υk, Ψ ∈ Rd×d > 0 is the scale
matrix, ν > d− 1 is the degrees-of-freedom (DOF), and Γd(·)
is the multivariate Gamma function. The IW distribution has
been used as a prior over covariance matrices before, which led
to outlier rejection at inference [28], [29], but the parameters of
the prior were assumed to be known. We choose to estimate the
scale matrix parameter Ψ and leave the degrees-of-freedom ν
as a metaparameter.
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Now we define our factors as

− ln (Υ) =

K∑
k=1

− ln p(Υk)

=
K∑

k=1

φw
k (Υk|Ψ) = φw(Υ|Ψ). (26)

Dropping constant terms, the loss functional can finally be
written as

V (q′|Υ,Ψ) =

K∑
k=1

Eqk [φ
m
k (xk|Υk) + φw

k (Υk|Ψ)]

+
1

2
ln
(|Σ−1|) , (27)

where

φm
k (xk|Υk) =

1

2

(
ek(xk)

TΥ−1k ek(xk)− ln(|Υ−1k |
)
, (28)

φw
k (Υk|Ψ) = −α− 1

2
ln |Υ−1k | −

ν

2
ln |Ψ|+ 1

2
tr(ΨΥ−1k ),

(29)

with α = ν + d+ 2.
In the E-step, we hold Ψ fixed and optimize for Υk, which

we accomplish by taking the derivative of the loss functional as
follows:

∂V

∂Υ−1k

=
1

2
Eqk

[
ek(xk)ek(xk)

T
]− 1

2
αΥk +

1

2
Ψ. (30)

Setting the derivative to zero,

Υk =
1

α
Ψ+

1

α
Eqk

[
ek(xk)ek(xk)

T
]

=
α− 1

α

(
Ψ

α− 1

)

︸ ︷︷ ︸
IW mode

+
1

α
Eqk

[
ek(xk)ek(xk)

T
]
, (31)

where we see the optimal Υk is a weighted average between the
mode of the IW distribution and the optimal static covariance
estimate from (13) at a single marginal factor. Since our E-step
in ESGVI is already iterative, we can seamlessly extend it by
applying (31) as iteratively reweighted least squares (IRLS).

In the M-step, we hold Υ fixed and optimize for Ψ, which
we accomplish by taking the derivative of the loss functional as
follows:

∂V

∂Ψ
=

K∑
k=1

(
−ν

2
Ψ−1 +

1

2
R−1k

)
. (32)

Setting the derivative to zero,

Ψ−1 =
1

Kν

K∑
k=1

Υ−1k . (33)

Applying (31) in the E-step and (33) in the M-step, we found that
our optimzation scheme was still ill-posed, and our covariance
estimates tended toward the positive-definite boundary (i.e., the
zero matrix). We propose constraining the determinant ofΨ to be
a constant β, which can be thought of as constraining the volume
of the uncertainty ellipsoid of the corresponding measurements

to be fixed. We accomplish this by scaling the latest Ψ update
as follows:

Ψconstrained ←
(
β |Ψ|−1) 1

d Ψ. (34)

We then rely on the noise models of other factors (e.g., the motion
prior) to adapt to our selection of β during training.

V. EXPERIMENTAL VALIDATION

To evaluate our parameter learning method, we will be
working with the vehicle dataset collected and used in our
previous work [2]. The dataset consists of 36 km of driving,
with Velodyne VLS-128 lidar data and an Applanix POS-LV
positioning system. There are two sources of 6-DOF vehicle
pose measurements. The first is from the POS-LV system, which
we treat as groundtruth. The second is from a lidar localization
system from Applanix, which localizes the lidar data to a prebuilt
high-definition map.

We use Route A,3 our 16 km long training set, to learn the
parameters of our noise models. For inference, we perform a
batch trajectory optimization on Route B,4 our 20 km long test
set, using the learned noise model parameters of our motion prior
and measurements.

Finally, we evaluate our method on a pose graph optimization
problem with false loop closures.

A. Training With and Without Groundtruth

In Experiment A, our first experiment, we only use the lidar lo-
calization measurements to learn our model parameters (training
without groundtruth). As a benchmark, we also learn another set
of model parameters where we additionally include groundtruth
poses in our training (training with incomplete groundtruth).
This is different from our previous work [2] where the training
method required groundtruth of the entire state (training with
complete groundtruth), which for our problem setup is pose and
body-centric velocity. Additionally, in that paper, the measure-
ment covariances were assumed to be known and not learned.

The loss functional corresponding to this experiment is

V (q′|Υ,Ψ,wgt,Qc) = Eq′ [φ
p(x|Qc) + φm(x|wgt)

+φm(x|Υ) + φw(Υ|Ψ)] +
1

2
ln
(|Σ−1|) , (35)

where φp(x|Qc) are the WNOA prior factors, φm(x|wgt) are
the groundtruth factors (when available), and φm(x|Υ) and
φw(Υ|Ψ) are the lidar measurement factors with an IW prior
over the covariances. See (16) for the definition of φp(x|Qc)
and (12) for the definition of φm(x|wgt) and φm(x|Υ). For the
definition of φw(Υ|Ψ), see (26) and (29).

The WNOA error function (required for φp) is shown in (17),
and the error function for pose measurements (required for φm)
is defined as

em,k = ln(TkT
−1
meas,k). (36)

The estimation problem in this experiment can be represented
by the factor graph in Fig. 1, where we can train with or

3Map available at: https://tinyurl.com/rrjgxaj
4Map available at: https://tinyurl.com/r5m78nq
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Fig. 1. Factor graph for our vehicle estimation problem in Experiment A (see
Section V-A). White circles represent random variables to be estimated (vehicle
state x and measurement covariances Υ). Small black dots represent factors
in the joint likelihood of the data and the state. Binary motion prior factors,
φp
xk−1,k |Qc

, depend on parameter Qc. Unary groundtruth pose factors (if

available),φm
xk |wgt

, depend on parameterwgt. Factorsφm
xk |Υk

andφw
Υk |Ψ are

for applying an Inverse-Wishart prior over our measurement pose covariances,
Υ, and depend on parameter Ψ. We are able to learn parameters Qc and Ψ,
even without groundtruth factors (factors inside dashed box).

Fig. 2. Experiment A - Error plots (blue lines) along with the 3σ covariance
envelopes (gray background) when parameters are trained without groundtruth.

without the groundtruth factors, which are shown inside the
dashed box. For the sake of conciseness in our notation, we
denote φp(xk−1,k|Qc) as φp

xk−1,k|Qc
, φm(xk|wgt) as φm

xk|wgt
,

φm(xk|Υk) as φm
xk|Υk

, and φw(Υk|Ψ) as φw
Υk|Ψ.

We choose to fix the parameters to ν = 6 and β = 1 and
learn the parameters Ψ, wgt (when groundtruth is available),
and Qc. For both sets of learned parameters, we then perform
trajectory estimation on our test set, where we only use the lidar
localization measurements with our learned covariance model
and our learned motion prior.

Fig. 2 shows the error plots where we have trained without
groundtruth for our estimated x, y, and z positions, along with
their 3σ covariance envelopes. As can be seen, the errors consis-
tently remain within the covariance envelopes. We do however
note that our estimator appears to be underconfident. We believe
that this is a result of our decision to constrain |Ψ| = β = 1 in
order for our training method to work in practice. This decision is
analogous to fixing the volume of the covariance ellipsoid to be
constant. In doing so, we relied on the learned covariance of the

TABLE I
EXPERIMENT A - COMPARISON OF TRANSLATIONAL ERRORS ON TEST SET

BETWEEN TRAINING WITH COMPLETE GROUNDTRUTH, WITH INCOMPLETE

GROUNDTRUTH, AND WITHOUT GROUNDTRUTH (GT). WE NOTE THAT THE

FIRST COLUMN, OUR PREVIOUS WORK, DID NOT LEARN THE

MEASUREMENT COVARIANCES

TABLE II
EXPERIMENT A - ANALYSIS OF HOW INCREASING NOISE ON MEASUREMENTS

AFFECTS THE PARAMETER LEARNING METHOD. EVEN WITH MEASUREMENT

ERRORS OF OVER 1.6 m, THE ERRORS ON THE ESTIMATED TRAJECTORY ARE

UNDER 0.5 m

motion prior to adjust relative to the measurement covariances.
The posterior mean is unaffected by this choice but not the
posterior covariance.

Table I shows the resulting mean translational errors from
both training methods on all test sequences. We also include the
results from our previous work where we trained using complete
groundtruth for comparison.

While we achieve very similar errors across all training meth-
ods, the benefit is that we now do not require any groundtruth.
Neither of the three training methods seem to outperform the
others. We believe this is because our lidar localization mea-
surements are quite accurate relative to groundtruth [2].

To further validate our method and show that we can indeed
train with noisy measurements, we decided to artificially add
additional noise to the measurements, where the noise statistics
are unknown to the training process. We use the followingSE(3)
perturbation scheme [28], [30] to inject noise into the position
portion of our pose measurements:

Tnoisy = exp(ξ∧)Tmeas, (37)

where ξ =

[
ξ1:3
0

]
, ξ1:3 ∼ N (0, σ2I).

We vary σ from 0.25 m to 1 m, injecting the same amount of
noise into the test measurements and training measurements.

Table II shows how our test errors change with increasing
noise on measurements in both our training and test set. While
measurement error increases significantly, up to over 1.6 m, we
are still able to achieve translational errors of below 0.5 m on
our estimated trajectory. This shows that we are still able to
learn reasonable parameters of our system even without any
groundtruth and quite noisy measurements.
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Fig. 3. Experiments B & C - (a) Measurement outliers (purple) overlaid with
the groundtruth trajectory (blue). (b) Translational errors for the static covariance
method on a portion of the test set containing measurement outliers (purple)
when training with and without outliers (Experiments B in blue and C in orange,
respectively).

B. Training and Testing With Measurement Outliers

In Experiment B, we show that estimating time-varying
covariances for each of our measurements with an IW prior
results in outlier rejection. We artificially introduce outliers in
our training and test set using the following method. With 5%
probability, we apply the following perturbation to the actual
pose measurement:

Toutlier = exp(ξ∧)Tmeas, (38)

with ξ ∈ R6 ∼ U(−200, 200).
Fig. 3(a) shows an example of the measurement outliers on

sequence 3 of our test set.
We now seek to compare the performance between the cases

where we have treated the measurement covariance, w, as a
static parameter to be learned, and where we have treated the
measurement covariance at each time as a random variable and
learn the parameter, Ψ, of the IW prior.

The loss functional corresponding to the static measurement
covariance is

V (q′|w,Qc) = Eq′ [φ
p(x|Qc) + φm(x|w)]

+
1

2
ln
(|Σ−1|) , (39)

where as for the IW prior on the measurement covariances, the
loss functional is

V (q′|Υ,Ψ,Qc) = Eq′ [φ
p(x|Qc) + φm(x|Υ)

+ φw(Υ|Ψ)] +
1

2
ln
(|Σ−1|) . (40)

Table III shows the resulting translational errors on our test
trajectory. We can see that without the IW prior, the estimation
framework fails to reject outliers, resulting in an overall transla-
tion error of above 5 m. However, using the IW prior, we see that
the error is only 0.2365 m. When we did not have any outliers
at all in our data, the error was 0.2335 m (Table I), meaning
the average translational error on our test set only increased by
0.003 m.

From this experiment, we can see that using the IW prior
allows for the handling of outliers in both training and testing
due to our ability to estimate measurement covariances.

TABLE III
EXPERIMENTS B & C - TRANSLATIONAL ERRORS USING A STATIC

MEASUREMENT COVARIANCE COMPARED TO USING AN IW PRIOR WHEN WE

HAVE OUTLIERS IN OUR TEST SET. IN EXPERIMENT B, WE TRAIN WITH

OUTLIERS AND IN EXPERIMENT C, WE TRAIN WITHOUT OUTLIERS

C. Training Without and Testing With Measurement Outliers

In Experiment B, we included outlier measurements in both
the training and test set and saw that the IW prior allows us
to achieve comparable errors to the case with no outliers. To
see if this still holds even when we do not see any outliers in
training, in Experiment C we train without any outliers but test
with outliers. As the only difference between Experiment B and
Experiment C is that we now train without any outliers, the loss
functionals remain the same.

Table III shows that the resulting translational errors are
again very high when we simply learn a static measurement
covariance, but that we can still achieve reasonably low errors
when learning the parameters of our IW prior. By incorporating
the IW prior instead of learning a static measurement covariance,
we decrease error from above 6 m to 0.2355 m. Compared to
the error of 0.2335 m when there are no outliers in our test set
(Table I), we see an increase in error of only 0.002 m with the
IW prior. This experiment shows that we can indeed still benefit
from the outlier rejection scheme that comes with using an IW
prior even when there are no outliers in our training set.

Comparing the results from Experiments B and C, we see that
in both cases, incorporating the IW prior helps to reject outliers
in the test set, regardless of whether there were any outliers
in the training set. While errors for the static measurement
covariance were similarly poor in both experiments, we note
that the concentration of the errors are different as shown in
Fig. 3(b). What we see is that when we train without any outliers
(Experiment C), the errors are concentrated where the outliers
are in the test set. This result is unsurprising given that no
outliers were seen in training, which in turn is reflected in our
learned noise model parameters. When we train with outliers
(Experiment B), the errors still peak around the outliers, but are
more spread out over the entire trajectory. Regardless of this
difference, we can see that using the IW prior is robust to both
cases and still results in low translational errors.

D. Bicocca Dataset

We also evaluate our method on the Bicocca 25b dataset
from [31], which provides a set of odometry and loop closure
constraints (represented as a pose graph) created from a bag of
words place recognition system run on data collected during the
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Fig. 4. (a) Odometric trajectory (blue) with loop closures (red). (b) Optimized
trajectory using IW prior (blue), static covariance learning (green) and no
covariance learning (yellow) overlaid with groundtruth (red).

TABLE IV
AVERAGE TRAJECTORY ERROR AS CALCULATED BY THE RAWSEEDS TOOLKIT

Rawseeds project [32]. Fig. 4(a) shows the loop closures in red,
including many false ones. We optimize this pose graph using
our framework and show the results in Fig. 4(b). We see that our
framework with the IW prior (blue) is closest to the groundtruth
(red) while learning a static covariance (green) and no covariance
learning (yellow) are much more negatively affected by the false
loop closures. Table IV also shows the Average Trajectory Error
as calculated by the Rawseeds Toolkit for each of the methods.

VI. CONCLUSION

In this letter, we presented parameter learning for ESGVI.
We showed that our parameter learning method does not need
groundtruth, and is robust to noisy measurements and outliers.
This is desirable because in many cases, we do not have a
way of obtaining accurate groundtruth of robot trajectories. The
implication of our work is that we now have a framework for
estimating robot parameters based solely on whatever sensors
are available. We experimentally demonstrated our method on a
36 km vehicle dataset.

However, we still assumed two parameters to be known: ν, the
DOF parameter for the IW distribution, and β, the determinant
constraint on the scale matrix, Ψ. For future work, we will
investigate how to also learnν and eliminate the need to constrain
the determinant of Ψ to be a constant, β.

In this work, we chose to learn the noise model parameters as
a useful practical application of our framework. However, our
future intention with ESGVI is to learn entire robot models that
are represented by rich modelling techniques, such as DNNs.
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