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A Data-Driven Motion Prior for Continuous-Time
Trajectory Estimation on SE(3)

Jeremy N. Wong , David J. Yoon , Angela P. Schoellig , and Timothy D. Barfoot

Abstract—Simultaneous trajectory estimation and mapping
(STEAM) is a method for continuous-time trajectory estimation
in which the trajectory is represented as a Gaussian Process (GP).
Previous formulations of STEAM used a GP prior that assumed
either white-noise-on-acceleration (WNOA) or white-noise-on-jerk
(WNOJ). However, previous work did not provide a principled way
to choose the continuous-time motion prior or its parameters on a
real robotic system. This letter derives a novel data-driven motion
prior where ground truth trajectories of a moving robot are used
to train a motion prior that better represents the robot’s motion.
In this approach, we use a prior where latent accelerations are
represented as a GP with a Matérn covariance function and draw
a connection to the Singer acceleration model. We then formulate
a variation of STEAM using this new prior. We train the WNOA,
WNOJ, and our new latent-force prior and evaluate their perfor-
mance in the context of both lidar localization and lidar odometry
of a car driving along a 20 km route, where we show improved state
estimates compared to the two previous formulations.

Index Terms—SLAM, localization.

I. INTRODUCTION

I T IS common for state estimation in robotics to be carried
out in discrete time, which is an approximation of the robot’s

continuous-time trajectory. This approximation is sufficient in
many cases, but there are situations when it is inadequate. Exam-
ples include using continuous scanning-while-moving sensors
(e.g., rolling-shutter camera or scanning laser rangefinder), or
high-rate asynchronous sensors. In both these cases, the naive
discrete approach of including a state at every measurement time
can be expensive. Many people have attempted to address this
problem by using ad-hoc assumptions about the smoothness
of the trajectory in order to use a smaller number of discrete
states and infer motion in between. However, smoothness can be
built into the estimation exactly using a continuous-time motion
prior, thus gaining the ability to incorporate measurements at any
time along the trajectory without introducing additional states at
those measurement times. Furthermore, continuous-time tech-
niques benefit from the advantage that posterior estimates can be
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Fig. 1. While the white-noise-on-jerk prior can be formulated such that its
mean matches that of any white-noise-on-acceleration prior, their covariances
can never be the same (top). The Singer prior is a richer prior that can represent
but is not limited to both types of trajectories (bottom).

queried at any time along the trajectory, not just at measurement
times.

Current formulations of the continuous-time estima-
tion framework employ either a white-noise-on-acceleration
(WNOA) [1]–[3] or white-noise-on-jerk (WNOJ) [4], [5] motion
prior, which assumes the prior mean is constant velocity or
constant acceleration, respectively. The WNOJ prior can be
formulated so that its mean matches the mean of any WNOA
prior. However, the two motion priors will always have different
covariances as seen in Fig. 1 (top). Thus the explicit choice of
either one of these priors is limiting and we argue that it is much
more principled to learn the parameters of a richer motion prior
based on data.

With this in mind, we derive a motion prior that represents
latent accelerations as a Gaussian Process (GP) with a Matérn
covariance function and learn the hyperparameters of this GP
from noisy ground truth data. Our derivation starts by transform-
ing the GP into a stochastic differential equation (SDE), which
we show to be equivalent to the Singer acceleration model [6].
This motion prior can represent but is not limited to both WNOA
and WNOJ trajectories as seen in Fig. 1 (bottom).

We then show that on a real world lidar dataset with over 20 km
of driving, our motion prior outperforms the WNOA and WNOJ
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priors, which have also been properly trained using ground truth
data.

The contribution of this letter is two-fold. The first is a prin-
cipled method for hyperparameter training of continuous-time
motion priors in SE(3). This opens up the possibility of using
far richer motion priors with more parameters. This leads to
the second part of the paper, the derivation of a new richer
data-driven motion prior.

In Section II we review previous work. An overview of the
existing motion priors used for continuous-time estimation is
provided in Section III. Section IV presents the derivation of a
latent-force prior that we show to be equivalent to the Singer
acceleration model. Section V outlines the method that we take
to train motion prior hyperparameters given only noisy ground
truth measurements of the states. An experimental comparison
of the WNOA, WNOJ, and the latent-force prior is presented
in Section VI. In Section VII we give concluding remarks and
discuss future work.

II. RELATED WORK

Most estimation problems are carried out in discrete time
and need to use some ad-hoc interpolation scheme to recover a
continuous trajectory. One such technique is using cubic splines
as in [7] and [8]. However, the specific interpolation scheme
chosen encodes certain assumptions about the robot motion that
may not be accurate. By explicitly formulating the problem
in a continuous-time framework, the need to make these often
arbitrary smoothness assumptions is eliminated.

Tong et al. [9], [10] showed that batch continuous-time es-
timation can be carried out by representing the trajectory as a
Gaussian process. Barfoot et al. [11] extended the GP approach
to STEAM, using a class of linear time-invariant (LTI) stochastic
differential equations (SDEs). This resulted in an inverse kernel
matrix that is exactly sparse, making the solution more com-
putationally efficient. Anderson and Barfoot [1] extended this
work in SE(3) to enable continuous-time estimation of bodies
undergoing translations and rotations in three-dimensional space
using a white-noise-on-acceleration (WNOA) prior. Tang et al.
[4] further extended this by using a white-noise-on jerk (WNOJ)
prior in SE(3). STEAM has been used in applications such as
motion planning [2], crop monitoring [12], and visual teach and
repeat [13].

Both WNOA and WNOJ models are commonly used in tar-
get tracking [14]–[17]. These models incorporate assumptions
about the motion of the target that may not be realistic but are
attractive due to their simplicity. When white-noise models are
insufficient, Markov process models are used where the control
input is modelled as a Markov process instead of a white-noise
process. One example is the Singer acceleration model [6].

Another way to view modelling is through the use of latent-
force models, which combine mechanistic and data-driven ap-
proaches [18]. In latent-force models, typically an overly sim-
plistic mechanistic model of the system is used but augmented
with latent forces represented as a GP. The idea is that when
training latent-force models through data, the GP can model
interactions not captured by the mechanistic model. Thus the
GP must be rich enough to fully learn these interactions. In the
case of the WNOA and WNOJ prior, the GP used is simply
a white-noise process, which struggles with representational
power. Thus tuning the hyperparameters of WNOA and WNOJ
models alone do not give the model enough flexibility to learn
a good representation through data.

Hartikainen and Särkkä [19] show how Gaussian process
regression models can be restated as linear-Gaussian state space
models. In particular, they show that the Matérn family of
covariance functions can be exactly reformulated as a SDE with
white noise. Furthermore, these Gaussian process latent force
models can be reformulated as a single linear SDE driven by
white noise [20], which has the form of priors in which we are
interested.

Using latent-force models in state estimation has been done
before but in a discrete-time estimation framework and where
the states were limited to be in Rn [21]–[23]. Regarding hy-
perparameter training for Gaussian process models, it is usually
carried out by minimizing the negative log likelihood of data
given some parameters but this approach has only been carried
out in Rn [24], [25].

To the best of our knowledge, the derivation we present in
this letter is the first attempt at modelling the trajectory using
a latent-force model with a Matérn covariance in the context
of continuous-time trajectory estimation on SE(3) and using a
data-driven approach to estimate its parameters.

III. EXISTING CONTINUOUS-TIME MOTION PRIORS

In this section, we show the details of the existing WNOA and
WNOJ motion priors used in STEAM. In order to ensure that
estimation can be done efficiently, we are interested in motion
priors from a class of linear time-invariant (LTI) stochastic
differential equations (SDEs) of the form

γ̇(t) = Aγ(t) +Bu(t) +Lw(t),

w(t) ∼ GP(0,Qcδ(t− t′)), (1)

where γ(t) is the state at timestep t, u(t) is a known input, and
w(t) is a zero-mean, white-noise GP with power spectral density
matrix, Qc. If u(t) = 0, the solution for the mean function is

γ̌(τ) = Φ(τ, tk)γ̌(tk), (2)

where γ̌ is the prior mean, and Φ(τ, tk) is the state transition
function from timestep tk to timestep τ . We use GP priors
because of their rich mathematical connection to motion models
and the propagation of uncertainty is well understood.

A. WNOA Prior for SE(3)

The WNOA prior originally used by STEAM is defined as
follows:

Ṫ(t) = �(t)∧T(t)

�̇ = w′(t), w′(t) ∼ GP(0,Q′cδ(t− t′)), (3)

where T(t) is the pose expressed as a transformation matrix,
�(t) is the body-centric velocity and the operator,∧, transforms
an element of R6 into a member of Lie algebra, se(3). The state
is

x(t) = {T(t),�(t)}. (4)

The SDE in (3) is nonlinear and so cannot be cast into the form
of (1) but [1] defines the local state variables

ξi(t) = ln(T(t)T−1i )∨, ti ≤ t ≤ ti+1 (5)

ξ̇i(t) = J (ξi(t))
−1�(t), (6)

where the operator,∨, converts a member of se(3) to ξi(t) ∈ R6

and J (ξ) ∈ R6×6 is the left Jacobian of SE(3).
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These local variables can be used to define a sequence of local
priors where the prior at each timestep is a LTI SDE in the form
described in (1) with

γi(t) :=

[
ξi(t)

ξ̇i(t)

]
, A =

[
0 1

0 0

]
, L =

[
0

1

]
. (7)

This local prior is a good approximation of the global non-linear
prior when ξi(t) is small or when velocity is near constant.

B. WNOJ Prior for SE(3)

The WNOJ prior from [4] estimates the global state

x(t) = {T(t),�(t), �̇(t)}, (8)

where �̇(t) is the body-centric acceleration. Using the idea of
local pose variables, [4] defines a sequence of local priors as a
LTI SDE in the form of (1):

γi(t) :=

⎡
⎣ξi(t)ξ̇i(t)

ξ̈i(t)

⎤
⎦ A =

⎡
⎣0 1 0

0 0 1

0 0 0

⎤
⎦ , L =

⎡
⎣00
1

⎤
⎦ . (9)

The relationship between ξi(t) and ξ̇i(t) and global state vari-
ables are shown in Equations (5) and (6). The relationship
between ξ̈i(t) and global state variables as shown in [4] is

ξ̈i(t) ≈ −
1

2
(J (ξi(t))

−1�(t))��(t) +J (ξi(t))
−1�̇(t),

(10)

where the approximation holds as long as ξi(t) is small.

IV. LATENT-FORCE MODEL GP PRIOR

In the new motion prior that we derive, we represent the latent
accelerations that the robot undergoes in each of its 6 degrees of
freedom as a GP with a Matérn covariance function:

ξ̈i(t) ∼ GP(0,Kv(t, t
′)). (11)

For our prior, we choose v = 1
2 , which yields the exponential

covariance function defined as

K1/2(t, t
′) = σ2 exp(−�−1 |t− t′|), (12)

where �, the length-scale and σ2, the variance, are diagonal
matrices in R6×6, with each diagonal term representing one of
the 6 degrees of freedom.

Following the approach of [19], we can express the GP
representing acceleration as the SDE

...
ξ i(t) = −αξ̈i(t) +w(t),

w(t) ∼ GP(0,Qcδ(t− t′)), (13)

where α = �−1 and Qc = 2ασ2.
Now following the approach of [20], the model can be aug-

mented to form a joint model in the form of (1) that includes the
states ξi(t) and ξ̇i(t):

γi(t) :=

⎡
⎣ξi(t)ξ̇i(t)

ξ̈i(t)

⎤
⎦ A =

⎡
⎣0 1 0

0 0 1

0 0 −α

⎤
⎦ , L =

⎡
⎣00
1

⎤
⎦ . (14)

The global state remains the same as in (8).

Our new motion prior now includes length-scale and variance
as hyperparameters embedded in α and Qc, respectively. This
allows much greater flexibility in our motion prior compared
to the previous WNOA and WNOJ formulations that did not
have a tunable length-scale parameter. In fact, WNOA and
WNOJ are special cases of this motion prior. WNOA is the
case when length-scale approaches 0, meaning accelerations are
uncorrelated. WNOJ is the case when length-scale approaches
∞, meaning that accelerations are correlated to accelerations at
every other time.

This particular parameterization of the motion prior collapses
to the exact form of the Singer acceleration model in [6]. As
such, we will be referring to this prior as the Singer prior. In this
work, we chose this particular Matérn covariance function but
we could potentially use other covariance functions that have
more representational power.

A. Cost Terms in Optimization

The cost function for our estimator consists of the prior and
measurement cost terms. These come from the negative log
likelihood of the data given the measurements and the hyper-
parameters:

J = − log p(x|y,Qc,α) =
∑
i

Ji

︸ ︷︷ ︸
prior

+
∑
j

Jj

︸ ︷︷ ︸
measurement

, (15)

where x is the state, y is the measurements, and Qc and α are
the hyperparameters. The optimal state estimate is then

x̂ = arg min
x

J(x), (16)

where the state x consists of the trajectory poses, velocities and
accelerations, as defined in (8). The optimization is solved using
Gauss-Newton with an SE(3) perturbation scheme [26], [27] to
update the states:

Top,i ← exp(δξ∧i )Top,i,

�op,i ←�op,i + δ�i,

�̇op,i ← �̇op,i + δ�̇i,

(17)

where (·)op is the operating point. Each prior cost term is

Ji =
1

2
eTi Q

−1
i ei. (18)

The formulation of the prior error terms, ei, and covariances,
Qi, for the WNOA and WNOJ prior can be found in [1] and [4].
In the next section, we show the derivations for our Singer prior.

B. Prior Error Term

The state transition function is

Φ(t, ti) = exp(AΔti)

=

⎡
⎣1 Δti1 (αΔti − 1+ exp(−αΔti))α

−1

0 1 (1− exp(−αΔti))α
−1

0 0 exp(−αΔti)

⎤
⎦ .

(19)
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Using Equations (5), (6) and (10), the local state variables can
be written in terms of global state variables as

γi(ti) =
[
0T �T

i �̇T
i

]T
,

γi(ti+1) =

⎡
⎣ ln(Ti+1,i)

∨

J −1i+1,i�i+1

− 1
2 (J −1i+1,i�i+1)

��i+1 +J −1i+1,i�̇i+1

⎤
⎦ .

(20)

Now in terms of global state variables, the prior error term is

ei = γi(ti+1)−Φ(ti+1, ti)γi(ti) =
[
eTp eTv eTa

]T
, (21)

where

ep = ln(Ti+1,i)
∨ − (ti+1 − ti)�i −C1�̇i,

ev = J −1i+1,i�i+1 −�i −C2�̇i,

ea = −1

2
(J −1i+1,i�i+1)

��i+1 +J −1i+1,i�̇i+1 −C3�̇i,

(22)

and we have defined

C1 = α−2(α(ti+1 − ti)− 1+ exp(−α(ti+1 − ti))),

C2 = α−1(1− exp(−α(ti+1 − ti))),

C3 = exp(−α(ti+1 − ti)). (23)

The covariance matrix can be computed as

Qi(t) =

∫ Δti

0

exp(A(Δti − s))LQcL
T exp(A(Δti − s))T ds

=

⎡
⎣2ασ2 0 0

0 2ασ2 0

0 0 2ασ2

⎤
⎦
⎡
⎣Q11 Q12 Q13

QT
12 Q22 Q23

QT
13 QT

23 Q33

⎤
⎦ ,

(24)

where

Q11 =
1

2
α−5(1− e−2αΔti + 2αΔti +

2

3
α3Δt3i

− 2α2Δt2i − 4αΔtie
−αΔti),

Q12 =
1

2
α−4(e−2αΔti + 1− 2e−αΔti

+ 2αΔtie
−αΔti − 2αΔti +α2Δt2i ),

Q13 =
1

2
α−3(1− e−2αΔti − 2αΔtie

−αΔti),

Q22 =
1

2
α−3(4e−αΔti − 3− e−2αΔti + 2αΔti),

Q23 =
1

2
α−2(e−2αΔti + 1− 2e−αΔti),

Q33 =
1

2
α−1(1− e−2αΔti).

C. Querying the Trajectory

Because the prior we formulated is in continuous time, we
now have the advantage of being able to interpolate for a state
estimate at any given time. Suppose we have states at times ti and

ti+1 but want to query the state at time τ where ti < τ < ti+1.
This can be done using the results from [1]:

⎡
⎣ξi(τ)ξ̇i(τ)

ξ̈i(τ)

⎤
⎦ = γi(τ) = Λ(t)γi(ti) +Ω(t)γi(ti+1), (25)

where Λ(τ) ∈ R18×18 and Ω(τ) ∈ R18×18 are [11]

Λ(τ) = Φ(τ, ti)−Ω(τ)Φ(ti+1, ti),

Ω(τ) = Qi(τ)Φ(ti+1, τ)
TQi(ti+1)

−1.
(26)

Using the relationship between the local and global state vari-
ables, we have that

Tτ = exp(ξi(τ))
∨Ti,

�τ = J (ξi(τ))ξ̇i(τ). (27)

V. HYPERPARAMETER TRAINING

We developed a method for hyperparameter training from
data in SE(3). Even after applying this principled method of
choosing hyperparameters for our WNOA and WNOJ priors, we
found that these priors were limiting in the type of trajectories
that could be accurately represented. As such, we proposed a
new motion prior in Section IV that has more representational
power, but more parameters. The larger number of parameters
greater highlights the importance of a principled hyperparameter
training method, which we show how to do for SE(3) in this
section. We show the hyperparameter training method for the
Singer prior but the WNOA and WNOJ priors were also trained
with data in a similar way.

The standard approach for hyperparameter training is to min-
imize the negative log likelihood of the data given the parame-
ters [24], [25]:

− log p(y|Qc,α) =
1

2
(y − x̌)TP−1(y − x̌)

− 1

2
log |P|+ n

2
log 2π,

(28)

P = P̌(Qc,α) + σ2
n1, (29)

where y is a stacked vector of ground truth measurements with
additive noise N (0, σ21), x̌ is a stacked vector of the mean
function evaluated at the ground truth measurement times and
P̌ is the covariance matrix associated with x̌ and generated using
the hyperparameters, Qc and α.

This cost function in this form does not lend itself nicely to
training since our states are no longer vectors, but are in SE(3).
However, we can instead write the objective function of the prior
in factor form as

− log p(y|Qc,α) =
1

2
eTQ−1e+

1

2
log |Q|+ n

2
log 2π,

(30)

where e is a stacked vector of error terms from (21) composed
with the ground truth measurements and Q is the block diago-
nally stacked Qi terms from (24).

By making this simple modification to the objective function,
we are able to train hyperparameters in SE(3) with noise-free
ground truth measurements. However, the process of incorporat-
ing noisy ground truth measurements in SE(3) is slightly more
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involved. We must incorporate the noise coming from the mea-
surements to obtain a new value of Q to be used in the objective
function in (30), otherwise the noise in the measurements will
be attributed to the process noise thus inflating the estimate of
Qc.

Incorporating noise into the error equations and taking the
approximation that process noise, measurement noise, and
timesteps are small, we see that

ep ≈ εpi+1
− εpi

− (ti+1 − ti)εvi
−C1εai

+ ξpi
, (31)

ev ≈ εvi+1
− εvi

−C2εai
+ ξvi

, (32)

ea ≈ εai+1
−C3εai

+ ξai
, (33)

where

⎡
⎣εpi

εvi

εai

⎤
⎦ = N

⎛
⎝0,

⎡
⎣R

i
pp Ri

pv Ri
pa

Ri
vp Ri

vv Ri
va

Ri
ap Ri

av Ri
aa

⎤
⎦
⎞
⎠ (34)

is the noise on the measurements at timestep i and

⎡
⎣ξpi

ξvi

ξai

⎤
⎦ = N

⎛
⎝0,

⎡
⎣Q

i
pp Qi

pv Qi
pa

Qi
vp Qi

vv Qi
va

Qi
ap Qi

av Qi
aa

⎤
⎦
⎞
⎠ (35)

is the process noise between timestep i and i+ 1.
We now have that

Cov(epi
, epi

) = Ri+1
pp +Ri

pp +C1R
i
aaC

T
1

+ (ti+1 − ti)R
i
pv + (ti+1 − ti)R

i
vp

+ (ti+1 − ti)
2Ri

vv +Qi
pp,

Cov(epi
, evi

) = (ti+1 − ti)R
i
vv +C1R

i
aaC

T
2

+ Ri+1
pv +Ri

pv +Qi
pv,

Cov(epi
, eai

) = C1R
i
aaC

T
3 +Qi

pa,

Cov(evi
, evi

) = Ri
vv +Ri+1

vv +C2R
i
aaC

T
2 +Qi

vv,

Cov(evi
, eai

) = C2R
i
aaC

T
3 +Qi

va,

Cov(eai
, eai

) = C3R
i
aaC

T
3 +Ri+1

aa +Qi
aa,

Cov(epi+1
, epi

) = −Ri+1
pp − (ti+2 − ti+1)R

i+1
vp ,

Cov(epi+1
, evi

) = −(ti+2 − ti+1)R
i+1
vv −Ri+1

pv ,

Cov(epi+1
, eai

) = −C1R
i+1
aa ,

Cov(evi+1
, epi

) = −Ri+1
vp ,

Cov(evi+1
, evi

) = −Ri+1
vv ,

Cov(evi+1
, eai

) = −C2R
i+1
aa ,

Cov(eai+1
, eai

) = −C3R
i+1
aa .

Fig. 2. The Buick test vehicle used for data collection. The vehicle is equipped
with a Velodyne VLS-128 lidar, and an Applanix POS-LV system.

TABLE I
NUMBER OF PARAMETERS COMPARED WITH NUMBER OF ITERATIONS TO

CONVERGENCE FOR EACH OF THE THREE MOTION PRIORS

Putting this all together, we arrive at the final expression for Q
when our ground truth measurements are noisy:

Q =

⎡
⎢⎢⎢⎢⎣

Σ0,0 ΣT
1,0

Σ1,0 Σ1,1 ΣT
2,1

Σ2,1
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎦ , (36)

where

Σi,j =

⎡
⎣ Cov(epi

, epj
) Cov(epi

, evj
) Cov(epi

, eaj
)

Cov(epi
, evj

)T Cov(evi
, evj

) Cov(evi
, eaj

)

Cov(epi
, eaj

)T Cov(evi
, eaj

)T Cov(eai
, eaj

)

⎤
⎦ .

(37)

Because our final expression for Q is block tridiagonal, we are
still able to exploit sparsity in hyperparameter training when
evaluating our cost function.

VI. EXPERIMENTAL VALIDATION

To evaluate our motion priors, we will be working with a
dataset consisting of 36 km of driving with both Velodyne
VLS-128 lidar data and ground truth from an Applanix POS-LV
system. The experimental setup also includes hardware time
synchronization between the lidar and the POS-LV system. The
test vehicle used for the dataset collection is shown in Fig. 2.

The dataset consists of Route A,1 which is 16 km long, and
Route B,2 which is 20 km long. Each of the three motion priors
were trained using the method from Section V with the POS
ground truth data from Route A. Table I shows the number of
parameters for each model along with the number of iterations it
took for hyperparameter training to converge. While the Singer
model takes the most iterations to converge, hyperparameter
training is a procedure with an upfront cost that only needs to
be done once for each robotic platform.

1Map available at: https://tinyurl.com/rrjgxaj
2Map available at: https://tinyurl.com/r5m78nq
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TABLE II
TRANSLATIONAL ERRORS EVALUATED ON LIDAR LOCALIZATION ALONG

ROUTE B FOR THE THREE MOTION PRIORS AND THE REDUCTION IN ERROR

ACHIEVED BY THE SINGER PRIOR

A. Lidar Localization

We perform lidar localization as a batch trajectory optimiza-
tion using each of the three trained motion priors on Route B, our
20 km long test trajectory. We use data from one of the runs along
Route B to create a map of the area and then use a different run
of Route B to perform lidar localization against the previously
created map. We obtain 6-DOF pose estimates along with their
covariances at 10 Hz from a lidar-only localization pipeline
provided by Applanix. Because this pipeline is a commercial
product that has been vigorously validated internally, we can
assume that the covariance estimates are reasonable. We treat
the pose estimates from lidar localization as pose measurements
in our continuous-time estimator where we incorporate one of
our motion priors. To ensure a fair comparison, all aspects of the
estimator except for the motion prior are kept the same.

Since part of evaluating a motion prior is the quality of
interpolation, we also interpolate at the ground truth timesteps
since they occur more frequently than the lidar localization
pose measurements. This also allows us to directly calculate
localization errors.

We break down the test trajectory into 10 sequences and
evaluate the performance of lidar localization on each of the
sequences. The translational errors are shown in Table II where
we see that the Singer prior results in an overall reduction of
error by 5.64% compared to WNOA and 1.47% compared to
WNOJ.

The errors in longitudinal velocity are shown in Table III,
where we see that the Singer prior results in an overall reduction
of error by 22.18% compared to WNOA and 2.32% compared
to WNOJ.

Because the pose measurements we obtain from lidar local-
ization are reliably accurate relative to ground truth, we perform
another experiment where we decrease the frequency at which
we receive pose measurements from lidar localization but use the
same motion prior hyperparameters trained from ground truth
measurements every 0.1 s. In our new experiment, instead of
receiving pose measurements every 0.1 s from lidar localization,
we increase measurement dropout to 1 s and all the way up to 5 s.
The results from this experiment are shown in Fig. 3. With a 5 s
measurement dropout, the Singer prior has a 29.57% reduction
in translational error compared to WNOA and 67.89% compared
to WNOJ. The Singer prior also decreased longitudinal velocity
error by 7.25% for WNOA and 15.38% for WNOJ.

TABLE III
LONGITUDINAL VELOCITY ERRORS EVALUATED ON LIDAR LOCALIZATION

ALONG ROUTE B FOR THE THREE MOTION PRIORS AND THE REDUCTION IN

ERROR ACHIEVED BY THE SINGER PRIOR

Fig. 3. Estimation errors for each of the three priors as measurement dropout
is increased.

While the WNOJ prior outperforms the WNOA prior and is
closely comparable to the Singer prior without measurement
dropout, Fig. 3 shows it is not robust to increasing measurement
dropout. This is because when the model chosen to represent
trajectories cannot sufficiently represent the true model, hyper-
parameter training is more sensitive to the frequency of the
ground truth measurements. The trained parameters work the
best when the frequency of the ground truth training data is close
to the frequency of the measurement test data. It was noted in [4]
that the WNOJ prior is more sensitive to the hyperparameters
chosen than the WNOA prior, which is consistent with our
findings that the effect of measurement dropout on the WNOA
prior is not as pronounced.

It is well known that if a model is too expressive, it may overfit
to the training data and generalize poorly to new data. However,
while the Singer model is more expressive, it is capable of a
better fit to typical vehicle trajectories without overfitting to the
training data. As a result, we see that the Singer model is able to
maintain its performance advantage over the WNOA prior. Thus
another advantage of the Singer prior over the WNOJ prior is
that it is more robust to the frequency of measurements, which
is desirable in a continuous-time estimation framework where
the measurement frequency of the estimator does not need to be
known beforehand.

As stated in Section IV, the WNOA prior assumes accelera-
tions are uncorrelated with time while the WNOJ prior assumes
that accelerations are correlated to accelerations at every other
time. Both these assumptions are unrealistic because typical
robot maneuvers will have accelerations correlated for a certain
period of time (such as a car executing a turn). As such, the Singer
prior allows the length scale of acceleration to be adjusted based
on what we learn from data.
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TABLE IV
PERCENT TRANSLATION ERRORS EVALUATED ON LIDAR ODOMETRY ALONG ROUTE B AND THE REDUCTION IN ERROR ACHIEVED BY THE SINGER PRIOR

Fig. 4. The estimator using the Singer prior keeps the estimates within the
lane boundaries while the WNOA and WNOJ estimates deviate outside.

Fig. 5. The estimator using the Singer prior is able to better capture the peaks
in longitudinal velocity which represent changes in acceleration.

Fig. 4 shows a curved portion of sequence 5 with a 4 s mea-
surement dropout, where dotted red lines indicate the boundary
at which the estimate of the car would cross the lane markings.
We see that the Singer model is able to keep the estimate
within the lane markings while both the WNOA and WNOJ
estimates deviate outside of the markings for a short period of
time.

Taking a look at Fig. 5, which shows the estimated velocities
for another section of sequence 5 with a 4 s measurement
dropout, we can see how the velocity estimates are much better
using the Singer prior as the peaks are better matched to the
ground truth. These peaks represent changes from acceleration to
deceleration, which occur frequently in urban driving scenarios.
The WNOA prior struggles the most to capture these motions
while the Singer prior does the best.

B. Lidar Odometry

We also evaluate our continuous-time motion priors with
their trained hyperparameters on Route B, using the lidar-only
odometry implementation from [28] and [4]. In this approach, a
sliding-window is used rather than a batch optimization, where

Fig. 6. 3D plot of odometry estimates for sequence 2 show that the estimator
using the Singer prior is able to reduce drift in the z direction.

each window contains a reference point cloud consisting of 3
individual point clouds (where each is a single revolution of the
lidar) and 2 target point clouds we are trying to align. We make
use of the continuous-time interpolation scheme to handle point
cloud motion distortion. We choose not to use the KITTI dataset
because the point clouds have already been processed by the
dataset authors to compensate for motion distortion.

Because of numerical instabilities, the WNOJ estimator in [4]
required a patch that reverted to using a WNOA prior for a
single window if any abnormalities were detected, such as a
sudden increase in acceleration. We run lidar odometry with
and without the patch and report results for both. Table IV
shows the average percent translation errors over path segments
of lengths 100, 200, . . . , 800meters for each sequence, the same
evaluation metric used in the KITTI odometry benchmark [29].
The WNOJ estimator without the patch failed for sequences 3,
4, and 9. Excluding these sequences, overall, the Singer prior
decreases error by 1.35% from the WNOA prior and 0.14%
from the WNOJ prior without the patch.

Fig. 6 shows the lidar odometry estimates for each of the
motion priors for sequence 2, where the estimates for the WNOJ
prior are without the patch. It can be seen that the estimator with
the Singer prior reduces drift compared to the other two priors,
most notably in the z direction.

We observe that the improvements in estimator accuracy with
our lidar odometry experiment are not as significant compared
to our lidar localization experiment. One major difference is that
in lidar odometry, while the hyperparameters of the motion prior
were trained in a principled way, the measurement covariances
of the point cloud alignment, which are also hyperparameters
of the estimator, were hand-picked. On the other hand, the pose
measurements in lidar localization obtained from the Applanix
pipeline have covariances attached, which were estimated in a
principled manner.

It should be noted that the estimator using the Singer prior
is able to run on all sequences without any patches, showing
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its increased robustness. On all sequences, the Singer prior
decreases error overall by 0.82% from the WNOA prior and
maintains a very similar performance as the WNOJ prior, which
used the patch.

VII. CONCLUSIONS AND FUTURE WORK

In this letter, we showed that a continuous-time trajectory
estimator in SE(3) using a Singer prior trained with data
outperforms the existing white-noise-on-acceleration and white-
noise-on-jerk priors also trained with data. It also exhibits more
robustness compared to the WNOJ prior in the presence of
extended measurement dropouts. This is because our hyperpa-
rameter training method allows us to use richer priors with more
parameters to better fit the type of trajectories that our robot
undergoes.

In our lidar odometry experiment, we did not have a principled
way to choose the measurement covariances for our point cloud
alignment. In the future, we can explore better methods to iden-
tify these measurement covariances to improve our estimator.
Examples of work that estimate the covariance associated with
point cloud alignment include [30] and [31].

In modelling the trajectories, regardless of the prior, we have
represented each of the 6 pose variables as its own GP where
there are no correlations between pose variables. However, this
may not be the case as there can be correlations between them.
As such, we could try to learn the parameters Qc and α without
constraining them to be diagonal matrices.

We have also assumed that we have ground truth measure-
ments of all our states for the hyperparameter training. However,
on some robotic platforms, this may not be possible. An exten-
sion would be a hyperparameter training method in SE(3) that
only uses a subset of measurements.

Our new latent force model prior represented latent accelera-
tions as a Matérn covariance function with v = 1/2, which we
showed was equivalent to the Singer acceleration model. An-
other extension would be to explore the use of other covariance
functions and then perform hyperparameter training to estimate
their parameters.

Finally, we could consider incorporating control input data
when training our motion prior to be able to better capture the
dynamics of the robotic system.
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