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Abstract— Operating in rough, unstructured terrain is an
essential requirement for any truly field-deployable ground
robot. Search-and-rescue, border patrol and agricultural work
all require operation in environments with little established
infrastructure for easy navigation. This presents challenges
for sensor-based navigation such as vision, where erratic
motion and feature-poor environments test feature tracking
and hinder the performance of repeat matching of point
features. For vision-based route-following methods such as
Visual Teach and Repeat (VT&R), maintaining similar visual
perspective of salient point features is critical for reliable
odometry and accurate localisation over long periods. In this
paper, we investigate a potential solution to these challenges
by integrating a gimbaled camera with VT&R on a Grizzly
Robotic Utility Vehicle (RUV) for testing at high speeds and in
visually challenging environments. We examine the benefits and
drawbacks of using an actively gimbaled camera to attenuate
image motion and control viewpoint. We compare the use of a
gimbaled camera to our traditional fixed stereo configuration
and demonstrate cases of improved performance in Visual
Odometry (VO), localisation and path following in several sets
of outdoor experiments.

I. INTRODUCTION

In order for field-robotic systems to be effective tools in

applications such as search-and-rescue, border patrol and

agricultural work, the sensor systems they use must be

reliable in their intended environments. Rough, unstructured

terrain is a frequent encounter in these deployments, and can

challenge the ability of state-estimation algorithms that rely

on sensing with limited update rates and limited perspec-

tive, such as Light Detection And Ranging (LiDAR) and

vision. Additionally, vision-based systems generally rely on

complex, textured terrain invariant to environmental change

in order to accurately track features reliably over long time

periods. Generally, research demonstrations of visual navi-

gation on ground robots are heavily biased towards smooth

trajectories and carefully planned viewpoints to avoid poorly

textured surfaces in order to achieve robust results.

VT&R is a path-following algorithm capable of au-

tonomously driving a robot by following a previously tra-

versed route [1]. By extracting features taken from a monocu-

lar or stereo camera in the live view and matching them back

to those from a perspectively similar ‘teach’ view, relative

path tracking error can be computed and sent to a path

tracking controller to drive the robot along the path. Com-

putational complexity is constant with respect to map size,

1All authors are with the University of Toronto Institute
for Aerospace Studies (UTIAS), University of Toronto,
4925 Dufferin St, Ontario, Canada {michaelwarren,
angela.schoellig}@robotics.utias.utoronto.ca,
tim.barfoot@utoronto.ca

Fig. 1: The experimental setup for gimbal-stabilised VT&R: (1)
DJI Matrice 600 multirotor body, (2) DJI Ronin-MX 3-axis gimbal,
(3) StereoLabs Zed stereo camera, (4) Lenovo W541 Intel Core-i7
laptop, (5) Clearpath Grizzly RUV.

which enables long-distance operation, but the algorithm is

highly dependent on matching Speeded-Up Robust Features

(SURF) or other similar point features, and hence is sensitive

to both perspective and appearance change. One of the key

advantages of VT&R, however, is that it exploits certain

strengths of computer vision by keeping the viewpoint as

similar as possible between repeat traverses of a path, i.e. as

a crude version of active perception.

In extended field deployments, however, we have en-

countered situations that challenge our reliance on fixed

cameras to achieve the goal of true long-term autonomy.

These include areas of poor features directly in front of the

vehicle (such as smooth ashphalt, sandy or snow-covered

areas), where looking in an alternative direction would im-

prove matching performance. More regularly in our outdoor

deployments, driving on steep inclines causes the sky to

fill a large portion of the field of view, meaning feature

tracking is impossible. Finally, driving at high speeds results

in general VO failures on rough terrain due to loss of feature

tracks and poor localisation performance, which are highly
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coupled effects. For most activities, the robot is driven at

well below walking pace and is still subject to a significant

amount of careful perspective planning for reliable long-term

operation. Addressing these deficiencies will result in a more

reliable VT&R system and assist in bridging the gap between

research testing and real-world deployments.

This paper presents a gimbaled VT&R system, where

the on-board camera is stabilised against pitch, roll and

yaw motions, and actuated when necessary during the teach

pass to improve future localisation performance. We describe

our gimbaled system, including both hardware and software

changes, and we investigate the performance of this gimbaled

setup in comparison to our traditional fixed-camera VT&R

when performing high-speed manouvres and in perceptually

difficult situations.

The rest of this paper is outlined as follows: Section II

discusses related work in vision-based navigation, focusing

on the active perception problem, Section III describes the

VT&R methodology and the improvements implemented to

use a gimbaled system with the framework, Section IV

presents the experimental configuration and online testing

framework for the gimbaled VT&R algorithm and shows the

results of this testing. Section V discusses the impact of these

results and the paper is concluded in Section VI.

II. PREVIOUS WORK

A large and well-known number of visual feature de-

tectors and descriptors exist [2], [3], [4], [5] for robustly

matching keypoints in imagery. However, they are all subject

to performance degradation due to lighting and perspective

change. Many features have rotationally invariant options,

but their reliance on computing a consistent orientation

means matching often suffers when using these versions.

By restricting some dimensions of motion when matching,

such as driving on smooth ground or using active perception,

performance is often significantly improved. VT&R already

performs a crude form of active perception when repeating,

maintaining as similar a viewpoint for matching as possible.

This ensures perspective differences are minimised when

repeating a route.

For vision-only odometry systems, breaks in feature tracks

and erratic odometry due to rotational motion cause signifi-

cant error build up in pose estimates over long trajectories.

Visual-Inertial Navigation Systems (VINS) [6], [7], [8] can

address the problems caused by rough or extreme motions

very well by using complementary measurements to address

the deficiencies of each sensor. By updating state through

inertial measurements during breaks in visual tracking, ac-

curacy over very long and extremely irregular trajectories

are possible. Similarly, semi-dense methods such as SVO [9]

allow accurate pose tracking under fast motions through very

high frame-rates and the ability to track very weak features

on uniform surfaces.

However, both VINS and semi-dense odometry methods

do not solve the perspective problem and the inherent

brittleness of matching point features under perspective

change. Even non-feature-based methods are susceptible to

perspective changes (e.g., driving in a different lane) [10].

Topological methods that are more robust to appearance

change exist [11], but at the expense of metric localisation,

which is critical to the online performance of VT&R. Using

hardware can also be an effective way to improve robustness.

We have investigated this before by using multiple stereo

cameras [12] to look in opposing directions, countering

difficulties cause by sun-glare and uniform surfaces. Alter-

natively, omnidirectional or catadioptric cameras improve

invariance to perspective, but with an associated loss of

metricity and consequent accuracy.

Surprisingly, there is little (to our knowledge) published

work that includes active gimballing in the performance

of visual navigation on ground robots. Of course, visual

servoing is a large and related field that addresses the issue

of control to achieve a desired viewpoint of robot manipu-

lators [13], [14]. Several approaches apply these concepts to

mobile robots [15]. Our standard fixed-camera system can

be considered a form of visual servoing, where, given the

current pose and feedback from a visual sensor, a control

system actuates the plant to pass through a set of desired

viewpoints.

III. METHODOLOGY

In this paper, we use our well-established VT&R 2.0

software system as presented in [16] and extend this to

take advantage of the gimbaled camera. As in [16], the au-

tonomous driving algorithm consists of separate teach and re-

peat phases. During the teach phase, the vehicle is manually

driven by a human operator along a desired route, while the

VT&R algorithm performs passive visual odometry; inserting

the visual observations from this privileged experience into

a relative map of pose and scene structure. During the repeat

phase, without reliance on Global Positioning System (GPS)

or other sensors, the vehicle should autonomously re-follow

the route by visually localising to the map of the privileged

path. The vehicle repeats a path by sending high-frequency

localisation updates to a path-tracking controller [17]. In the

following sections, we describe our VT&R system extensions

to use a gimbaled camera setup.

A. Gimbaled Visual Odometry

During both teach and repeat phases, image pairs are

captured by a calibrated stereo camera at a frame rate of

∼15-20Hz (depending on setup), while the gimbal state (read

as roll-, pitch-, and yaw-axis angular positions) is captured

at approximately 30Hz. The gimbal state gives the pose

of the camera in the vehicle frame by compounding the

captured gimbal angles through a series of transforms with

known translations. We denote the vehicle-to-sensor (camera)

transform at time t as Tsv(t).

For each stereo image pair captured at time t, upright

SURF features are extracted, descriptors generated and land-

marks triangulated. Then, each feature in this latest frame-

pair is matched to the last keyframe via SURF descriptor

matching. The raw matches are then matched to landmarks

using Maximum Likelihood Estimation SAmple Consensus
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(MLESAC) to find the relative (temporal) transform between

the current frame and latest keyframe’s poses in the vehicle

frame, using Tsv at their respective time points. Finally,

the temporal transform is optimised using our Simultane-

ous Trajectory Estimation And Mapping (STEAM) bundle

adjustment engine. A trajectory estimate is also estimated to

extrapolate pose for the next frame, which is important for

robust performance of our gimbaled system.

If a certain criterion is met, such as the number of inliers

drops below a threshold or a component of 6-Degree of

Freedom (DoF) motion exceeds a threshold, the frame is set

as a keyframe and the features, new landmarks, and Tsv are

stored in a vertex in a pose graph for future retrieval. The

relative transform is stored as an edge to the previous vertex.

The vertex is marked as privileged if generated during the

teach phase. Windowed bundle adjustment is then performed

on the last 5-10 vertexes. For a more thorough explanation

of this component, we direct the reader to our previous work

[16].

B. Localisation

During the repeat phase, after a new vertex is created and

windowed bundle adjustment completes, a separate locali-

sation process is run to estimate the spatial transform and

tracking errors between the current vehicle’s pose and the

closest privileged vertex in the graph.

Here we introduce the ‘localisation chain’, a conceptual

representation of the current robot pose, the spatially closest

privileged vertex, the compounded transforms and the path

between them through the graph. These are visualised in

Figure 2 as a snapshot of a repeat run. The latest vertex

(a.k.a., keyframe) in the repeat is Vb, the live frame is Vc, and

the current closest privileged vertex to Vb is Ve. The chain

is the transform Teb, compounded through the shortest path

from Ve to Vb. If Vb has just been added to the graph but not

yet localised, the chain would follow e, d, a, b. The chain is

updated after every live frame to keep track of the current

transform, Tce, and the current spatially closest privileged

vertex is updated to Vf by searching forward along the

priviledged edges’ graph and finding when the translational

component of Tcf is smaller than Tce.

Localisation follows a similar basic process to the

keyframing component of visual odometry, but with some

distinct differences. We describe this process as if Vb has

just been added to the graph as a new vertex. First, a sub-

graph or window of vertexes (2-5 frames in both the forward

and reverse directions) is extracted on the privileged (teach)

path centered around the closest privileged vertex Ve. Within

this window, all the landmarks from each vertex are migrated

through their respective transforms to the privileged vertex

Ve. This places them in a single local Euclidean frame

centered at Ve. The respective descriptors of each migrated

landmark are then matched in order of vertex hops from

Ve to those in Vb. Positive matches and migrated landmarks

are then used to find the new spatial transform Teb via

MLESAC. This transform is then inserted in the graph,

and the localisation chain from Ve to Vb is updated with

Fig. 2: Active gimbal control requires knowledge of the trans-
form between Vg and Vp, denoted Tpg , which was estimated
by compounding the temporal edges through the last successfully
localised transform Teb (orange), and the estimated vehicle to
sensor transforms Tsv(g) and Tsv(p), provided by the gimbal state.
The uncertainties and some estimated transforms are omitted here
for clarity.

the new transform following the shorter path. While this

description assumes a single live pass and single privileged

run, we leverage multiple experiences and use landmarks

from selected intermediate runs to improve localisation, as

described in [16].

C. Path-Tracking Control

We use the path-tracking controller first presented in [17]

for following the teach pass during autonomous repeats1. For

the current section of the path to which the robot is estimated

to be closest, the path-tracking controller sets a desired

forward speed based on the curvature of the privileged path

at that pose. Typically, higher curvatures (smaller radius of

turn) require slower speeds. For regular path following using

our Clearpath Grizzly, we set a conservative speed profile,

which can be described as a ‘strolling’ pace. Generally,

faster speeds mean the likelihood of path-following errors

(and consequently localisation failures) increase, as the fixed

latency of the VO and localisation algorithms mean a delay

in sending up-to-date cross-track errors to the path-tracking

controller. For higher-speed operation, we set a speed profile

with faster desired velocities for each curvature value. To

achieve smooth and consistent performance, the desired

speeds are subject to an acceleration constraint of 0.25m/s2.

This prevents large accelerations and decelerations when

transitioning from tight turns to long, straight sections and

vice versa, which tend to be a significant contributor to poor

path-tracking accuracy.

1To remove the influence of the Iterative Learning Control (ILC) algo-
rithm of the path tracker on localization results, the learning component is
turned off for the experiments presented in this paper. By using the ILC
algorithm, later experiments would be biased to improved path tracking by
learning terrain abberations. However, the standard path-tracking controller
at the core of our other VT&R work is still used.
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D. Gimbal Control

There are two potential approaches to gimbal control from

the perspective of VT&R; passive or active. In the passive

strategy, the gimbal’s internal controller will stabilise pitch

and roll in the camera frame, while using a smoothed open-

loop controller on yaw to maintain an approximately forward

facing viewpoint. This requires no additional control inputs

from the VT&R system.

In the active strategy, the gimbal can be commanded

to reduce angular error between the current (live) view

and nearest privileged view, if knowledge of the transform

between the current and the privileged poses is known. For

this to occur, we leverage the methodology described in the

previous subsections and pictorialise the strategy in Figure

2. First, we utilise STEAM to extrapolate the estimated pose

at the current time, given latency in the visual processing al-

gorithm, and include an additional fixed timestep to account

for transmission delays. Typically, the latency between frame

capture and output transform estimate, Tcb, is on the order

of 60-100ms, but there is also a fixed delay of approximately

200ms between the sending of command and active motion

of the gimbal due to message transmission latencies. We

defined this extrapolated (predicted) pose as Vp.

Given Tpc, the localisation chain is queried for the nearest

privileged pose in relation to Vp, denoted as Vg . The relative

pose between Vg and Vp is then compunded through the

transforms:

Tpc, Tcb,Tbe, Tef , Tfg (1)

This is the equivalent of the prior as stated in [16]. Of

course, Vf and Vg could be equivalent, and transforms are

compounded as needed on the shortest path between Vg and

Vp.

The desired transform denoting the positional and rota-

tional error between the closest privileged view and the live

view in the sensor frame of Vg is defined as:

Tss = Tsv(p)TpgT
−1
sv(g) (2)

Given the rotational component of this transform, the desired

gimbal angle at each of the control axes is sent to the gimbal

controller. In the active control case, the roll is left as open-

loop control, but pitch and yaw are closed-loop.

Both the active and passive strategies are trialled in Section

IV to justify why active gimbal control is required in order

to outperform a static camera system.

IV. EXPERIMENTS

We used a Clearpath Grizzly RUV (Figure 1) as the

base platform for two separate experiments. In the first

experiment, we examine the performance of the gimbaled

system specifically in high-speed driving. In the second

experiment, we examine the performance of the gimbaled

system in a long-term localisation scenario in tough outdoor

conditions.

A. High-Speed Driving

In this experiment, the Grizzly RUV was fitted with our

standard Point Grey XB3 camera system, placed facing

forwards on a central mast, as this will form the baseline

to which we will compare our gimbaled system. Specific

to this paper, we also rigidly mounted a DJI Matrice 600

multirotor body and DJI Ronin-MX gimbal to the mast of the

Grizzly (Figure 1). The Matrice 600 provides the interface to

the gimbal via a serial connection and sends the gimbal state

(joint-angles) at up to 100Hz to a resolution of 0.1◦. A Point

Grey Bumblebee2 (BB2) stereo camera was placed on the

gimbal, facing forwards. The gimbaled system was placed

specifically to closely match the mounting position of the

XB3 to maintain as similar a perspective as possible, and the

gimbal pitch was angled approximately 20
◦ below horizontal

to match that of the XB3. Each camera was connected to a

separate Lenovo W541 laptop (8-core Intel Core-i7) for data

processing purposes.

For this experiment, we used the short baseline of the XB3

camera (central and right cameras) to ensure fair comparison

with the BB2 camera, which has the same 12cm baseline.

The gimbal was commanded to actively stabilise pitch and

roll, and both passive and active yaw control strategies

were tested. For the active strategy, the gimbal was not

controlled by the operator during the teach phase but used the

closed-loop controller during repeats. Both the BB2 and XB3

were configured to generate images at 16Hz for comparative

purposes, and both have an approximately 65
◦ horizontal

Field Of View (FOV).

The comparative performance of the fixed and gimbaled

systems were evaluated through a set of high-speed driving

tests (Table II). For this comparison, a route covering approx-

imately 100m was initially taught to both the fixed (XB3) and

gimbaled (BB2) camera systems covering the same trajectory

(shown in Figure 3). Once the teach pass was complete and

the endpoints of the path merged manually, the path was au-

tonomously repeated multiple times over several hours while

switching between actively gimbaled, passively gimbaled,

and fixed camera systems, each controlling the vehicle during

their respective tests. We deonte these different strategies

as ‘fixed’ for the traditional fixed XB3 rig, ‘passive’ for

the passive gimballing strategy, and ‘active’, which uses our

active gimbal control algorithm. The system was driven at the

highest possible target speed given acceptable safety limits,

−10 0 10 20 30 40
X (m)

−10

−5

0

5

Y
(
m
)

Fig. 3: The path driven for the high-speed driving experiment. The
robot is driven to cover a range of path curvatures and rotational
directions, including hairpins, slaloms and straight sections.
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TABLE I: Target speed profiles for differing radius of path curva-
ture. The maximum speed (at minimum curvature) can be described
as a ‘running’ pace.

Curvature 0.01 0.2 1.5 5.0 10.0 m−1

Target Speed 2.25 2.75 3.5 4.25 5.0 m/s

TABLE II: Summary of the trials used for the experimental results

Trial Number Time started Configuration

Teach 13:00 passive+fixed
1, 2, 3 13:34, 13:36, 13:38 fixed
4, 5, 6, 7, 8 13:(46, 49, 51, 54, 56) active
9, 10, 11 14:00, 14:05, 14:08 fixed
12, 13, 14, 15, 16 14:(21,26,29,30,32) passive

up to 5m/s (corresponding to path curvature as described in

Section III-C). Each experiment or trial was repeated several

times for consistency of results.

B. High-Speed Driving Results

To compare results and quantify the improvement of per-

formance of the gimbaled camera system, we evaluate several

different metrics: average feature track length during VO,

total localisation matches, average localisation uncertainty,

and camera actuation error.

Figure 4 shows the distribution of feature track lengths

(the number of consecutive frames over which a landmark

is matched) during VO for the three different strategies over

all repeat runs. This figure shows that a gimbaled system

improves the average track length over a static system by

attenuating large image motions that cause tracks to break.

The passive scheme can be seen to have a slight advantage

over the active gimballing scheme, potentially due to the

smoother operation of the gimbal’s yaw control.

Turning to localisation, Figure 5 shows the mean number

of MLESAC inliers for each keyframe for the three different

strategies at each of the velocity profiles, and their 1-sigma

standard deviation. While the mean number of inliers is

consistent across all three strategies, this is merely reflective

of the matching strategy in use, which collects a minimum

number of feature matches (by expanding the vertex search

1 2 3 4 5 6 7 8 9 10 11

Track length [frames]

10
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1

10
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Fig. 4: Histogram of total VO feature track lengths for the three
strategies during the high speed experiment.
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Fig. 5: Mean localisation inliers at each localised keyframe for the
three strategies. The markers are offset for clarity. While the mean
inliers remains roughly equal on average, the standard deviation
is significantly larger under the passively gimbaled configuration,
whereas the actively gimbaled configuration achieves a slightly
better variance than the fixed setup at the fastest speed profile.

space) before progressing to the MLESAC stage. The more

important metric is the variance of the inliers for each strat-

egy. Clearly, the passive strategy is inferior to the standard

fixed-camera configuration, while active gimballing shows a

small improvement over the same.

Figure 6 shows the relative localisation yaw error taken

from Tss (Eq. 2) for the different strategies over the same

path. While the fixed and passive strategies show large angu-

lar errors due to the open-loop control, the active gimballing

strategy successfully attenuates large angular deviations dur-

ing sections of poor path following.

Finally, the CDF of the localisation uncertainty for the

same experiments is plotted in Figure 7. In this setup, the

actively gimbaled system marginally improves localisation

uncertainty throughout the dataset over both a fixed and

passively gimbaled strategy. This can be attributed to two

major components, the improved tracking performance of

features in VO, meaning that landmarks are better triangu-

lated with less average uncertainty compared to the fixed

camera strategy, and more consistent perspective for locali-

sation matching over the passive strategy. While the passive

strategy will occasionally achieve reduced perspective error,

performance in this metric is generally less consistent. In

both the active and fixed strategies there were no localisation

failures, but the passive strategy exhibited a 99.7% success

rate.

C. Long-Term Experiment

In this experiment, the ability of the gimbaled system

to decrease the chance of localisation failure was tested

during a ‘grand-tour’ of deliberately challenging conditions.

A dataset was gathered on the robot over a period of two days

within the meadows surrounding the University of Toronto

Institute for Aerospace Studies (UTIAS) campus during mid-

winter. At this time of year, the sun remains low in the

sky, meaning sun glare and consequent image washout is

a frequent occurrence. Also, snow cover is often significant

and variable from day to day, meaning that certain areas have

little salient texture and features change rapidly as snow falls

and melts.
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Fig. 6: Plot of relative localisation yaw error for the different
strategies over three selected runs. While the fixed and passive
strategies show large angular errors due to the open-loop control,
the active gimballing strategy successfully attenuates large angular
deviations during sections of poor path following.
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Fig. 7: The CDF of translational localisation uncertainty during the
high-speed experiment. The active gimballing strategy outperforms
both the fixed and passive strategies.

For this experiment, a StereoLabs Zed stereo camera was

mounted on the gimbaled system, and the robot was taught

a series of routes during the afternoon of the first day. The

robot was first driven with the actively gimbaled camera

across a snow-covered field where little permanent vegetation

or structure was visible directly in front of the camera,

followed by driving directly towards the sun, and then across

a highly textured area to a large ditch through which a

seasonal creek runs. In each of these sections, the camera was

actuated by the operator (i.e., manually steered) to avoid the

source of the degeneracy during the teach phase. This is in

contrast to the high-speed experiments, where the gimbal was

not actuated by the operator. In the snow-covered section, the

camera was pointed towards vegetation, avoiding the poorly

textured terrain covered by snow. When driven towards the

sun, the camera was aimed below the horizon to avoid sun

glare. In the ditch, the camera was pointed down to reduce

the percentage of the image covered in sky, but also allowed

to automatically control pitch to maintain a stable orientation.

These sections are visible in Figure 8.

The same set of routes was immediately re-taught while

fixing the camera statically to face forward. In none of the

aforementioned conditions was the fixed camera’s orientation

changed. The robot was then commanded to re-traverse the

route multiple times to build a set of experiences from which

Fig. 8: Visualisation of the route traversed for experiment 2 for the
fixed (top) and active (bottom) camera strategies, offset to highlight
differences. Path thickness denotes average localisation inliers over
all repeats. Red circles denote number of localisation failures per
vertex (log2 scale). Individual segments are highlighted for further
examination.

to match features using both the fixed and active strategies.

The next morning, the robot was commanded to re-follow the

path using the experiences from the previous day. We record

specific statistics for localisation throughout the experiment,

such as the number of localisation inliers and localisation

failures at each vertex of the traversed route. In total, each

section of the route was traversed autonomously at least three

times over the two day experiment. The passive strategy was

not used in this experiment.

D. Long-Term Experiment Results

Results of the experiment are presented in Figures 8-

11. Figure 8 shows the overall path followed by the robot

for the two strategies. Each path is annotated with a circle

at each vertex whose size denotes the average localisation

inliers including all repeats. Larger-diameter circles show a

greater average number of inliers at that vertex. Additionally,

red circles are placed at each vertex where a localisation
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(a) Zoomed view of ditch segment for long-term experiment.

(b) Fixed camera view. (c) Active camera view.

Fig. 9: Examination of ditch segment for the fixed (left) and active
(right) camera strategies. The gimbaled camera actively avoids
looking at the sky and maintains a fixed pitch during the traversal.

failure occurred, whose size denotes the average number of

localisation failures, following a log2 scale. During repeats,

occasional failures do not necessarily require manual inter-

vention due to reliance on VO for forward propogation, but

a series of failures will ultimately cause the algorithm to

exceed certainty bounds and stop the vehicle. Interesting

segments of the path as described in Section IV-C are

examined in Figures 9-11.

In Figure 9, the traversal of the ditch is highlighted. In all

attempts, the fixed camera system failed to localise on the

upward side of the path due to a significant view of sky. Each

traversal required a manual intervention. Using the gimbaled

system, large sky views were avoided and no failures occur.

Additionally, the average number of localisation inliers at

each vertex remained high and stable.

In Figure 10, the snow-covered section is highlighted.

Similarly to the ditch example, the average number of

localisation inliers at each vertex remained high and stable

using the gimbaled system. In contrast, the fixed system

again shows reduced inliers and far more frequent failures.

Finally, Figure 11 highlights the section affected by sun

glare. Both strategies suffered in this section due to image

saturation from directly viewing the sun. However, the ac-

tively gimbaled system, by pointing away from the horizon,

showed better performance and was able to successfuly

repeat the path without manual intervention. In contrast, the

static camera system failed in all cases and required manual

driving over a 4m section.

Overall, the active strategy resulted in fewer localisation

failures and generally higher averages of feature inliers

compared to the passive strategy. In the uphill section of

(a) Zoomed view of snow-covered segment for long-term experi-
ment.

(b) Fixed camera view. (c) Active camera view.

Fig. 10: Examination of low-texture segment for the fixed (left) and
active (right) camera strategies. The active strategy shows reliably
more inliers over the segment, with far fewer localisation failures
compared to the fixed camera strategy.

Figure 8, even small amounts of sky-view caused the passive

strategy to suffer due to fewer features in the upper portion

of the image typically covered by trees.

V. DISCUSSION

From these experiments, the use of a gimbal to address op-

erational limits has some intriguing outcomes. Surprisingly,

the ability of the gimbal to improve performance during high-

speed maneuvres was marginal. While such a system is able

to attenutate low-rate disturbances, the control envelope is

insufficient to address large shocks that cause motion blur,

which was a motivating use case of this system.

However, significant improvements are obvious when tak-

ing advantage of the gimbal’s ability to account for perspec-

tive. In the high-speed experiments, the gimbal was able to

attenuate yaw error caused by poor path tracking (particu-

larly on corners), while in the long-term experiment, active

targeting of feature-rich and feature-stable areas drastically

improved reliability over a static system. It is less effective

in areas of rich texture. Additionally, little improvement was

seen during fast turns.

Importantly, during the teach phase the gimbal must be

controlled smoothly by the operator while avoiding sudden

perspective changes. This is highlighted in the junction

of Figure 8, where discontinutities in perspective caused

frequent localisation failures for the active strategy. This

requires the operators to be careful in planning where to

point the camera during the teach phase. Our results suggest

that further research into an autonomous attention model to

actively point the camera may be fruitful.

7245



(a) Zoomed view of sun-glare segment for long-term experiment.

(b) Fixed camera view. (c) Active camera view.

Fig. 11: Examination of sun-glare segment for the fixed (left) and
active (right) camera strategies. Path thickness denotes average
localisation inliers over all repeats. Red circles denote number of
localisation failures per vertex (log scale). The active strategy shows
reliably more inliers over the segment, with far fewer localisation
failures compared to the fixed camera strategy.

VI. CONCLUSIONS

In this paper, we have shown the integration of a gimbaled

camera to VT&R and evaluated the performance of locali-

sation and path following in various conditions, including

high-speed driving and difficult localisation experiments.

It has been shown that an actively gimbaled setup assists

marginally in both VO performance and localisation un-

certainty during high-speed driving, but shows significant

improvement when faced with specific difficult cases of

perspective that degrade the performance of a fixed camera.

Future work will focus on reducing the computational

load for deployment on low-power embedded hardware and

subsequent demonstration of the gimbaled VT&R on-board

the DJI M600 multirotor vehicle.
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