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Abstract— This paper proposes the use of a quadrotor aerial
vehicle as a musical instrument. Using the idea of interactions
based on physical contact, a system is developed that enables
humans to engage in artistic expression with a flying robot
and produce music. A robotic user interface that uses physical
interactions was created for a quadcopter. The interactive
quadcopter was then programmed to drive playback of drum
sounds in real-time in response to physical interaction. An
intuitive mapping was developed between machine movement
and art/creative composition. Challenges arose in meeting real-
time latency requirements mainly due to delays in input
detection. They were overcome through the development of a
quick input detection method, which relies on accurate yet fast
digital filtering. Successful experiments were conducted with
a professional musician who used the interface to compose
complex rhythm patterns. A video accompanying this paper
demonstrates his performance.

I. INTRODUCTION
New designs for flying robotic vehicles have been in

constant development in recent years. The advancements in
sensors and actuators have allowed us to produce flying
robots that are ever smaller and safer. The once deadly
machines can now become consumer-friendly products, caus-
ing the trend to shift from purely industrial or military
applications to civilian and recreational settings. Examples
include Spiri, a small programmable quadrotor created by
the Canadian robotics company Pleiades [1], the BionicOpter
dragonfly robot made by Festo [2], as well as the entire drone
product line by Parrot [3].

These new developments pave the way for novel appli-
cations. We are inspired to create flying robots capable of
interacting with humans in a very intuitive manner. Re-
searchers in the recent years have been investigating novel
methods of interaction. The most prominent examples are
interactions through gesture [4]–[6], speech [7], face/eye
tracking [7], and even thought-based control using brain-
computer interfaces [8]. However, these advanced methods
require complicated setups and specialized equipment, which
may not be found in a consumer setting. Furthermore, all
of these methods focus on one-sided operation. While that
is sufficient for traditional teleoperation usages, it does not
provide the level of interactivity usually required of a social,
domestic robot.

We propose using physical contact as a new method of
human-robot interaction with flying robots. Physical interac-
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Fig. 1. Through physical interaction with a quadcopter a rhythm pattern
is generated. A quadcopter serves as a novel artistic input device. (Picture:
Kathrin Kleinbach)

tions have been shown to be an effective method for ground
robots [9]; however, it has only rarely been used in the
context of flying robots [10], [11]. While the short range
requirement of physical interactions may be a disadvantage,
there are many benefits in using this method, such as
improved interactivity, more intuitive interface, and requiring
no special equipment. This concept can lead to novel appli-
cations wherever humans and flying robots are collocated.
Examples include flying robotic companions, robots in zero
gravity environments, and robots in performance arts.

In this project, we explore the benefits of physical inter-
actions using a quadcopter as a platform. We programmed a
quadcopter to accept physical interactions as inputs. Sub-
sequently, we demonstrate one unique application of this
system by using physical contact on the quadcopter to drive
the playback and recording of percussion instrument sounds
in real-time, effectively transforming the quadcopter into a
flying drum machine (see Fig. 1).

II. INTERACTION WITH THE QUADROTOR

Physical contact with a human is determined by estimating
the external force and torque applied to the quadcopter within
a certain range of frequencies. In this project, we are mostly
interested in detecting forces that result from pushes or taps
performed by the user. We want to avoid detecting any other
source of external forces, such as high frequency vibrations
or constant offsets. Filters are designed to remove those
parts of the signal unrelated to a human interaction. Once
the external forces and torques are known, we attempt to
categorize them based on the type of interaction the user
would have done to result in such net force and torque.
This information is then used to map the user’s input to
an associated signal response. In the case of this project, we
use the type of interaction to determine what sound to play.



Fig. 2. Simplified diagram of a quadcopter (with mass m, arm length l, and
rotational inertia I) showing the forces when an external force is applied
during hovering, where the magnitude of the gravitational force ,Fg , is equal
to the magnitude of the force produced by the motors, Fthrust. External
pushes, Fpush, result in linear forces, Fext, and torques, τ ext.

A. Assumptions

We assume the quadcopter is hovering with stabilizing
controls. This guarantees that the robot stays in close prox-
imity to the user. In turn, it simplifies the force and torque
estimations in the subsequent sections.

B. Force and Torque Estimation

The first step is to estimate the externally applied forces
and torques. Under the assumption that the quadcopter is
hovering, we can say that the net force acting on the
quadcopter is equal to the externally applied force. If the
force is not applied directly through the center of mass, it
also results in a torque τ ext about some axis through the
center of mass. Referring to Fig. 2, we can write that (cf.
[12])

Fext = Fpush = ma

τ ext =
Fpush × l

2
= Iα

where m is the mass of the vehicle, I is the moment of inertia
about the axis of rotation, l is a vector pointing to the center
of mass, and a and α are the linear and angular accelerations.
The inertial parameters of the quadcopter do not need to be
known for our purposes (and are not easy to measure), there-
fore the mass-normalized force and torque, viz. accelerations,
are used. These can be calculated using data from the on-
board inertia measurement units. The accelerometer provides
the acceleration vector, which is directly proportional to the
applied force. The gyroscope provides angular rates for roll,
pitch, and yaw, from which one can numerically differentiate
to find the angular acceleration. Numerical differentiation is
done using the backward difference method because of real-
time requirements.

C. Signal Processing

The force estimate signal calculated in the first step
cannot be directly used for two reasons: the presence of
noise resulting from high frequency vibrations and amplified
through numerical differentiation, and the presence of a
constant bias. A digital bandpass filter removes the unwanted

Fig. 3. Diagram of a quadcopter where five different interactions are labeled
along with the corresponding drum sound response.

parts of the signal. The design of the filter must also take
into consideration the stringent latency requirements of real-
time signal generation; in particular, when dealing with
musical performances as it is the goal of this project. While
there is no standardized latency requirement for digital/MIDI
instruments, the digital music community agrees that the
latency between triggering a note on the instrument and
sound playback should not exceed 10 ms [13]; for instru-
ments without tactile feedback, such as a theremin, latency
tolerance can be as high as 30 ms [14]. Finally, we also
require the filter to preserve the wave shape of the signal,
so that distortion is kept to a minimum. The goal is then to
design the filter to achieve the following criteria:

• eliminate constant biases and high frequency noise,
• preserve the shape of the signal in the passband, lest

the interaction be misinterpreted,
• operate in real-time with minimal time delay.
This proves to be challenging, mainly due to the low sam-

pling frequency of 200Hz. At that rate high-order recursive
filters produce too much time delay to be usable: we saw
delays as high as 50 ms with as low as 8th order filters.
After several trials and fine-tuning, the following two filters
are used:

• 4th order Bessel lowpass filter centered at 11 Hz,
• 2nd order Butterworth highpass filter centered at 0.7 Hz.
Bessel filters are designed to have maximally flat group

delay in the passband, which means the signal distortion
is low [15]. They also perform decently in terms of time
delay compared to other filters. As a side note, elliptic
filters perform better in terms of minimizing time delay
[16], but their highly variable group delay results in heavy
signal distortion around the cutoff frequency. The filter’s
performance will be discussed in Sec. V.

D. Characterization of Interaction

The next step is to detect and characterize when a user has
interacted with the quadcopter. One easy way of detection is
to set a threshold on the force estimate signal, say Fthres,
and perform peak detection whenever the magnitude of
the signal rises above the threshold, ‖Fext(t)‖ > Fthres



(similarly for τ ext(t) and τthres). The amplitude of the
peak ‖Fext(tpeak)‖ is taken to represent the magnitude
of the push, and a response is triggered when a peak is
found. In our case the magnitude is mapped to the velocity
(loudness) of the note to be played. This method is feasible,
since the signal is already smoothed by the lowpass filter.
However, early testing revealed a crucial shortcoming of
this method: the time delay is too long. The peak of the
external force happens shortly before the end of physical
contact. Since the peak is delayed through filtering, the
response is triggered moments after the user’s hand has left
the quadcopter. This is extremely undesirable, as the response
of any musical instrument should be near immediate. Instead,
we have developed a “quick detection” method, whereby the
response is triggered as soon as the signal rises above the
threshold, and we use the slope of the signal ||Ḟext(tpeak)||
at that instant to estimate the magnitude. Using this method,
the response can be triggered before the peak of the force
happens. The performance of this method is discussed in
Sec. V.

Upon detection, the force and torque vectors are captured
and stored. By examining the various interactive zones shown
in Fig. 3, and with the help of experimental data, one can
determine the expected force vectors for each interaction. We
categorize the detected force vector by figuring out which
of the acceptable interactions it most closely resembles. We
do this by comparing the relative magnitudes of each force
and torque component against what they should be for a
particular interaction. For example, pushing straight down
the center results in a large force vector pointing towards
the ground and very little torque while a downward push
on the front edge produces a similar force vector but also a
large torque with respect to the y-axis. Then, each type of
interaction is mapped to a certain MIDI (Musical Instrument
Digital Interface, see Sec. III) note number, corresponding
to a specific note or sound.

Whenever an external force is applied, the quadcopter is
made to move, but unlike a free floating mass the control
systems will work to bring it back to its original state.
During this “correction” step the quadcopter experiences
additional inertial forces, which are unaccounted for in the
force estimation method. If left alone these inertial forces
will be registered as inputs and will trigger unintended
responses. To negate these effects we have implemented
a simple finite state machine for the quadcopter with two
states, a HOVER state and a HIT state (see Fig. 4). In the
HOVER state the quadcopter is able to accept user input in
the form of physical interactions. Immediately after an input
is registered, the state machine waits for the quadcopter to
recover from the hit before it accepts another input. Once
the program enters the HIT state, it continuously checks the
external force signals and returns to HOVER state only when
the magnitudes of the signals have fallen below and remain
below the threshold Fthres for a period of time Tsteady . We
set Tsteady = 0.2 s for a balance of accuracy and usability.

Fig. 4. State transition diagram for the finite state machine used to
detect interaction between a human and the quadcopter by detecting external
forces.

III. SOUND GENERATION

The interactive quadcopter program generates musical
messages in the form of MIDI notes. Each MIDI note
message contains the following information:

• MIDI note number: indicates the pitch of the note, or
in the case of a drum kit it indicates the instrument to
be played, e.g. snare, crash cymbal, vibraslap, etc.,

• duration of the note: a floating point number indicating
how long the note should be held,

• velocity of the note: terminology used by the digital
music community to mean the loudness of the note.

The MIDI note number is determined by the type of
interaction, as shown in Fig. 3. The velocity of the note is
calculated based on the magnitude of the interaction. The
duration of the note is set to a constant value of 0.25 s,
corresponding to a sixteenth note, for the sake of simplicity.

Our method only enables one note to be played at a time.
In order to add musical complexity, we employ a recording
technique called loop overdub. In this technique, a few bars
of music are continually played on a loop; new notes are
recorded into the position in the bar when they are played, on
top of any existing notes. This allows users to create complex
tracks by building up one note at a time. Furthermore,
the recorded notes are programmatically quantized into a
sixteenth-note grid. Recording quantization is a common tool
in digital music, which can correct a user’s imperfect timing
in real-time. When a note is cued the sound is played by an
audio workstation software (see Sec. IV) using a library of
sampled drum sounds.

IV. EXPERIMENTAL SETUP

A. Quadrotor Vehicle

The quadrotor vehicle used in this project is the Parrot
AR.Drone 2.0 quadcopter [17]. This is a low-cost vehicle
designed to be used by the general public and includes a
wide assortment of onboard sensors. It comes with features
that enhance user safety, such as soft plastic propellers and an
outer protective shell. Also, it has an onboard stabilization
controller allowing it to hover based on onboard sensors,
making it ideal for this project. We use the Robot Operating



Fig. 5. The high-level system architecture showing how the different
components work together. The quadcopter sends its sensor data to a
computer running ROS. The data is processed in real-time. Whenever an
interaction is identified, it is categorized, mapped to a note/instrument, and
sent to another computer running Ableton Live. The note is then played,
quantized, and recorded.

System (ROS) framework to interface with the quadcopter.
ROS Hydro is installed on a laptop running Ubuntu 12.04.
We use the AR.Drone ROS driver package available publicly
online [18].

Safety is an obvious concern in this setup. Physical
interactions with a quadrotor means that the user must put
his/her hand in close proximity with fast spinning rotor
blades. Work can be done to mitigate these risks, such as
adding a more protective shell or using a drum stick instead
of hands for interaction. More importantly, however, the
concepts presented can be applied to any flying vehicle,
including a much safer lighter-than-air balloon robot without
spinning blades.

B. Sound Software

For sound generation and music control we use the soft-
ware Ableton Live 9 Suite. Ableton Live is an industry
standard digital audio workstation (DAW) with many useful
features for music composition and performance (such as
loop overdub and quantization). Ableton’s software was
chosen for its popularity, multitude of functionalities, and
extendibility with Max for Live. Max, or MaxMSP, is a
visual programming language mainly for developing multi-
media apps and programs. Ableton Live is only supported
on Microsoft Windows and Apple MacOS, and ROS is
only supported on Ubuntu Linux. The digital audio industry
has almost no presence on the Linux OS. These programs
therefore are run on separate computers and communicate
over a network.

C. Communication

The two computers are setup to communicate information
through UDP networking. MaxMSP has built-in support for

Open Sound Control (OSC) [19], a protocol used by many
modern electronic musical instruments and synthesizers. We
make use of this feature and opt to serialize messages sent
by ROS in accordance with the OSC protocol. This is made
easy using a C++ library called oscpack [20].

The quadcopter’s IMU sensor information is sent from
the quadcopter to the ROS computer through WiFi and is
received by the ROS driver. The ROS driver relays this
information to the filter program, and the output is sent to the
finite-state machine. Once processed, a message containing
note playback information is passed to an OSC relay pro-
gram. It packages the messages for OSC and sends them to
the Ableton computer over the network. On the Ableton side,
the message is received by a MaxMSP program we wrote,
which then uses Max for Live bindings to control Ableton
Live for note playback and recording.

V. RESULTS

This section validates the performance of the aforemen-
tioned setup. Referring to Fig. 5, we want to know whether
or not the latency of the system is acceptable in terms of
representing a musical instrument. The system latency can
be split into three major sources of delays: the measure-
ment delay DA, the processing-detection delay DB , and
the communication-playback delay DC . Before starting the
analysis, it is worth mentioning that there is quite a bit
of leeway in identifying when exactly the interaction is
“triggered”. Unlike a piano key or a guitar string in which
the action of triggering a note is distinct in timing, the act of
pushing on a flying vehicle takes place over a period of time.
The exact time when an interaction is said to have taken place
is not always clear. One could say it is the moment the hand
touches the quadcopter, or when it breaks contact, or half
way through the push, etc. Therefore, measuring the delay
between the interaction and the response is not easily done,
since the timing of the interaction is not entirely well-defined.
We attempt to quantify the time delay between the start of
the interaction to the triggering of the sound. However, keep
in mind that ultimately the best judge for whether or not the
latency is tolerable is the musician, not the technician.

A. Communication Delay

The communication delay between ROS and Ableton Live
can be measured easily. We send a ping message from ROS
to Ableton for which Ableton goes about its usual note-
processing/adding routine. Upon completion the routine is
repeated, and when it finishes for the second time a pong
message is sent back to ROS. Half the time delay between
the ping and pong messages is taken to be the communication
delay between the two computers. This test is run on both
wireless and wired connections, and the results are shown in
Fig. 6.

Wired connections perform faster consistently and are
more reliable, whereas the wireless connection experiences
long delays at times, possibly due to lost UDP packets;
because of this, wired connections are always preferred.
These results show that the average communication delay



Fig. 6. Histogram of ROS-Ableton communication latency measurements,
with n = 200 samples. For the wired connection, the average is µ = 4.2 ms,
the standard deviation σ = 3ms. For wireless connections, µ = 16.0ms
and σ = 9.0ms.

Fig. 7. Magnitude and group delay response of the filter cascade used for
processing the accelerometer signals.

DC between ROS and Ableton, including music processing
time, is 4.2 ms on a wired connection.

B. Measurement Delay

The measurement delay DA is not easy to calculate. For
this project we assume the sensor’s delay is much smaller
than the network latency. The latency value depends on the
quality of the hardware, i.e. the router and the computer’s
wireless adapter. It also depends on the distance between the
devices; however the hovering requirement ensures that the
quadcopter is never far away from the router. In our setup, we
measured the ping from the ROS computer to the quadcopter
to be about 2 ms, and therefore the one-way measurement
delay is estimated to be about 1 ms.

C. Estimation and Detection Delay

Fig. 7 shows the group delay of the filters used for signal
processing. We see that at around 5 Hz the group delay
is about 30 ms, and decreases as we go up in frequency.
Compared to this value, the remaining processing times are
negligible, and therefore at first glance the value of DB is
around the same, 30 ms.

Fig. 8 shows the effect of this filter on the torque estimate
signal. High frequency noise in the signal is greatly reduced,
which is crucial for input detection. The overall shape of the
signal is preserved, owing to the properties of the Bessel

Fig. 8. Example of filtered and unfiltered signals with the chosen threshold
value marked. A hit is detected whenever the magnitude of the filtered signal
rises above the threshold.

filter. However, even with this carefully chosen filter it
is clear that the output signal is delayed by a non-trivial
amount. In this example, the peak is detected in the torque
estimate roughly 30 ms after it appeared in the angular
acceleration measurements. Peak detection is not the optimal
approach. Instead, the quick detection method mentioned
in the previous section works well here. Using the quick
detection method and a threshold of 1200 N m/ (kg m2), the
interaction is detected 20 ms before the peak happens. The
value of DB is effectively reduced to 0, since the detection
does not rely on waiting to find the peak. But again it is
hard to give a numerical result for the delay, since it is
unclear whether or not the peak of the external force can
be considered the point of trigger.

D. Overall System Performance and User Experience

Putting the whole system together, we want to see how
it performs as a real-time sound generation device. Fig. 9
tells the whole story. It shows the chain of signals generated
when a user interacts with the quadcopter. Looking at the
accelerometer readings we see that the interaction begins
shortly after t = 78.42 s and ends at around t = 78.55 s.
The peak is approximately at t = 78.5 s. The force estimate
signal is delayed by about 30 ms. Using the quick detection
method the note is triggered at around t = 78.46 s and played
5-7 ms later. This means that the note is triggered 30-40 ms
after the start of the push, as expected, but about 20 ms
before the acceleration peaks, and well before the end of
the push. Although we only present this data for one type of
interaction, results like these are typical of all other types.

This system performs well for users who prefer the note
triggering in the middle of the push or later. The action is
like that of a piano key, where the key needs to be depressed
to a certain extent before the note is triggered. Similarly the
quadcopter needs to be pushed by a certain amount before
the note is played. Users who prefer the note be triggered
right at the beginning of contact may not be satisfied with
this performance. Those users might prefer snappy striking
and hitting actions, like on percussion instruments, rather
than full contact pushes.

Haig Beylerian, a professional music student currently
working at WaveDNA Ltd., helped us do a user test of the



Fig. 9. Acceleration signals over time along with the force estimate signals and the generated notes. The notes are quantized to the nearest sixteenth
position and recorded on a loop. The resulting score is shown in standard percussion notation with rests omitted for clarity. Arrows indicate added notes.

Fig. 10. Photo of Haig making music using the flying drum machine, taken
from video.

system. After some initial learning curve, Haig was quickly
able to adapt to this new instrument and create intricate
drum beats. When asked about the latency he said it was
unnoticeable and that the response was “excellent”. Using
this system, Haig created a complex drum track using loop
overdub. A recording of his performance is available at
http://tiny.cc/FlyingDrumMachine, and a photo taken from
the recording is shown in Fig. 10. Despite the system having
an inherent non-trivial latency, the quick detection method
was able to compensate for the delay and reduce the apparent
latency to a level that is acceptable to at least one user. More
user tests should be performed to qualitatively verify this
result.

VI. CONCLUSIONS

We have set out to develop a human-quadcopter interface
that communicates through physical contact, and demonstrate
its practicality by using it to create musical sounds as a
drum machine. We used on-board sensors to estimate the
externally applied forces and torques acting on a hovering
quadcopter. A method was developed to quickly detect
when an interaction has occurred. The interaction is then
categorized as a type of input and mapped to individual
responses. In this application, we map the inputs to certain

notes in a drum kit. The information is communicated to
a digital audio workstation software, which is programmed
to play and record the appropriate notes. Analysis of the
system shows that there is a significant amount of latency
compared to other MIDI instruments. The delay between the
interaction and the response is around 30-40 ms. However,
due to the nature of the note triggering action, this may not
be noticeable to most users. Preliminary user testing suggests
that the responsiveness is good, but more thorough user
surveys are needed to confirm this hypothesis. Additionally,
the quality of the interaction itself must be evaluated. Much
more can be done to optimize that aspect. We consider
the project successful, showing that physical interaction is
a unique and effective method for humans to truly and
intuitively interact with flying robots.
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