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Abstract. This paper addresses an open problem in the area of linear quadratic optimal control.
We consider the regular, infinite-horizon, stability-modulo-a-subspace, indefinite linear quadratic
problem under the assumption that the dynamics are stabilizable. Our result generalizes previous
works dealing with the same problem in the case of controllable dynamics. We explicitly characterize
the unique solution of the algebraic Riccati equation that gives the optimal cost and optimal feedback
control, as well as necessary and sufficient conditions for the existence of optimal controls.
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1. Introduction. In this paper we consider the regular, infinite-horizon lin-
ear quadratic optimal control problem in which the cost functional is the integral
of an indefinite quadratic form. The regular linear quadratic (LQ) problem, when
the quadratic form in the cost functional is positive definite in the control variables,
has been studied extensively in the literature [2, 3, 22]. It has been especially well
studied under the standard assumption, the so-called positive semidefinite case, when
the quadratic form in the cost functional is positive semidefinite in the control and
state variables simultaneously. The more general indefinite case imposes no definite-
ness condition in the control and state variables simultaneously [17, 19]. The LQ
problem is termed infinite-horizon if the cost functional is integrated over time from
zero to infinity. Finally, the most typical treatment of the LQ problem is the fixed-
endpoint problem where the state is required to converge to zero as time tends to
infinity. The case when no such condition is imposed has also been studied and is
referred to as the free-endpoint problem [8, 16, 17]. In fact, an entire family of LQ
problems can be obtained by requiring that the state converges to a subspace. This
so-called stability-modulo-a-subspace family of LQ problems includes the fixed- and
free-endpoint problems as special cases [8, 16]. For the remainder of the paper, we
restrict our attention to the regular and infinite-horizon versions of the problem, for
otherwise the optimization problem may yield optimal controllers that are not static
linear state feedbacks [2, 20]. Also, we focus on stability-modulo-a-subspace, since it
is the more general case.

Traditionally, a complete solution of any variant of the LQ problem requires one
to find necessary and sufficient conditions for the existence of a finite optimal cost
and optimal controls. Existence of a finite optimal cost is called well-posedness, while
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INDEFINITE LINEAR QUADRATIC OPTIMAL CONTROL 497

existence of an optimal control is called attainability. Further, when they exist, a
complete solution involves determining the optimal cost and an optimal control. Both
should be expressed in terms of the given problem data, that is, the system matrices,
the instantaneous cost matrices, and the desired subspace.

In the regular, infinite-horizon, fixed-endpoint, positive semidefinite case, the LQ
problem was fully resolved in 1968 by Wonham [21, 22], resulting in the well-known
necessary and sufficient conditions involving stabilizability and detectability. The
corresponding free-endpoint LQ problem was fully characterized much later [6, 18],
resulting in conditions involving output stabilizability, a condition less strict than sta-
bilizability [6, 18]. In the regular, infinite-horizon, indefinite case, the fixed-endpoint
problem was solved in 1971 by Willems [19], while the free-endpoint problem and
general stability-modulo-a-subspace were addressed in 1989 by Trentelman [16, 17].
Importantly, all of the indefinite cases made use of the assumption that the dynam-
ics are controllable. Moreover the solutions are incomplete in that only sufficient
conditions for the existence of a finite optimal cost were given (except for the fixed-
endpoint problem). The main contribution of this paper is to extend the above results
for the regular, infinite-horizon, stability-modulo-a-subspace, indefinite case of the LQ
problem. Rather than assuming controllability, we only require stabilizability.

It is well known that in both the positive semidefinite and indefinite cases of
the regular, infinite-horizon, stability-modulo-a-subspace LQ problem, the optimal
cost and optimal controls are given in terms of a particular solution of the algebraic
Riccati equation (ARE) [17, 18]. In the treatment of the regular, infinite-horizon,
indefinite LQ problem, the controllability assumption is crucial in order to utilize the
geometry of the set of all real symmetric solutions of the ARE [11,19]. In particular,
if this solution set is nonempty, there exist a maximal and a minimal solution of the
ARE [11]. The regular, infinite-horizon, fixed-endpoint LQ problem, both definite and
indefinite cases, has always been easier in the sense that the optimal cost and feedback
control law are given in terms of the maximal solution, which is the only solution that
can stabilize the closed-loop system [19,21]. For the regular, infinite-horizon, stability-
modulo-a-subspace, indefinite case, and under the assumption of controllability, the
optimal cost and feedback control law are given by a real symmetric solution to the
ARE that depends on both its maximal and minimal solutions [16]. In contrast, under
the stabilizability assumption, it is unclear which solution of the ARE to select because
the geometry of the set of all real symmetric ARE solutions is less well-behaved. In
particular, the minimal solution may no longer exist [10, 11]. This ambiguity of the
correct choice of ARE solution for the regular, infinite-horizon, stability-modulo-a-
subspace, indefinite LQ problem under merely stabilizable dynamics was discussed by
Geerts [7, 8], but it has remained elusive.

In this paper we give the exact form of the optimal feedback that solves the
regular, infinite-horizon, stability-modulo-a-subspace, indefinite LQ problem under
stabilizable dynamics. Thus we resolve the ambiguity regarding which solution of the
ARE to take. Our result requires two assumptions, which are precisely our sufficient
conditions for well-posedness: existence of a negative semidefinite solution to the
algebraic Riccati inequality (ARI) and stabilizability of the system dynamics. These
assumptions may be compared to the sufficient conditions for well-posedness in [17]:
existence of a negative semidefinite solution to the ARE and controllability of the
system dynamics. The first assumption on existence of a negative semidefinite solution
of the ARE or ARI provides for a lower bound on the value function, based on a
result of Molinari [12]. Our generalization to the ARI is based on an observation by
Geerts [7]. The generalization to the case when the dynamics are stabilizable proves
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to be the more difficult challenge, as discussed above. This extension constitutes the
central contribution of the paper. Finally, we give necessary and sufficient conditions
for optimal controls to exist, which, as pointed out in [17], are nontrivial for regular,
infinite-horizon, non-fixed-endpoint, indefinite LQ problems.

As a further validation of the correctness of our results, we recover known results
for other variants of the regular, infinite-horizon LQ problem by adding assumptions to
match those problems. In the regular, infinite-horizon, stability-modulo-a-subspace,
indefinite case, if we assume controllable dynamics, we obtain the same necessary
and sufficient conditions for the existence of optimal controls, the same form of the
optimal cost, and the same form of the optimal control as stated in [16,17,19]. In the
regular, infinite-horizon, positive semidefinite LQ problem, for both the fixed- and
free-endpoint cases, if we assume positive semidefiniteness, then we again obtain the
same necessary and sufficient conditions for the existence of optimal controls, the same
form of the optimal cost, and the same form of the optimal control as stated in [18].

Our resolution of the gap in the LQ literature provides more than just an answer
to an academic question. Recently, the work in [13] considered a linear term in
the state of the cost functional and a free-endpoint objective, albeit over the finite-
horizon; with a transformation, this cost can be converted to an indefinite problem
with stabilizable but not controllable dynamics. The gap was also recently discussed
in [4], which deals with the cooperative indefinite LQ problem. As such, our result
has applications to game theoretic formulations and economics.

The outline of this paper is as follows. In the remainder of this section we will
introduce most of the notational conventions that will be used. In section 2 we present
the problem statement. In section 3 we summarize the key ingredients needed regard-
ing the geometry of the ARE solutions. In section 4 we state and prove our main
results. In section 5 we compare our main result to existing results in the literature.

Notation. We use the following notation. Let In be the n × n identity matrix
(the subscript is omitted if the dimension is clear from the context). Let P † denote the
(unique) pseudoinverse of P ∈ Rn×m. The set of eigenvalues of A ∈ Rn×n is denoted
by σ(A). A subspace V ⊂ Rn is A-invariant if AV ⊂ V. We use the following subsets of
the complex plane: C− := {s ∈ C | Re(s) < 0}, C0 := {s ∈ C | Re(s) = 0}, and C+ :=
{s ∈ C | Re(s) > 0}. Given a real monic polynomial p there is a unique factorization
p = p− ·p0 ·p+ into real monic polynomials with p−, p0, and p+ having all roots in C−,
C0, and C+, respectively. Then if A ∈ Rn×n and if p is its characteristic polynomial,
we define the spectral subspaces X−(A) := Ker(p−(A)), X 0(A) := Ker(p0(A)), and
X+(A) := Ker(p+(A)). Each of these subspaces is A-invariant and the restriction
of A to X−(A)(X 0(A),X+(A)) has characteristic polynomial p−(p0, p+). For two
subspaces V and W, let V ⊕W denote their direct sum and let V ∼ W denote that
they are isomorphic. For an arbitrary matrix A ∈ Rn×n and subspace V ⊂ Rn we
define the subspace 〈A | V〉 := V+AV+· · ·An−1V, and by further writing V = Ker(W )
for some W ∈ Rp×n we also define 〈V | A〉 := Ker(W )∩Ker(WA) · · · ∩Ker(WAn−1).
For a linear time-invariant system, ẋ = Ax + Bu, the controllable subspace will be
denoted in the usual way 〈A | Im(B)〉. If there is an output y = Cx, then 〈Ker(C) | A〉
denotes the unobservable subspace of (C,A). If M is a real n× n matrix and V is a
subspace of Rn, then M−1V := {x ∈ Rn | Mx ∈ V}. If V is a subspace of Rn, then
V⊥ denotes its orthogonal complement with respect to the standard Euclidean inner
product.

Let R+ := {t ∈ R | t ≥ 0} and Re := R ∪ {−∞,+∞}. Additionally, given
a function f : R → R, the statement that limt→∞ f(t) exists in Re means that
limt→∞ f(t) is equal to either a real number, ∞, or −∞ in the usual sense.
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We denote the space of all measurable vector-valued functions on R+ that are

locally square integrable as Lm2,loc(R+) = {u : R+ → Rm | (∀T ≥ 0)
∫ T
0
u(t)>u(t) dt <

∞}. Let dL : Rn → [0,∞) denote the function giving the minimum Euclidean distance
from a point to a set L ⊂ Rn.

Given a quadratic form on Rn, ω : Rn → R, it is said to be positive definite if
∀x ∈ Rn, ω(x) ≥ 0, and ω(x) = 0 if and only if x = 0; positive semidefinite if ∀x ∈ Rn,
ω(x) ≥ 0; negative definite if −ω is positive definite; negative semidefinite if −ω is
positive semidefinite; and indefinite if ω is neither positive semidefinite nor negative
semidefinite. Writing ω(x) := x>Px for some symmetric matrix P ∈ Rn×n, we say
that the matrix P is positive definite if the quadratic form ω is positive definite and
so on. We write P > 0, P ≥ 0, P < 0, and P ≤ 0 if the matrix is positive definite,
positive semidefinite, negative definite, and negative semidefinite, respectively. Given
symmetric matrices P,Q ∈ Rn×n, we write P < Q if Q − P > 0, and likewise for
the other inequalities. Let Λ denote a subset of the set of all symmetric matrices in
Rn×n. We say that M+ (M−) is the maximal (minimal) element on Λ if M+ ∈ Λ
(M− ∈ Λ) and ∀M ∈ Λ, M ≤M+ (M ≥M−). The maximal and minimal elements,
which are called the extremal elements on Λ, are unique if they exist since Λ forms a
partially ordered set.

2. Problem statement. We consider the linear control system

(1) ẋ = Ax+Bu, x(0) = x0,

where x ∈ Rn and u ∈ Rm. For a control function u ∈ Lm2,loc(R+), let x(·;x0, u) denote
the state trajectory of (1) starting at x0 ∈ Rn. Then for T ≥ 0, the cost function is

(2) JT (x0, u) =

∫ T

0

ω(x(t;x0, u)) dt

with a quadratic instantaneous cost

(3) ω(x, u) := x>Qx+u>Ru =
[
x> u>

]
W

[
x
u

]
, W :=

[
Q 0
0 R

]
, R = Im.

We allow Q to be indefinite, whereas R := Im > 0. More general quadratic cost
functions can be considered, but they can be converted via a feedback transformation
to the form we use here, as in Chapter 10 of [18]. This feedback transformation does
not affect solvability of the problem; hence, there is no loss of generality in our choice
of W .

Because W may be indefinite, we define the set of control inputs that yield a cost
that is either finite, ∞, or −∞:

(4) U(x0) :=
{
u ∈ Lm2,loc(R+)

∣∣ lim
T→∞

JT (x0, u) exists in Re
}
.

Let L ⊂ Rn be a subspace. The set of permissible control inputs such that the state
asymptotically converges to L is

(5) UL(x0) :=
{
u ∈ U(x0) | lim

t→∞
dL(x(t;x0, u)) = 0

}
.

For u ∈ UL(x0), we define

(6) J(x0, u) := lim
T→∞

JT (x0, u).
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We define the optimal cost or value function to be

(7) VL(x0) := inf{J(x0, u) | u ∈ UL(x0)} .

Now we define the linear quadratic optimal control problem with stability-modulo-
L (LQCP)L.

Problem 2.1 ((LQCP)L). Consider the system (1) with the quadratic cost cri-
terion (2). Let L ⊂ Rn be a given subspace. For all x0 ∈ Rn, find the optimal cost
VL(x0) and an optimal control u? ∈ UL(x0) such that VL(x0) = J(x0, u

?).

The (LQCP)L is called regular (as opposed to singular) if R > 0. It is called
positive semidefinite if ω is positive semidefinite on Rn+m and indefinite otherwise. If
L = Rn, the (LQCP)L is called a free-endpoint problem, and if L = 0, it is called a
fixed-endpoint problem. We are particularly interested in characterizing two properties
of the (LQCP)L.

Definition 2.2. We say the (LQCP)L is well-posed if ∀x0 ∈Rn, VL(x0)∈R. We
say the (LQCP)L is attainable if ∀x0 ∈ Rn, there exists a control u? ∈ UL(x0) such
that VL(x0) = J(x0, u

?). Such an input is called optimal. We say the (LQCP)L is
solvable if it is both well-posed and attainable.

3. Preliminaries. The main results on the (LQCP)L are centered on the ARE:

(8) φ(K) := A>K +KA+Q−KBB>K = 0 .

The ARI is given by φ(K) ≥ 0. For convenience, we define

(9) A(K) := A−BBTK.

Also we define the following solution sets:

Γ := {K ∈ Rn×n | K = K>, φ(K) ≥ 0},
∂Γ := {K ∈ Rn×n | K = K>, φ(K) = 0},
Γ− := {K ∈ Γ | K ≤ 0}.

The geometry of the solutions to the ARE can be studied in both the controllable
and stabilizable cases; see, in particular, Chapters 7 and 8 of [11] and also [17]. First
we consider the case when (A,B) is controllable. The next result summarizes what is
known about the extremal solutions in Γ and in ∂Γ.

Theorem 3.1. Suppose (A,B) is controllable.
(i) If Γ 6= ∅, then the maximal and minimal solutions in Γ exist, ∂Γ 6= ∅, its

maximal and minimal solutions exist, and they are identical to the maximal
and minimal solutions in Γ.

(ii) If ∂Γ 6= ∅, then its maximal and minimal solutions K+,K− ∈ ∂Γ satisfy
∀K ∈ ∂Γ, K− ≤ K ≤ K+. Moreover, they are the unique solutions in ∂Γ
such that σ(A(K+)) ⊂ C− ∪ C0 and σ(A(K−)) ⊂ C+ ∪ C0.

Proof. The first statement is Theorem 14(b) in [14]. The second statement was
proved in [19]. See also Theorem 7.5.1, p. 168, in [11].

If ∂Γ 6= ∅, define the gap of the ARE to be ∆ := K+−K−. Let Ω denote the set
of all A(K−)-invariant subspaces contained in X+(A(K−)). The following theorem
was first proven by Willems [19]; see also [11].
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Theorem 3.2 (Theorem 3.1 in [17]). Let (A,B) be controllable and suppose ∂Γ 6= ∅.
If V ⊂ Ω, then Rn = V ⊕∆−1(V⊥). There exists a bijection γ : Ω→ ∂Γ defined by

(10) γ(V) := K−PV +K+(In − PV),

where PV is the projection onto V along ∆−1(V⊥). If K = γ(V), then X+(A(K)) = V,
X 0(A(K)) = Ker(∆), and X−(A(K)) = X−(A(K+)) ∩∆−1(V⊥).

An application of Theorem 3.2 is the main result of [16], which provides a solution
of the (LQCP)L when (A,B) is controllable. To state the sufficient condition for well-
posedness, an additional definition is needed from [16]: for a given subspace L ⊂ Rn
and symmetric matrix K ∈ Rn×n, K is said to be negative semidefinite on L if ∀x ∈ L,
x>Kx ≤ 0, and x>Kx = 0 if and only if Kx = 0. Notice that K ≤ 0 implies that
∀L ⊂ Rn, K is negative semidefinite on L. To see this, fix L ⊂ Rn and note that
K ≤ 0 implies that there exists H ∈ Rp×n for some p such that K = −H>H. Then
∀x ∈ L ⊂ Rn, obviously x>Kx ≤ 0, Kx = 0 implies x>Kx = 0, and

(11) x>Kx = −(Hx)>(Hx) = 0 ⇔ Hx = 0 ⇒ −H>(Hx) = Kx = 0.

Theorem 3.3 (Theorem 4.1 in [16]). Let (A,B) be controllable. Assume ∂Γ 6= ∅
and K− is negative semidefinite on L. Then we have

(i) For all x0 ∈ Rn, VL(x0) is finite.
(ii) For all x0 ∈ Rn, VL(x0) = x>0 K

?x0, where K? := γ(N (L)) and N (L) :=
〈L ∩Ker(K−) | A(K−)〉 ∩ X+(A(K−)).

(iii) For all x0 ∈ Rn, there exists an optimal input u? if and only if Ker(∆) ⊂
L ∩Ker(K−).

(iv) If Ker(∆) ⊂ L ∩ Ker(K−), then for each x0 ∈ Rn, there exists exactly one
optimal input u?, and it is given by the feedback u? = −B>K?x.

This paper can be regarded as a generalization of the previous result to the
stabilizable case. That is, we require weaker assumptions for the sufficient condition
of well-posedness to be able to provide the form of the value function, necessary
and sufficient conditions for attainability, and the form of the optimal control. Our
new assumptions involve the stabilizability of (A,B) rather than controllability, and
the existence of a negative semidefinite solution to the ARI rather than imposing
that specifically K−, a solution to the ARE, is negative semidefinite on L. Because
necessary and sufficient conditions for well-posedness are still an open problem, note
that we have not attempted to generalize our second condition in terms of the existence
of an ARI solution that is negative semidefinite on L. Regardless, the main technical
obstacle is that there is no direct generalization of Theorem 3.2 to the stabilizable
case; indeed the minimal solution K− may not exist in this case.

Now supposing that (A,B) is stabilizable, we can write the system (1) in the
Kalman controllability decomposition. Let C = 〈A | Im(B)〉 ⊂ Rn be the controllable
subspace with dimension n1 ≤ n. Also, let X2 be any complement such that

(12) Rn = C ⊕ X2.

Then the system matrices have the block form:

(13) A =

[
A1 A12

0 A2

]
, B =

[
B1

0

]
.

It can be shown that coordinate transformations only affect the solutions K ∈ ∂Γ of
the (LQCP)L (in any endpoint case) up to a congruent transformation, so there is no
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loss of generality to assume that (A,B) already has the form (13). If we write the
symmetric matrices Q and K in block form

(14) Q =

[
Q1 Q12

Q>12 Q2

]
, K =

[
K1 K12

K>12 K2

]
,

then φ(K) also can be decomposed in block form:

φ(K) =

[
φ1(K1) A1(K1)>K12 +K12A2 +K1A12 +Q12

∗ A>2 K2 +K2A2 +K>12A12 +A>12K12 +Q2 −K>12B1B
>
1 K12

]
.

(15)

We note that φ(K) is symmetric, and φ1(K1) is defined below in (17). Let

(16) A1(K1) := A1 −B1B
>
1 K1.

Then φ(K) = 0 gives rise to three equations:

φ1(K1) := AT1K1 +K1A1 +Q1 −K1B1B
>
1 K1 = 0,(17)

A1(K1)>K12 +K12A2 = −(Q12 +K1A12),(18)

A>2 K2 +K2A2 = K>12B1B
>
1 K12 −K>12A12 −A>12K12 −Q2 .(19)

The first equation (17) is a quadratic equation with (A1, B1) controllable. Its solutions
K1 are decoupled from K12 and K2, so this lower order (n1 × n1) ARE equation can
be solved first. The relevant solution sets are denoted as

Γ1 := {K1 ∈ Rn1×n1 | K>1 = K1, φ1(K1) ≥ 0},
∂Γ1 := {K1 ∈ Rn1×n1 | K>1 = K1, φ1(K1) = 0},
Γ1− := {K1 ∈ Γ1 | K1 ≤ 0},
∂Γ1− := {K1 ∈ ∂Γ1 | K1 ≤ 0}.

Using any solution K1 ∈ ∂Γ1, if it exists, (18) is a linear (Sylvester) equation for K12

which may have no solutions, infinitely many solutions, or a unique solution. The third
equation (19) is also a linear (Sylvester) equation. Using any solution K12, if it exists,
gives a unique solution to K2. To see this, recall that if M1 ∈ Rn1×n1 , M2 ∈ Rn2×n2 ,
and M3 ∈ Rn1×n2 are given matrices, then the Sylvester equation M1X+XM2 = M3

has a unique solution X ∈ Rn1×n2 exactly when σ(M1) ∩ σ(−M2) = ∅ [5]. Because
stabilizability of (A,B) implies σ(A2) ⊂ C−, then by applying the Sylvester solvability
criteria to (19), we have that σ(A>2 ) ∩ σ(−A2) = ∅, and so K2 is unique for any
given K12.

In preparation for characterizing the existence and form of the value function
analogously to Theorem 3.3(i) and (ii), we consider existence of extremal solutions in
∂Γ. It is known that when (A,B) is stabilizable, then the maximal solution K+ ∈ ∂Γ
exists, whereas the minimal solution K− may not exist.

Theorem 3.4 (Theorem 2.1 in [10]; Theorem 7.9.3, p. 195, in [11]). Suppose
(A,B) is stabilizable and ∂Γ 6= ∅. Then the unique maximal solution K+ ∈ ∂Γ exists.
Moreover, σ(A(K+)) ⊂ C− ∪ C0.

To obtain a generalization of Theorem 3.3 to the stabilizable case, one of the major
steps in what follows is to apply Theorem 3.3 to the controllable subsystem (A1, B1)
and its ARE (17). Theorem 3.3 requires that the minimal solution K−1 of (17) exists
and is negative semidefinite on L within the controllable subspace. The following
lemma provides for the existence of this minimal, negative semidefinite solution.
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Lemma 3.5. Suppose (A,B) is stabilizable, Γ− 6= ∅, and the state space is decom-
posed as in (12). Then the minimal solution K−1 ∈ ∂Γ1− exists.

Proof. Let K ∈ Γ− so that φ(K) ≥ 0 and K ≤ 0. Consider K, Q, and φ(K)
in block form (14)–(15). Applying Theorem A.1 to both K and φ(K), we obtain
φ1(K1) ≥ 0 and K1 ≤ 0, which implies K1 ∈ Γ1− 6= ∅. Since also (A1, B1) is
controllable, we can apply Theorem 3.1(i) to conclude K+

1 ,K
−
1 ∈ Γ1, the maximal and

minimal solutions, exist. Moreover ∂Γ1 6= ∅ and its maximal and minimal elements
are precisely K+

1 and K−1 . Because K1 ≤ 0, K−1 ∈ Γ1 is minimal, and K1,K
−
1 ∈ Γ1,

we have that K−1 ≤ K1 ≤ 0. That is, K−1 ∈ ∂Γ1−, as desired.

4. Solution of the (LQCP)L. In this section we present the solution of the
(LQCP)L. That is, we give sufficient conditions for well-posedness, the form of the
value function, necessary and sufficient conditions for attainability, and the form of
the optimal control. We assume that L ⊂ Rn is a given subspace. Well-posedness and
the form of the value function are addressed through the following sufficient condition,
which is also found in [7, 8].

Assumption 4.1. We assume that (A,B) is stabilizable and Γ− 6= ∅.

The following theorem states that the value function is given in terms of a
quadratic form of a particular solution to the ARE.

Theorem 4.2 (Theorem 2.1 in [7], Lemma 5 in [12]). Consider the (LQCP)L
and suppose Assumption 4.1 holds. Then there exists a unique K? ∈ ∂Γ such that
∀x0 ∈ Rn, VL(x0) = x>0 K

?x0.

Next we turn to the form of K?. Our approach is to choose a suitable basis based
on the Kalman controllability decomposition (12) and on Theorem 3.2, following the
same method in [17]. Then we systematically determine each of the blocks of K?.
First we determine K?

1 using results from [16]; second, we compute K?
12 assuming

K?
1 is known; finally, we compute K?

2 assuming K?
12 is known. Now we give a more

detailed roadmap on how the technical results are obtained.
The choice of K?

1 is resolved by applying Theorem 3.3 to the controllable subsys-
tem. We construct a smaller optimal control problem on the controllable subsystem.
Intuitively, the smaller optimal control problem should be equivalent to the original
(LQCP)L for initial conditions in the controllable subspace. After proving this equiv-
alence, we apply Theorem 3.3 to obtain K?

1 = K1, where K1 is defined in (22) below.
Next, we fix the choice of K?

1 that solves (17) and turn to the solution set of (18).
Generally, this linear Sylvester equation may have an infinite number of solutions,
making the choice of K?

12 nontrivial to determine. However, once K?
12 is determined,

then K?
2 is uniquely determined from the linear Sylvester equation (19), since (A,B)

is stabilizable. Thus K?
12 is the main obstacle. Interestingly, under a restrictive reg-

ularity assumption introduced in [10], the solution set of (18) collapses to a single
element. On the other hand, Theorem 4.2 states that K?

12 exists without the regu-
larity assumption. We forgo the assumption and search for a more general principle
that can resolve the choice of K?

12.
Our approach involves exploiting the structure within the Kalman controllability

decomposition, similarly as in [17]. Based on a modal decomposition of A1(K1), the
Sylvester equation (18) with K1 = K?

1 splits into three decoupled linear Sylvester
equations (34)–(36). The problematic part of K?

12, denoted K∗12,1 is then isolated to
(34) only. Regarding the solution of (34), it is well known (see Theorem 10.13 of [18])
that for stabilizable systems with positive semidefinite cost in the free-endpoint case,
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the solution of the ARE is given by the smallest positive semidefinite solution in ∂Γ.
Also, 0 ∈ Γ if and only if Q ≥ 0 (see, for example, equation (1.16) of [8]) and so 0 ∈ Γ−
and x>0 0x0 = 0 gives a lower bound on the value function. Using the previous two
observations, we find through repeated trials that K?

12 = 0 in the positive semidefinite
case. At this point we make a guess that the same form of K?

12 would arise in the
indefinite case. Finally, we unambiguously deduce that K?

12 = 0.
Once we have fully characterized the form of K?, obtaining necessary and suffi-

cient conditions for attainability follows analogously to the proof presented in [16,17].
We require only a few augmentations to account for the uncontrollable (but stable)
dynamics. Now we proceed to the actual development.

The first step is to fix a suitable basis so that the blocks of K? can be computed.
Consider the Kalman controllability decomposition (12), and suppose Assumption 4.1
holds. Then by Lemma 3.5, the unique minimal solution K−1 ∈ ∂Γ1 6= ∅ exists and
K−1 ≤ 0. Similarly, because (A1, B1) is controllable and ∂Γ1 6= ∅, we can apply
Theorem 3.1 to obtain the unique maximal solution K+

1 ∈ ∂Γ1. Let ∆1 := K+
1 −K

−
1

be the gap associated with (17), the ARE in the controllable subspace. Following
[16, 17], we can further decompose the controllable subspace based on Theorem 3.2.
To that end, define the following subspaces of Rn1 :

L1 := L ∩ C,(20)

N1(L1) := 〈L1 ∩Ker(K−1 ) | A1(K−1 )〉 ∩ X+(A1(K−1 )) .(21)

Here and for the remainder of this section, for simplicity we do not notationally dif-
ferentiate a subspace that can belong to various vector spaces of different dimensions.
For example, although technically L ∩ C ⊂ Rn, we can view L1 as a subspace of
Rn1 ∼ C.

Let PN1(L1) : Rn1 → N1(L1) be the projection onto N1(L1) along ∆−11 (N1(L1)⊥).

Because N1(L1) is an A1(K−1 )-invariant subspace contained in X+(A1(K−1 )) for any
L1, we can apply Theorem 3.2 to obtain a solution K1 ∈ ∂Γ1 of the ARE of the form

(22) K1 := γ(N1(L1)) = K−1 PN1(L1) +K+
1 (In1 − PN1(L1)).

Following Theorem 3.2, define the following subspaces in C ∼ Rn1 :

X1,1 := X+(A1(K1)) = N1(L1),(23)

X1,2 := X 0(A1(K1)) = Ker(∆1),(24)

X1,3 := X−(A1(K1)) = X−(A1(K+
1 )) ∩∆−11 (N1(L1)⊥).(25)

Then the state space decomposition (12) splits further into

(26) Rn = X1,1 ⊕X1,2 ⊕X1,3 ⊕X2 .

Let n1,i := dim(X1,i) for i = 1, 2, 3 so that n1 = n1,1 + n1,2 + n1,3 ≤ n. Without loss
of generality (after a change of coordinates), the system matrices have the block form

(27) A =

[
A1 A12

0 A2

]
=


A1,11 A1,12 A1,13 A12,1

A1,21 A1,22 A1,23 A12,2

A1,31 A1,32 A1,33 A12,3

0 0 0 A2

 , B =

[
B1

0

]
=


B1,1

B1,2

B1,3

0

 .D
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The cost matrix Q and each K ∈ Γ have the block form

Q =

[
Q1 Q12

Q>12 Q2

]
=


Q1,11 Q1,12 Q1,13 Q12,1

Q>1,12 Q1,22 Q1,23 Q12,2

Q>1,13 Q>1,23 Q1,33 Q12,3

Q>12,1 Q>12,2 Q>12,3 Q2

 ,(28)

K =

[
K1 K12

K>12 K2

]
=


K1,11 K1,12 K1,13 K12,1

K>1,12 K1,22 K1,23 K12,2

K>1,13 K>1,23 K1,33 K12,3

K>12,1 K>12,2 K>12,3 K2

 .
Our goal is to compute all of the blocks in (28) for K = K?. First we resolve the
choice of K?

1 .

Theorem 4.3. Consider the (LQCP)L and suppose Assumption 4.1 holds. Then
in the state space decomposition (12), K?

1 = K1, as given in (22).

Proof. Since (A,B) is stabilizable, without loss of generality, (A,B) has the form
(13), and Q and K have the block form (14). Defining x := (x1, x2), the Kalman
controllability decomposition is

ẋ1 = A1x1 +A12x2 +B1u, x1(0) = x1,0,(29)

ẋ2 = A2x2, x2(0) = x2,0.(30)

The controllable subspace is C = {x ∈ Rn | x2 = 0}. If x2,0 = 0, then ∀t ≥ 0,
x2(t) = 0 and x(t) ∈ C. Thus, we can define a new (LQCP)L1

on C with dynamics
ẋ1 = A1x1 + B1u, x1(0) = x1,0, and (A1, B1) is controllable. The cost function is

J1T (x1,0, u) :=
∫ T
0
ω1(x1(t;x1,0, u), u(t)) dt with ω1(x1, u) := x>1 Q1x1 + u>u. Let

L1 = L ∩ C be the terminal subspace and let d1L1 : Rn1 → [0,∞) be the distance
function. The input spaces are

U1(x1,0) :=
{
u ∈ Lm2,loc(R+)

∣∣ lim
T→∞

J1T (x1,0, u) exists in Re
}
,(31)

U1L1
(x1,0) :=

{
u ∈ U1(x1,0) | lim

t→∞
d1L1

(x1(t;x1,0, u)) = 0
}
.(32)

The optimal cost is V1L1
(x1,0) := inf{limT→∞ J1T (x1,0, u) | u ∈ U1L1

(x1,0)}. The
ARE for the (LQCP)L1

is φ1(K1) = 0 as in (17) with solution set ∂Γ1. Consider
any initial condition x0 = (x1,0, 0) ∈ C and any control u ∈ Lm2,loc(R+). Then
x(t;x0, u)=(x1(t;x1,0, u), 0) and ω(x(t;x0, u), u(t))=ω1(x1(t;x1,0, u), u(t)), so ∀T ≥ 0,
JT (x0, u) = J1T (x1,0, u). Consequently, we have U(x0) = U1(x1,0). Also,
limt→∞ dL(x(t;x0, u)) = 0 is equivalent to limt→∞ d1L1(x1(t;x1,0, u)) = 0. Thus
UL(x0) = U1L1

(x1,0). With all the above, we conclude that VL(x0) = V1L1
(x1,0) for

x0 = (x1,0, 0) ∈ C.
Since (A1, B1) is controllable, we can apply the results of [16] to solve the (LQCP)L1

.

Since Γ− 6= ∅, we can apply Lemma 3.5 to get that the minimal solution K−1 ∈ ∂Γ1−
exists. Since K−1 ≤ 0, from (11) it follows that K−1 is negative semidefinite on L1.
By Theorem 3.3(ii), V1L1

(x1,0) = x>1,0K1x1,0 with K1 given in (22). Since we have
already shown that VL(x0) = V1L1

(x1,0) for x0 = (x1,0, 0) ∈ C, it can be easily shown
that K?

1 = K1.

To resolve the remaining blocks of K?, we recall some results from [17]. For this
to apply, we continue to assume that the state space is decomposed according to (26).
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It was shown in (5.5) and (5.7) of [17] that K1 in (22) and the closed-loop system
matrix A1(K1) using K1 have the form

(33) K1 =

0 0 0
0 K−1,22 K−1,23
0 K−>1,23 K+

1,33

 , A1(K1) =

A1,11 0 0
0 A1,22 0
0 0 A1,33

 ,
where σ(A1,11) ⊂ C+, σ(A1,22) ⊂ C0, and σ(A1,33) ⊂ C−. For the choice of K1 = K1

and substituting (27), (28), and (33), the second ARE equation (18) splits into three
linear Sylvester equations:

A
>
1,11K12,1 +K12,1A2 = −Q12,1,(34)

A
>
1,22K12,2 +K12,2A2 = −(Q12,2 +K−1,22A12,2 +K−1,23A12,3),(35)

A
>
1,33K12,3 +K12,3A2 = −(Q12,3 +K−>1,23A12,2 +K+

1,33A12,3) .(36)

Using these facts, we can now resolve the remaining blocks of K?. The main
difficulty is that (34) may have an infinite number of solutions for the K12,1 block

since σ(A
>
1,11) ∩ σ(−A2) is not necessarily empty. The key insight is that K?

12,1 can
be unambiguously determined by invoking Theorem 4.5(ii) given below, that any
negative semidefinite solution KN ∈ Γ− to the ARI provides a lower bound to the
value function. In order to utilize this property to resolve the choice of K?

12,1, the
next lemma describes the block structure of any KN ∈ Γ−.

Lemma 4.4. Suppose Assumption 4.1 holds and the state space is decomposed as
in (26). Then ∀KN ∈ Γ−, KN has the block form

KN =


0 0 0 0
0 K−1,22 K−1,23 K12,2

0 K−>1,23 K1,33 K12,3

0 K>12,2 K>12,3 K2

 .
Proof. Let KN ∈ Γ− have the block form in (28). Since Γ− 6= ∅ and (A,B) is

stabilizable, we can apply Lemma 3.5 to obtain that the minimal solution K−1 ∈ ∂Γ1−
exists. Also ∂Γ1− ⊂ ∂Γ1 6= ∅. Because KN ∈ Γ− ⊂ Γ, by Theorem A.1 we establish
that its upper left block satisfies K1 ∈ Γ1. Since (A1, B1) is controllable and ∂Γ1 6= ∅,
we can apply Theorem 3.1(i) to get that the maximal solution K+

1 ∈ ∂Γ1 also exists.
Moreover, Theorem 3.1(i) also implies that K−1 ,K

+
1 ∈ Γ1, and consequently K−1 ≤

K1 ≤ K+
1 . Since ∂Γ1 6= ∅, it has been shown (see equation (5.6) in [17] and equation

(5.4) in [16]) that K+
1 , K−1 , and ∆1 have the block form

K+
1 =

K+
1,11 0 0

0 K+
1,22 K+

1,23

0 K+>
1,23 K+

1,33

, K−1 =

0 0 0
0 K−1,22 K−1,23
0 K−>1,23 K−1,33

, ∆1=

∆1,11 0 0
0 0 0
0 0 ∆1,33

,
(37)

where K+
1,22 = K−1,22, K+

1,23 = K−1,23, and ∆1,33 = K+
1,33 − K−1,33. Now consider

K1 ≥ K−1 in block form, assuming the decomposition of K−1 in (37). We have

K1 −K−1 =

 K1,11 − 0 K1,12 − 0 K1,13 − 0
(K1,12 − 0)> K1,22 −K−1,22 K1,23 −K−1,23
(K1,13 − 0)> (K1,23 −K−1,23)> K1,33 −K−1,33

 ≥ 0 .D
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Using Theorem A.1, we find K1,11 ≥ 0. Since KN ∈ Γ− by assumption, KN ≤ 0.
Applying Theorem A.1 to KN =

[
K1,11 ∗
∗ ∗

]
, we get K1,11 ≤ 0. Thus K1,11 = 0. Now

consider again K−1 ≤ K1 ≤ K+
1 with the information that K1,11 = 0:0 0 0

0 K−1,22 K−1,23
0 (K−1,23)> K−1,33

 ≤
 0 K1,12 K1,13

K>1,12 K1,22 K1,23

K>1,13 K>1,23 K1,33

 ≤
K+

1,11 0 0

0 K−1,22 K−1,23
0 (K−1,23)> K+

1,33

 ,
where we have K+

1,22 = K−1,22 and K+
1,23 = K−1,23 as in (37). We claim that K1,12 = 0,

K1,13 = 0, K1,22 = K−1,22, and K1,23 = K−1,23. First, we have

K1 −K−1 =

 0 K1,12 K1,13

K>1,12 ∗ ∗
K>1,13 ∗ ∗

 ≥ 0.

Applying Theorem A.1 again, we get (I−00†) [K1,12 K1,13 ] = 0, so that K1,12 = 0 and
K1,13 = 0. Then K1 −K−1 ≥ 0 reduces to0 0 0

0 K1,22 −K−1,22 K1,23 −K−1,23
0 (K1,23 −K−1,23)> K1,33 −K−1,33

 ≥ 0,

which implies by Theorem A.1 that[
K1,22 −K−1,22 K1,23 −K−1,23

(K1,23 −K−1,23)> K1,33 −K−1,33

]
≥ 0.

Similarly, K+
1 −K1 ≥ 0 gives

(38)

[
K−1,22 −K1,22 K−1,23 −K1,23

(K−1,23 −K1,23)> K+
1,33 −K1,33

]
≥ 0.

Applying Theorem A.1 to the previous two statements, we get K−1,22 ≤ K1,22 ≤ K−1,22,

so K1,22 = K−1,22. Then rewriting the previous inequality (38)[
0 K−1,23 −K1,23

(K−1,23 −K1,23)> K+
1,33 −K1,33

]
≥ 0.

Applying Theorem A.1, we get (I − 00†)(K−1,23−K1,23) = 0, so K1,23 = K−1,23. So far
we have for KN ∈ Γ−

KN =


0 0 0 K12,1

0 K−1,22 K−1,23 K12,2

0 (K−1,23)> K1,33 K12,3

K>12,1 K>12,2 K>12,3 K2

 ≤ 0.

Then −KN ≥ 0 has the block form 0 0 −K12,1

0 ∗ ∗
−K>12,1 ∗ ∗

 ≥ 0.

Applying Lemma A.2, we get K12,1 = 0.
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In the next result we completely characterize the form of K?. Before proceeding
with this result, we collect some well-known results about the cost function.

Theorem 4.5. Consider the system (1) with the cost function (2)–(3). Let x0 ∈
Rn, T ≥ 0, and u ∈ Lm2,loc(R+).

(i) Let K ∈ ∂Γ. Then JT (x0, u) =
∫ T
0
‖u(t) + B>Kx(t)‖2 dt + x>0 Kx0−

x>(T )Kx(T ), where x(t) := x(t;x0, u).
(ii) For all x0 ∈ Rn and KN ∈ Γ−, VL(x0) ≥ x>0 KNx0.
(iii) Suppose Assumption 4.1 holds. If J(x0, u) = x>0 K

?x0, then u = −B>K?x
and limT→∞ x>(T )K?x(T ) = 0.

Proof. Statement (i) is standard. See, for instance, [19] or [17]. Statement (ii) is
Proposition 1.8 of [7]. See also Lemma 4.4 of [17]. Statement (iii) is Theorem 2.8(c)
of [7]. See also the proof of Theorem 5.1(iii) in [17].

Theorem 4.6. Consider the (LQCP)L and suppose Assumption 4.1 holds. Then
in the state space decomposition (26), K? ∈ ∂Γ has the form

(39) K? =


0 0 0 0
0 K−1,22 K−1,23 K?

12,2

0 K−>1,23 K+
1,33 K?

12,3

0 (K?
12,2)> (K?

12,3)> K?
2

 ,
where K?

12,2 is the unique solution to (35), K?
12,3 is the unique solution to (36), and

K?
2 is the unique solution to (19) with K12 = K?

12.

Proof. By Theorem 4.3, K?
1 = K1 with the form of K1 given in (22). By Theo-

rem 4.2, K? ∈ ∂Γ. Next we consider (18). Using the decompositions above and with
the choice K1 = K1, the second ARE equation (18) splits into (34), (35), and (36).
Since σ(A1,22) ⊂ C0, σ(A1,33) ⊂ C−, and σ(−A2) ⊂ C+, (35) and (36) have unique
solutions K?

12,2 and K?
12,3, respectively [5]. Similarly, (19) has a unique solution K?

2 ,
assuming K12 = K?

12. At this point we know that K? has the block form

(40) K? =


0 0 0 K?

12,1

0 K−1,22 K−1,23 K?
12,2

0 K−>1,23 K+
1,33 K?

12,3

(K?
12,1)> (K?

12,2)> (K?
12,3)> K?

2

 .
Comparing to (39), it remains only to show that K?

12,1 = 0. By Theorem 4.2, VL(x0) =

x>0 K
?x0. Let KN ∈ Γ−. By Theorem 4.5(ii), ∀x0 ∈ Rn, VL(x0) = x>0 K

?x0 ≥
x>0 KNx0; that is, K? ≥ KN . Using the block form of K? in (40) and the block form
of KN in Lemma 4.4, we have

K?−KN =


0 0 0 K?

12,1

0 0 0 K?
12,2 −K12,2N

0 0 K+
1,33 −K1,33N K?

12,3 −K12,3N

(K?
12,1)> (K?

12,2 −K12,2N )> (K?
12,3 −K12,3N )> K?

2 −K2N

≥ 0.

Applying Lemma A.2 yields that K?
12,1 = 0, as desired.

Remark 4.7. We observe from the form of K? that K?
12,1 = 0. If we substitute

K?
12,1 = 0 into (34), we get that Q12,1 = 0. One can derive the fact that Q12,1 = 0

via a separate argument, and this provides an independent validation of our result
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that K?
12,1 = 0. Suppose Assumption 4.1 holds. Take any symmetric K with the

special form

K =


0 0 0 0
0 K1,22 K1,23 K12,2

0 K>1,23 K1,33 K12,3

0 K>12,2 K>12,3 K2

 .
We decompose A and B as in (27). Using a result analogous to equation (5.2) in [17],
it can be shown that N1(L1) is A1-invariant, and this implies A1,21 = A1,31 = 0.
Then by direct computation φ(K) has the form

φ(K) =


Q1,11 Q1,12 Q1,13 Q12,1

Q>1,12 ∗ ∗ ∗
Q>1,13 ∗ ∗ ∗
Q>12,1 ∗ ∗ ∗

 .
Now choose the upper left block of the above K to be K−1 ∈ ∂Γ. By (37) this choice
is consistent with the form of K above. Since the upper left block of φ(K) is written
as φ1(K1) and we know that φ1(K−1 ) = 0, it immediately follows that Q1,11 = 0,
Q1,12 = 0, and Q1,13 = 0. Next, since Γ− 6= ∅, let KN ∈ Γ−. By Lemma 4.4, KN has
the special form above. Then we have

φ(KN ) =


0 0 0 Q12,1

0 ∗ ∗ ∗
0 ∗ ∗ ∗

Q>12,1 ∗ ∗ ∗

 ≥ 0.

By applying Lemma A.2, we conclude that Q12,1 = 0.

We conclude this section by applying Theorem 4.6 to obtain necessary and suf-
ficient conditions for attainability of the (LQCP)L. Remarkably, the attainability
result depends only on the controllable subspace.

Theorem 4.8. Suppose Assumption 4.1 holds and the state space is decomposed
as in (12). Then the (LQCP)L is attainable if and only if Ker(∆1) ⊂ L1 ∩Ker(K−1 ).

Proof. Due to Assumption 4.1, we may further assume that the state space is de-
composed according to (26). Let W1 ∈ Rn1×n1 be a matrix such that Ker(W1) =
L1 and let d1L1

: Rn1 → [0,∞) be the distance function in Rn1 to L1. Since
X1,1 = 〈L1 ∩ Ker(K−1 ) | A1(K−1 )〉 ∩ X+(A1(K−1 )), we have X1,1 ⊂ 〈Ker(W1) ∩
Ker(K−1 ) | A1(K−1 )〉 ⊂ Ker(W1) ∩Ker(K−1 ) = Ker([K

−
1

W1
]). We claim

(41)

[
K−1
W1

]
=
[
0 D2 D3

]
.

Proof of Claim. Let x1 ∈ X1,1. Then x1 ∈ Ker(K
−
1

W1
) =: Ker([D1 D2 D3 ]). Also

since x1 ∈ X1,1, in coordinates it has the form x1 = (x1,1, 0, 0). Then [D1 D2 D3 ]x1 =
D1x1,1 = 0. Since x1,1 is arbitrary, we get D1 = 0, as desired.

(⇒) Suppose the (LQCP)L is attainable. Let x0 ∈ Rn. By definition there
exists u? ∈ UL(x0) such that VL(x0) = J(x0, u

?). By Theorem 4.2 we know VL(x0) =
x>0 K

?x0, where K? ∈ ∂Γ, and by Theorem 4.6, K? is given in (39). Now we can apply
Theorem 4.5(iii) to get u? = −B>K?x. The closed-loop dynamics are ẋ = A(K?)x.
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Let x := (x1, x2) := (x1,1, x1,2, x1,3, x2) according to the decomposition (26). Then
using the block form of A1(K?

1 ) = A(K1) in (33), we have

(42) ẋ =

[
A1(K?

1 ) ∗
0 A2

] [
x1
x2

]
=


A1,11 0 0 A12,1

0 A1,22 0 A12,2

0 0 A1,33 A12,3

0 0 0 A2



x1,1
x1,2
x1,3
x2

 ,
where σ(A1,11) ⊂ C+, σ(A1,22) ⊂ C0, σ(A1,33) ⊂ C−, and by stabilizability, σ(A2) ⊂
C−. Using the variation of constants formula we get that at t = T

(43) x1,i(T ) = eA1,iiTx1,i(0) +

∫ T

0

eA1,ii(T−τ)A12,ie
A2τx2(0) dτ, i = 1, 2, 3 .

Since σ(A2) ⊂ C−, limT→∞ x2(T ) = 0. Using (43) for i = 3, σ(A1,33) ⊂ C−, and the
fact that limT→∞ x2(T ) = 0, we also get limT→∞ x1,3(T ) = 0. Now using (39), the
block form of K−1 given in (37), and the fact that K+

1,33 = ∆1,33 +K−1,33, we have

x>K?x = x>1 K
?
1x1 + 2x>1 K

?
12x2 + x>2 K

?
2x2

= x>1 K
−
1 x1 + x>1,3∆1,33x1,3 + 2(x>1,2K

?
12,2 + x>1,3K

?
12,3)x2 + x>2 K

?
2x2 .(44)

Using this expression combined with the fact that limT→∞ x1,3(T ) = 0, limT→∞ x2(T )
= 0, and limT→∞ x>(T )K?x(T ) = 0 from Theorem 4.5(iii), we get

(45) lim
T→∞

x>(T )K?x(T ) = lim
T→∞

(
x>1 (T )K−1 x1(T ) + 2x>1,2(T )K?

12,2x2(T )
)

= 0 .

Now we observe that limT→∞ 2x>1,2(T )K?
12,2x2(T ) = 0 because σ(A1,22) ⊂ C0 and

σ(A2) ⊂ C−. Returning to (45), this implies that also limT→∞ x>1 (T )K−1 x1(T ) = 0.
We have assumed that u? ∈ UL(x0) and (A,B) is stabilizable. Therefore, limT→∞

dL∩C(x(T )) = 0, and thus within the controllable subspace limT→∞ d1L1
(x1(T )) = 0.

Since L1 = Ker(W1), limT→∞W1x1(T ) = 0. Meanwhile by Lemma 3.5, K−1 le 0.
Since limT→∞ x>1 (T )K−1 x1(T ) = 0, by taking the limit in (11) we have that

limT→∞K−1 x1(T ) = 0. Overall, we have limT→∞[K
−
1

W1
]x1(T ) = 0. Using (41), this

gives limT→∞(D2x1,2(T )+D3x1,3(T )) = 0. We already know that limT→∞ x1,3(T ) = 0,
so we get limT→∞D2x1,2(T ) = 0. However, σ(A1,22) ⊂ C0 and x1,2(0) is arbi-
trary, so D2 = 0. Finally, we observe that if x1 ∈ X1,2, then [ 0 0 D3 ]x1 = 0 since
x1 = (0, x1,2, 0). That is, X1,2 ⊂ Ker ([ 0 0 D3 ]). In sum, we have

(46) X1,2 = Ker(∆1) ⊂ Ker
([

0 0 D3

])
= Ker

([
K−1
W1

])
= L1 ∩Ker(K−1 ) .

(⇐) Suppose that Ker(∆1) ⊂ L1∩Ker(K−1 ). Let x0 ∈ Rn. To show attainability,
we must find an optimal control. Consider the candidate uc := −B>K?x, where
K? is given in (39). We must show VL(x0) = J(x0, u

c) and uc ∈ UL(x0). The
closed-loop dynamics using uc are given in (42). Following the same arguments as
above we have that limT→∞ x2(T ) = 0 and limT→∞ x1,3(T ) = 0. By assumption,

Ker(∆1) ⊂ L1∩Ker(K−1 ). From above, L1∩Ker(K−1 ) = Ker([K
−
1

W1
]) = Ker ([ 0 D2 D3 ]).

We claim that D2 = 0. To see this, let x1 ∈ Ker(∆1) = X1,2. Then x1 = (0, x1,2, 0).

D
ow

nl
oa

de
d 

03
/1

1/
18

 to
 1

29
.1

32
.2

11
.1

43
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INDEFINITE LINEAR QUADRATIC OPTIMAL CONTROL 511

Since Ker(∆1) ⊂ Ker ([ 0 D2 D3 ]) we have [ 0 D2 D3 ]x1 = D2x1,2 = 0. Since x1,2 is
arbitrary, D2 = 0. Using the block form of K−1 in (37), we have

[
K−1
W1

]
=


0 0 0
0 K−1,22 K−1,23
0 K−>1,23 K−1,33
W11 W12 W13

 =
[
0 0 D3

]
.

This implies K−1,22 = K−1,23 = 0. Now we observe K? ∈ ∂Γ by Theorem 4.2 and
uc ∈ Lm2,loc(R+) for any fixed T ≥ 0. Therefore, we can apply Theorem 4.5(i) with
K = K? and u = uc to get

JT (x0, u
c) = x>0 K

?x0 − x(T )>K?x(T ) .(47)

We claim that limT→∞ x>(T )K?x(T ) = 0. Using the expansion of x(T )>K?x(T )
given in (44), and the fact that limT→∞ x2(T ) = 0 and limT→∞ x1,3(T ) = 0, we get
limT→∞ x>(T )K?x(T ) = limT→∞ x>1 (T )K−1 x1(T ). Using the available information
about the block form of K−1 and that limT→∞ x1,3(T ) = 0, we find

lim
T→∞

x>(T )K?x(T ) = lim
T→∞

x>1 (T )

0 0 0
0 0 0
0 0 K−1,33

x1(T )

= lim
T→∞

x>1,3(T )K−1,33x1,3(T ) = 0 .

Returning to (47), we have limT→∞ JT (x0, u
c) = J(x0, u

c) = x>0 K
?x0, as desired.

Finally, we must show uc ∈ UL(x0), and particularly limT→∞ dL(x(T )) = 0. Since
limT→∞ x1,3(T ) = 0, we have that

lim
T→∞

[
K−1
W1

]
x1(T ) = lim

T→∞

[
0 0 D3

]
x1(T ) = D3x1,3(T ) = 0.

Thus, limT→∞W1x1(T ) = 0, which implies limT→∞ d1L1
(x1(T )) = 0. Since L1 =

L ∩ C and limT→∞ x2(T ) = 0, we have limT→∞ dL(x(T )) = 0. Thus, uc ∈ UL(x0), as
desired.

We collect all of the previous results to obtain the culminating result on the
solution of the (LQCP)L. It is a generalization of Theorem 3.3 for the case of (A,B)
controllable to the case when (A,B) is stabilizable.

Theorem 4.9. Consider the (LQCP)L. Suppose Assumption 4.1 holds and the
state space is decomposed as in (12). Then we have

(i) The problem is well-posed.
(ii) For all x0 ∈ Rn, VL(x0) = x>0 K

?x0.
(iii) For all x0 ∈ Rn, the problem is attainable if and only if Ker(∆1) ⊂ L1 ∩

Ker(K−1 ).
(iv) If the problem is attainable, then for each x0 ∈ Rn, there exists exactly one

optimal input u?, and it is given by u? = −B>K?x.

Proof. Statements (i) and (ii) follow from Theorem 4.2. The form of K? follows
from Theorem 4.6. Statement (iii) is an immediate consequence of Theorem 4.8.
Statement (iv) follows from Theorem 4.5(iii).
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5. Discussion. In this section we discuss several special cases of our main result.
This includes a comparison with classical results in the positive semidefinite case.
First, we consider the special case whenN1(L1) = 0 which was also treated in Theorem
6.1 of [17]. From our experience it is only in exceptional cases that N1(L1) 6= 0. The
following result shows that when N1(L1) = 0, then K? = K+, the maximal solution in
∂Γ. This result has practical significance because there are many powerful algorithms
for numerically finding the maximal solution of the ARE.

Theorem 5.1. Consider the (LQCP)L, suppose that Assumption 4.1 holds, and
suppose that the state space decomposed as in (12). Then N1(L1) = 0 if and only if
K∗ = K+, where K+ ∈ ∂Γ is the maximal solution.

Proof. (Only if) Suppose N1(L1) = 0. By Theorem 4.6, K? := [
K?

1 K?
12

K?>
12 K?

2
] ∈ ∂Γ,

where K?
1 = K1 = γ(N1(L1)). By assumption, PN1(L1) = 0, and then (22) gives

K?
1 = K+

1 , where K+
1 is the maximal solution in ∂Γ1. By Theorem 3.1(ii), we also

know K+
1 ∈ ∂Γ1 is the unique maximal solution such that σ(A1(K+

1 )) ⊂ C− ∪ C0.
Furthermore, by stabilizability, σ(A2) ⊂ C−. Therefore, σ(A1(K+

1 )) ∩ σ(−A2) = ∅,
so K?

12 is the unique solution of the Sylvester equation (18). Similarly, since σ(A>2 )∩
σ(−A2) = ∅, K?

2 is the unique solution of the Sylvester equation (19).
Meanwhile, since ∂Γ 6= ∅, by Theorem 3.4, the maximal solution K+ ∈ ∂Γ exists

and satisfies σ(A(K+)) ⊂ C− ∪ C0. We claim K? = K+. Let K+ = [
K1 K12

K>12 K2
]

in block form. Since K+ ∈ ∂Γ, we have that K1 ∈ ∂Γ1. Using (13), σ(A(K+)) =
σ(A1(K1))]σ(A2) ⊂ C−∪C0. Then since σ(A2) ⊂ C−, we have σ(A1(K1)) ⊂ C−∪C0.
However, by Theorem 3.1(ii), K1 ∈ ∂Γ1 and σ(A1(K1)) ⊂ C− ∪ C0 together imply
K1 = K+

1 = K?
1 , the unique maximal solution in ∂Γ1. It immediately follows that

K12 = K?
12 and K2 = K?

2 , as desired.
(If) Suppose K∗ = K+, the maximal solution in ∂Γ. By writing K+ in block

form, K+ = [
K1 K12

K>12 K2
], we have K1 = K?

1 . We also have that K1 = K+
1 is the

maximal solution in ∂Γ1 using an argument analogous to the one above. That is,
using (13), σ(A(K+)) = σ(A1(K1))]σ(A2). By Theorem 3.4, σ(A(K+)) ⊂ C− ∪C0.
Since σ(A2) ⊂ C−, we get σ(A1(K1)) ⊂ C− ∪ C0. Then by Theorem 3.1(ii), K1 =
K+

1 ∈ ∂Γ1. Meanwhile by Theorem 4.3, K1 = K?
1 . Putting this all together, we have

that K1 = K?
1 = K+

1 . Finally, using K1 = K+
1 in (22) gives that PN1(L1) = 0, so

N1(L1) = 0.

Next we discuss how Theorem 4.9 recovers well-known results for the free-endpoint
and fixed-endpoint problems when Q is positive semidefinite and (A,B) is stabilizable.
First, we observe that when Q ≥ 0, then φ(0) ≥ 0 so 0 ∈ Γ− 6= ∅. Therefore,
Assumption 4.1 holds. We also assume that the state space is decomposed as in (26)
wherever needed.

The main results on the free-endpoint problem are summarized in Theorem 10.13
in [18]. In particular, when L = Rn, VL(x0) = x>0 P

−x0, where P− ≥ 0 is the
smallest positive semidefinite solution to the ARE, and the optimal control is u?(t) =
−B>P−x(t). We would like to verify that our Theorem 4.9 recovers these results.
We will show that when Q ≥ 0, K? given in (39) satisfies K? = P−. To aid in this
endeavor, we invoke a result from [17]. Let ∂Γ1+ := {K1 ∈ ∂Γ1 | K1 ≥ 0}.

Theorem 5.2 (Theorem 6.3 in [17]). Assume (A1, B1) is controllable and
∂Γ1− 6= ∅. Then the following hold: if ∂Γ1+ 6= ∅, then (i) K1 ∈ ∂Γ1+ and (ii) K1 ∈ ∂
Γ1+ implies K1 ≤ K1.
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Lemma 5.3. Consider the (LQCP)L. Suppose (A,B) is stabilizable, L = Rn, and
Q ≥ 0. Then K? = P−.

Proof. We begin by applying Theorem 5.2 to show that K1 is the smallest solution
in ∂Γ1+. To that end, we must show that ∂Γ1− 6= ∅ and ∂Γ1+ 6= ∅. First, since
Assumption 4.1 holds, we can apply Lemma 3.5 to get K−1 ∈ ∂Γ1− exists, so ∂Γ1− 6= ∅.
Second, because Q ≥ 0, we know φ(0) ≥ 0, so 0 ∈ Γ−. By Theorem 4.2, VL(x) =
x>K?x. Applying Theorem 4.5(ii) with KN = 0, we get x>K?x ≥ x>0x = 0,
∀x ∈ Rn, so K? ≥ 0. That is, K? ∈ ∂Γ+. By Theorem A.1, this implies K?

1 ≥ 0,
so K?

1 = K1 ∈ ∂Γ1+ 6= 0. Now we can apply Theorem 5.2 to get K?
1 = K1 is the

smallest solution in ∂Γ1+.
It remains to show that K? = P− is the smallest solution in ∂Γ+. To arrive at

a contradiction, suppose there exists K ∈ ∂Γ+ such that K 6= K? and K ≤ K?.
There are two cases. First, suppose K ∈ ∂Γ+ with K ≤ K? such that K1 6= K?

1 ,
where K1 is the upper left block of K. Since K ∈ ∂Γ, φ(K) = 0, so φ1(K1) = 0,
implying K1 ∈ ∂Γ1. By Theorem A.1, K ≥ 0 implies K1 ≥ 0, so K1 ∈ ∂Γ1+. Again
by Theorem A.1, K ≤ K? implies K1 ≤ K?

1 . Thus, we have K1 ∈ ∂Γ1+ such that
K1 ≤ K?

1 , which contradicts that K?
1 is the smallest solution in ∂Γ1+.

For the second case, suppose K ∈ ∂Γ+ with K ≤ K? such that K1 = K?
1 . By

(33), K has the form

K =


0 0 0 K12,1

0 K−1,22 K−1,23 K12,2

0 K−>1,23 K+
1,33 K12,3

K>12,1 K>12,2 K>12,3 K2

 .
Since K ≥ 0, we can apply Lemma A.2 to find that K12,1 = 0. Then since K1 = K?

1 ,
K12,1 = K?

12,1 = 0, and φ(K) = 0, the solutions for K12,2 and K12,3 are unique and
match K?

12,2 and K?
12,3, respectively. Thus K = K?, a contradiction. We conclude

that K? is the smallest solution in ∂Γ+. This proves that for the free-endpoint case
when Q ≥ 0 that VL(x0) = x>0 P

−x0. Also, Theorem 4.9(iv) gives the optimal control
u(t) = −B>P−x(t) since P− = K?.

Next we consider attainability in the free-endpoint case. Since Assumption 4.1
holds, we can apply Theorem 4.9(iii). In the free-endpoint problem, L1 = C, so
by Theorem 4.9(iii), the problem is attainable if and only if Ker(∆1) ⊂ Ker(K−1 ).
By Proposition 6.4 of [17], the latter condition always holds. Thus, we recover the
well-known fact that for the free-endpoint case in the positive semidefinite case, the
problem is always attainable.

Now we discuss the fixed-endpoint problem. The main results are summarized in
Theorem 10.18 in [18]. In particular, when L = 0, VL(x0) = x>0 P

+x0, where P+ ≥ 0
is the largest positive semidefinite solution to the ARE, and the optimal control is
u?(t) = −B>P+x(t). We would like to verify that our Theorem 4.9 recovers these
results. We must show that when Q ≥ 0, then K? = P+. For the fixed-endpoint
problem, L1 = 0, so N1(L1) = 0. The desired result is then immediately obtained
from Theorem 5.1.

Now we consider attainability in the fixed-endpoint case. The well-known neces-
sary and sufficient conditions for attainability in the positive semidefinite case, stated
in Theorem 10.18(iii) of [18], is that every eigenvalue of A on the imaginary axis
is (Q,A) observable. We must show that this statement is equivalent to our at-
tainability result in Theorem 4.9(iii), which for the fixed-endpoint case requires that
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Ker(∆1) ⊂ 0 ∩Ker(K−1 ), or equivalently, ∆1 > 0. This connection is resolved by the
following result, whose proof is found in the appendix.

Theorem 5.4. Suppose (A,B) is stabilizable and Q ≥ 0. Then every eigenvalue
of A on the imaginary axis is (Q,A) observable if and only if ∆1 > 0.

The final verification of our result in the fixed-endpoint case is to show that the
closed-loop system, ẋ(t) = (A−BB>K+)x(t) = A(K+)x(t), is asymptotically stable,
thereby recovering Theorem 10.18(v) in [18]. Note that A(K) = A − BB>K =

[A1(K1) ∗
0 A2

] so that σ(A(K)) = σ(A1(K1)) ] σ(A2). By Theorem 5 in [19], we have

that ∆1 > 0 if and only if σ(A1(K+
1 )) ⊂ C−. Since σ(A2) ⊂ C− by stabilizability and

∆1 > 0 by attainability, we have σ(A(K+)) ⊂ C−, as desired.

6. Conclusion. In this paper we address a problem in the area of linear quadratic
optimal control which has been open for the last 20 years. Specifically, we consider
the regular, infinite-horizon, stability-modulo-a-subspace, indefinite LQ problem when
the dynamics are stabilizable. Previous works have also addressed this problem, but
under the restrictive assumption that the dynamics are controllable. The generaliza-
tion from controllable to stabilizable dynamics is significant in that there is a lack of
structure in the solutions of the algebraic Riccati equation in the stabilizable case.
Consequently the connection between the ARE solution set and the LQ problem un-
der consideration has remained elusive. We resolved this gap by combining a suitable
sufficient condition for a finite optimal cost with a specific decomposition to unam-
biguously deduce the correct form of the optimal cost and control. The determination
of necessary and sufficient conditions for a finite value function in the regular, infinite-
horizon, stability-modulo-a-subspace, indefinite LQ problem is still open. As future
work, we are also interested in applying our result to reachability problems, namely,
by employing an indefinite cost functional on a stabilizable linear system to charac-
terize the convergence of trajectories to a nontrivial subspace over the infinite time
horizon.

Appendix A.

Theorem A.1 (Theorem 1 in [1]). Given a real symmetric matrix P = [
P1 P12

P>12 P2
],

the following conditions are equivalent:
1. P ≥ 0.
2. P1 ≥ 0, (I − P1P

†
1 )P12 = 0, P2 − P>12P

†
1P12 ≥ 0.

3. P2 ≥ 0, (I − P2P
†
2 )P>12 = 0, P1 − P12P

†
2P
>
12 ≥ 0.

Lemma A.2. Let M be a symmetric positive semidefinite matrix with the block
form

M =

[
M1 M12

M>12 M2

]
=

 0 0 M12,1

0 M1,22 M12,2

M>12,1 M>12,2 M2

 .
Then M12,1 = 0.

Proof. Since M ≥ 0, Theorem A.1 in particular implies that (I−M1M
†
1 )M12 = 0.

Using the properties of the pseudoinverse, it can be shown that M†1 = [
0 0
0 M†1,22

]. Then

the result follows from[
0
0

]
=

(
I −

[
0 0
0 M1,22

] [
0 0

0 M†1,22

])[
M12,1

M12,2

]
=

[
I 0

0 I −M1,22M
†
1,22

] [
M12,1

M12,2

]
.
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The following results are required for the proof of Theorem 5.4. Consider the
Kalman controllable decomposition (13). First, we define the Hamiltonian matrix on
the controllable subspace:

(48) H1 :=

[
A1 −B1B

>
1

−Q1 −A>1

]
.

Lemma A.3. Let A =
[
A1 A12

0 A2

]
with σ(A2) ⊂ C− and C = [C1 C2 ]. Then

(i) all of the eigenvalues of A on the imaginary axis are (C,A) observable if
and only if all of the eigenvalues of A1 on the imaginary axis are (C1, A1)
observable;

(ii) an eigenvalue of A is (C,A) observable if and only if it is (C>C,A) observable.

Theorem A.4 (See [12]). Let (A1, B1) be controllable. The following conditions
are equivalent:

(i) The maximal and minimal solutions of the ARE (and ARI), K+
1 and K−1

respectively, exist and ∆1 > 0.
(ii) The Hamiltonian matrix has no pure imaginary eigenvalues, i.e., if λ ∈ σ(H1)

then Re(λ) 6= 0.

Lemma A.5 (Lemma 8 in [9]). Suppose that Q1 = C>1 C1. Then there is an
eigenvalue λ of H1 such that Re(λ) = 0 if and only if there is an uncontrollable eigen-
value λ of (A1, B1) and/or unobservable eigenvalue λ of (C1, A1) such that Re(λ) = 0.

Proof of Theorem 5.4. First we check that ∆1 = K+
1 −K

−
1 is well-defined. Since

(A,B) is stabilizable and Q ≥ 0 implies 0 ∈ Γ−, we can apply Lemma 3.5 to get that
K−1 ⊂ ∂Γ1− ⊂ ∂Γ1 6= ∅, and so Theorem 3.1(i) establishes the existence of K+

1 as
well.

Since Q ≥ 0, write Q = C>C. In the Kalman controllability decomposition, this
means C = [C1 C2 ], so that Q1 = C>1 C1.

First we can use Theorem A.4 to establish that ∆1 > 0 is equivalent to H1 having
no pure imaginary eigenvalues. The contrapositive of Lemma A.5 says that H1 has
no pure imaginary eigenvalues if and only if there is no uncontrollable eigenvalue of
(A1, B1) and no unobservable eigenvalue of (C1, A1) on the imaginary axis. Since in
our scenario (A1, B1) is controllable, this statement is equivalent to H1 has no pure
imaginary eigenvalues if and only if there are no unobservable eigenvalues of (C1, A1)
on the imaginary axis. Of course, there are no unobservable eigenvalues of (C1, A1)
on the imaginary axis if and only if all the eigenvalues of A1 on the imaginary axis
are (C1, A1) observable. Applying Lemma A.3(i), we get that all the eigenvalues of
A1 on the imaginary axis are (C1, A1) observable if and only if all the eigenvalues
of A on the imaginary axis are (C,A) observable. Then applying Lemma A.3(ii), all
the eigenvalues of A on the imaginary axis are (C,A) observable if and only if all the
eigenvalues of A on the imaginary axis are (C>C,A) observable. Since Q = C>C, we
have proven every eigenvalue of A on the imaginary axis is (Q,A) observable if and
only if ∆1 > 0 by a long chain of equivalent statements.
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