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Abstract—In the robotics literature, experience transfer has
been proposed in different learning-based control frameworks
to minimize the costs and risks associated with training robots.
While various works have shown the feasibility of transferring
prior experience from a source robot to improve or accelerate
the learning of a target robot, there are usually no guarantees
that experience transfer improves the performance of the target
robot. In practice, the efficacy of transferring experience is often
not known until it is tested on physical robots. This trial-and-
error approach can be extremely unsafe and inefficient. Building
on our previous work, in this paper we consider an inverse
module transfer learning framework, where the inverse module
of a source robot system is transferred to a target robot system
to improve its tracking performance on arbitrary trajectories.
We derive a theoretical bound on the tracking error when a
source inverse module is transferred to the target robot and
propose a Bayesian-optimization-based algorithm to estimate this
bound from data. We further highlight the asymmetric nature
of cross-robot experience transfer that has often been neglected
in the literature. We demonstrate our approach in quadrotor
experiments and show that we can guarantee positive transfer
on the target robot for tracking random periodic trajectories.

Index Terms—Machine Learning, Robotics.

I. INTRODUCTION

APPROACHES to transfer experience across robots or
across tasks have been explored in different robot

learning-based control frameworks (e.g., [1]–[4]). The goal of
experience transfer is to leverage existing data or a learned
model to accelerate or improve the learning process on a new
robot or new task [2]. While existing literature shows the
feasibility to improve or accelerate the learning of a robot by
leveraging prior experience in training, it is often implicitly
assumed without further analysis that the transferred experi-
ence will lead to improved performance (i.e., positive transfer)
on the target robot or task. This assumption is typically not
examined until it is experimentally tested on the target robot
hardware. This trial-and-error experience transfer strategy can
be unsafe and inefficient for practical robot applications.

In this paper, building on our previous work [5], we consider
an inverse module transfer learning framework, where we
transfer an inverse dynamics module previously trained on a
source robot to improve the tracking performance of a target
robot. While classical approaches such as model predictive
control (MPC), the linear quadratic regulator (LQR), or PID
control can be applied to trajectory tracking problems, these
approaches typically rely on a sufficiently accurate dynamics

The authors are with the Dynamic Systems Lab (www.dynsyslab.org),
Institute for Aerospace Studies, University of Toronto, Canada and the
Vector Institute for Artificial Intelligence, Toronto. Emails: {msorocky,
siqi.zhou}@robotics.utias.utoronto.ca, schoellig@utias.utoronto.ca

Baseline 
Controller

Target 
Robot

Target Robot Baseline System

Desired 
Output

Reference 
Signal

Actual
OutputTransferred 

Inverse Dynamics 
Learning Module

From Source Robot

State      or Output          Feedback 

(a) Inverse module transfer learning framework

Source 5
Parrot Bebop 2

Source 1
Crazyflie 2.0 (Light)

Source 2
Crazyflie Simulator

Source 4
ARDrone Simulator

Source 3
Parrot ARDrone 2.0

Target Robot

Crazyflie 2.0 
(Heavy)

(b) Source and target quadrotor platforms used in experiments

Fig. 1: The inverse learning control architecture [5] considered in our
experience transfer analysis is shown in (a). The goal is to enhance the
performance of the target robot system (grey block) for tracking arbitrary
trajectories. The blue block represents the inverse dynamics learning module
transferred from a source robot system. The transferred inverse block adjusts
the reference signal yr sent to the target robot baseline system such that the
map from the desired output yd to the actual target system output ya is closer
to identity [5]. In this paper, we aim to provide performance guarantees for
this transfer approach prior to testing source inverse modules on the target
robot. We demonstrate our approach in quadrotor experiments on the source
and target quadrotors shown in (b). A video of this work can be found here:
http://tiny.cc/transfer guarantees

model of the robot or can be time consuming to tune for
achieving high-performance tracking on arbitrary trajectories.
With the inverse dynamics learning framework [5], we can
improve the tracking performance of a nonlinear control-affine
robot system whose dynamics are not exactly known. As
shown in Fig. 1a, the learned inverse module (blue) is pre-
cascaded to the target robot system (grey), with the goal of
achieving an identity map between the desired output yd and
the actual output ya. In [5], [6], we show that we can train
a deep neural network (DNN) to approximate the inverse
dynamics of a source quadrotor’s baseline control system,
which reduced the tracking error of the source quadrotor by
an average of 43% on arbitrary hand-drawn trajectories.

Our goal in this paper is to provide performance guarantees
when a source inverse module is transferred to a target robot.
With this inverse module transfer, we aim to reduce the time
and data to train the target robot while guaranteeing improved
performance. Our contributions are as follows:

1) derive theoretical bounds on the tracking error when a
source inverse module is transferred to the target robot,

2) introduce a Bayesian Optimization (BO)-based algo-
rithm to estimate the tracking error upper bound from
simple periodic experiments on the source and target
robots for guaranteeing positive transfer,

http://www.dynsyslab.org
http://tiny.cc/transfer_guarantees


3) highlight the asymmetric nature of this inverse transfer
learning framework, and

4) demonstrate our approach in quadrotor experiments.

II. RELATED WORK

The idea of experience transfer or transfer learning origi-
nates from machine learning research. It has been applied to
fields such as computer vision [7], natural language process-
ing [8], and reinforcement learning [9]. The goal of transfer
learning is to develop methods that exploit information from
source domains to facilitate learning in a target domain.

Transfer learning has been considered in different robot
learning-based control frameworks. Experience transfer ap-
proaches in control can be categorized as cross-task transfer or
cross-robot transfer [1]–[4]. Whether it is robot model learn-
ing [2], controller learning [3], or reference adaptation [1],
[4], the common goal of transferring experience is to leverage
prior knowledge such that the time and data required for
training a new robot or on a new task can be reduced.
Techniques from adaptive control are used in [3] to transfer
controller parameters from a source robot to a target robot.
In [2], data collected from a source robot is mapped to align
with data from the target robot to speed the learning of the
forward kinematics of a target manipulator. In [10], the authors
consider a similar alignment-based framework and show that
the optimal alignment map is a dynamical system.

While existing work demonstrates transferring prior expe-
rience can facilitate learning on new robots or tasks, there
is usually no guarantee that using prior experience will im-
prove the performance of the target robot before testing. The
phenomenon of the performance of the target robot being
degraded when using experience from a source robot is known
as negative transfer. As demonstrated in machine learning
literature [11], [12], negative transfer can occur when the
source and target domains are dissimilar. In our previous
work [13], we also showed that using experience from a
dissimilar source robot can cause negative transfer.

In this work, we consider a cross-robot inverse module
transfer problem and derive a procedure that allows us to
guarantee positive transfer prior to transferring experience
from the source robot to the target robot.

III. PROBLEM FORMULATION

In this paper, we consider the control architecture shown
in Fig. 1a, where an inverse dynamics module from a source
robot Rs is transferred to enhance the tracking performance
of a target robot Rt. We say that the transfer is positive if the
performance of the target robot with the source robot inverse
is improved as compared to the target robot baseline system.
Our goal is to provide a systematic approach that allows us
to identify when we achieve positive transfer from the source
robot to the target robot prior to physically testing the source
inverse module on the target robot. In our analysis, we make
the following assumptions:
(A1) The baseline systems of the source and the target robots

are stable and have stable inverse dynamics.
(A2) The source and target baseline systems are single-

input single-output (SISO), linear time-invariant (LTI)
systems, where the relation between the reference sig-
nal yr(t) and the system output ya(t) can be represented

by proper transfer functions of the form G(s) = ŷa(s)
ŷr(s)

with ŷr(s) and ŷa(s) denoting the Laplace transforms
of yr(t) and ya(t), respectively.

(A3) The desired trajectory yd satisfies ‖yd‖2 < ∞, where
‖·‖2 denotes the l2-norm [14].

Note that assumption (A1) is a necessary condition for safely
applying the inverse dynamics learning approach to improve
the tracking performance of a black-box system [5]. In (A2),
we assume the baseline systems of the source and the target
robots are SISO, LTI systems to simplify our analysis. For
many practical robot systems, we can use linearization tech-
niques in baseline tracking controller designs. Applying these
techniques to quadrotors [15], fully-actuated manipulators [16]
or wheeled ground robots [17] typically results in decoupled
linear dynamics. The decoupling resulting from linearization
allows us to apply our analysis to each SISO system separately
and provide insights on transfer performance for a range
of practical systems (e.g., [15]–[17]). Lastly, assuming the
desired trajectory has finite l2-norm (A3) is not restrictive,
and can be satisfied with a desired trajectory that is bounded,
and is non-zero over a finite-time horizon [0, T ] with T<∞.

In our discussion, we denote the transfer functions of
the source and target robots by Gs(s) and Gt(s), respec-
tively. From (A1), we assume that Gs(s) and Gt(s) and
their inverses are bounded-input and bounded-output (BIBO)
stable. The tracking error of the target system is defined as
e(t) = ya(t)− yd(t). We consider two cases: (i) using an
inverse module from a source robot, in which case we denote
the tracking error by et,s, and (ii) using the baseline target
system without an inverse module (i.e., setting yr = yd), in
which case we denote the tracking error by et,b. We say that
positive transfer occurs when using an inverse module from a
source robot if ‖et,s‖2 < ‖et,b‖2.

IV. MAIN RESULTS

To ensure safe operation when using an inverse module
from a particular source system Rs for the target Rt, our first
goal is to find bounds on the corresponding tracking error
‖et,s‖2 before testing on the target robot as shown in Fig. 1a.
In Sec. IV-A, we derive an upper bound on the tracking error
‖et,s‖2 and relate the bound to our goal of identifying positive
transfer. In Sec. IV-B, we propose an algorithm to estimate
the bound from data when the source and target dynamics are
unknown. In Sec. IV-C, we demonstrate the asymmetric nature
of transfer learning in our framework.

A. Bound on the Tracking Error
In this subsection, we assume that the dynamics of the

source and target robot systems are known and provide an
analysis of the tracking error et,s of the target robot when the
transferred source robot inverse module is applied. We derive
an upper bound on ‖et,s‖2 using the signal norm analysis from
[14], which relates the infinity norm of a transfer function to
the `2-norm of its input and output signals.

To facilitate our discussion, we note that the relative degree
of an LTI system G(s) = n(s)

d(s) is r = deg(d(s))− deg(n(s)),
where n(s) and d(s) are polynomials in s, and deg(·) is the
degree of a polynomial. We denote the relative degree of the
source system Gs(s) and target system Gt(s) by rs and rt.



Theorem 1. Consider the control architecture in Fig. 1a,
where an inverse module from robot Rs is pre-cascaded to
a target robot Rt. Under the assumptions (A1)–(A3), and
suppose that rt ≥ rs, then the `2-norm of the tracking error
of Rt using an inverse module from Rs can be bounded by

‖et,s‖2 ≤ ‖Et,s‖∞ ‖yd‖2 , (1)

where Et,s(s)=
êt,s(s)
ŷd(s)

=G−1s (s)Gt(s)−1 is the transfer func-
tion from the desired output ŷd(s) to the target robot tracking
error êt,s(s), and ‖Et,s‖∞ = supω∈R |Et,s(jω)| is the infinity
norm of Et,s with supω∈R(·) denoting the supremum of a
function over frequencies ω ∈ R.

Following the signal norm analysis in Sec. 2.3 of [14], we
provide a proof of Theorem 1 below.

Proof. Consider source and target systems as defined by (A2).
Following (A1), we assume that G−1s (s) and Gt(s) are BIBO
stable. It follows that, if rt ≥ rs, the error transfer function
Et,s(s) =

êt,s(s)
ŷd(s)

is proper and BIBO stable. Since Et,s(s) is
proper and stable, by Parseval’s theorem [14], the l2-norms of
the error signal et,s(t) and its Laplace transform êt,s(s) are
equal: ‖et,s‖2 = ‖êt,s‖2. Then, we obtain

‖et,s‖22 = ‖êt,s‖22 =
1

2π

∫ ∞
−∞
|Et,s(jω)|2 |ŷd(jω)|2 dω

≤ ‖Et,s‖2∞
1

2π

∫ ∞
−∞
|ŷd(jω)|2 dω

= ‖Et,s‖2∞ ‖yd‖
2
2 ,

which leads to (1) by taking the square root of each side. Since
‖yd‖2 is finite by (A3) and Et,s(s) is proper and stable, the
upper bound given by ‖Et,s‖∞ ‖yd‖2 is finite.

Remark 1. Given the baseline tracking error of the target
system et,b(t), we can guarantee positive transfer using the
inverse module from system Rs if ‖Et,s‖∞ ‖yd‖2 < ‖et,b‖2.

Since yd is known, we can compute ‖yd‖2. To compute
the upper bound in (1), it remains to compute ‖Et,s‖∞. In
Sec. IV-B, we propose an algorithm to estimate ‖Et,s‖∞ for
source and target systems with unknown dynamics.

B. Computing Tracking Error Bounds for Systems with Un-
known Dynamics

In this subsection, we assume that the exact dynamics of the
source and the target systems are unknown and introduce an
algorithm to estimate ‖Et,s‖∞ from data. There exist methods
in the literature to estimate the infinity norm of a transfer
function from its input/output data, e.g. [14], [18]. However,
our goal is to find an upper bound on ‖et,s‖2 before testing
the transfer architecture in Fig. 1a. As a result, we are unable
to directly gather input/output data from Et,s, and cannot use
the aforementioned approaches in the literature.

To this end, we introduce a Bayesian Optimization (BO)-
based algorithm to estimate the upper bound on ‖et,s‖2 by
running simple periodic experiments on the baseline systems
of the source and the target robots. Since we consider stable
closed-loop baseline source and target systems, these simple
periodic experiments can be realized over a practical set of
frequencies of interest W = {ω ∈ R | ωmin ≤ ω ≤ ωmax}.

To start our discussion, we write the estimation of ‖Et,s‖∞
as the following optimization problem:

E∗t,s = sup
ω∈W

ft,s(ω), (2)

where E∗t,s is an estimate of ‖Et,s‖∞ and ft,s(ω) =∣∣G−1s (jω)Gt(jω)− 1
∣∣ is the objective function to be max-

imized. Since Gs and Gt are assumed to be unknown, the
objective function ft,s is unknown. To solve the black-box
optimization problem in (2), we adopt a BO approach. In par-
ticular, we use a Gaussian Process (GP) model to approximate
the objective function ft,s and optimize the objective function
by iteratively sampling from ft,s [19].

The algorithm runs as follows: We start with an initial
ωsample that is randomly sampled over W . Then, in each
iteration, we proceed with the following steps:

1) Evaluating the unknown objective function: We eval-
uate ft,s at ωsample by sending a sinusoidal reference with
frequency ωsample to the source and target baseline systems.
From the magnitude M and phase θ of the baseline sys-
tem input/output responses, we can estimate G−1s (jωsample)
by M−1s exp(−jθs) and Gt(jωsample) by Mt exp(jθt), where
subscripts s and t denote the source and target systems. The
estimate of ft,s(ωsample) can be computed from G−1s (jωsample)
and Gt(jωsample). The data (ωsample, ft,s(ωsample)) is added to
a dataset D={(ωk, ft,s(ωk))}Kk=1, where K is the dataset size
at the current iteration.

2) Fitting a GP model: Given the dataset D =
{(ωk, ft,s(ωk))}Kk=1, we use a GP model to approximate
ft,s. The GP model has a prior mean function µ(ω), and a
kernel function κ(ω, ω′). The GP posterior mean f̂t,s(ω) and
posterior covariance σ̂2

t,s(ω) at a test point ω∗ are

f̂t,s(ω
∗) = µ(ω∗) + (k∗)T (K + σ2

nI)−1(f − µ)

σ̂2
t,s(ω

∗) = κ(ω∗, ω∗)− (k∗)T (K + σ2
nI)−1k∗,

(3)

where K is the covariance matrix with the entry in the ith
row and jth column given by [K]ij = κ(ωi, ωj), k∗ =
[κ(ω∗, ω1), . . . , κ(ω∗, ωK)]T , f = [ft,s(ω1), . . . , ft,s(ωK)]T ,
µ = [µ(ω1), . . . , µ(ωK)]T , σ2

n is the noise variance, and I is
the identity matrix [19].

3) Determining the next sample to acquire: In each iteration,
we select the next sample ωsample based on an acquisition
function. A common BO acquisition function is the expected
improvement (EI), which is given by

EIt,s(ω) = (f̂t,s(ω)− fmax
t,s )Φ(Z) + σ̂t,s(ω)φ(Z), (4)

where fmax
t,s = maxk ft,s(ωk) is the largest sample we have

obtained thus far, Z = (f̂t,s(ω)− fmax
t,s )/σ̂t,s(ω), and Φ(·) and

φ(·) are the cumulative distribution and probability density
functions of the standard normal distribution [19]. The next
point we sample at, ωsample, is the one that maximizes the
expected improvement: ωsample = arg maxω∈W EIt,s(ω).

We repeat steps 1) – 3) until the maximum of the GP
posterior mean f̂t,s converges to an approximately constant
value. Our estimate of ‖Et,s‖∞ is given by Ê∗t,s = f̂t,s(ω

∗
t,s)+

3σ̂t,s(ω
∗
t,s), where ω∗t,s = arg maxω∈W f̂t,s(ω). The corre-

sponding estimate of the upper bound on ‖et,s‖2 on a desired
trajectory yd is ēt,s = Ê∗t,s ‖yd‖2.

Note that we can extend the algorithm to the case
when we have N source robots {Rsn}Nn=1, and aim



Algorithm 1: Upper Bound on ‖et,sn‖2
Input: N source robots {Rsn}Nn=1, one target robot Rt, desired

trajectory yd, and a frequency range
W = {ω ∈ R | ωmin ≤ ω ≤ ωmax}.

Output: Upper bound ēt,sn on ‖et,sn‖2.
Initialize: Empty sample datasets: Dn ← ∅ (n = 1, . . . , N)

1 Compute initial sample: ωsample ∼ U(ωmin, ωmax)
2 while not converged do
3 Estimate Gt(jωsample)
4 for n = 1, . . . , N do
5 Estimate G−1

sn (jωsample)
6 Compute ft,sn (ωsample)
7 Dn ← Dn ∪ {(ωsample, ft,sn (ωsample))}
8 Fit nth GP with data Dn

9 Compute ωsample = arg maxω∈W α(ω)

10 for n = 1, . . . , N do
11 ω∗t,sn = arg maxω∈W f̂t,sn (ω)

12 Ê∗t,sn = f̂t,sn (ω∗t,sn ) + 3σ̂t,sn (ω∗t,sn )

13 ēt,sn = Ê∗t,sn ‖yd‖2

to estimate the corresponding upper bounds on ‖et,sn‖2
(n = 1, . . . , N ). In this case, we have N optimization prob-
lems in the form of (2): E∗t,sn = supω∈W ft,sn(ω), where
ft,sn(ω) =

∣∣G−1sn (jω)Gt(jω)− 1
∣∣. To solve them, we follow

a similar approach to steps 1) – 3): we model each ob-
jective function ft,sn(ω) with its own GP, with posterior
mean f̂t,sn(ω) and posterior variance σ̂2

t,sn(ω). We replace
the acquisition function in (4) with α(ω) = maxn EIt,sn(ω).
The next sample point is the one that maximizes α(ω):
ωsample = arg maxω∈W α(ω). That is, given the expected im-
provement EIt,sn(ω) for each system, we sample at the point
that gives the highest EI. Upon convergence, our estimate of
‖Et,sn‖∞ is given by Ê∗t,sn = f̂t,sn(ω∗t,sn) + 3σ̂t,sn(ω∗t,sn),
where ω∗t,sn = arg maxω∈W f̂t,sn(ω). The upper bound on
‖et,sn‖2 is given by ēt,sn = Ê∗t,sn ‖yd‖2. We summarize the
overall algorithm in Alg. 1, and demonstrate the algorithm
with quadrotor experiments in Sec. V. Note that while we
assume the source and target systems are linear, Alg. 1 uses
only their input/output data, without requiring knowledge of
the system structure (e.g., number of poles or zeros).

C. Asymmetry in Inverse Module Transfer Learning

In this section, we explore the asymmetric nature that is
inherent in transfer learning. In the following discussion, we
first demonstrate the asymmetry property for two first-order
systems in the inverse transfer learning framework and then
extend our discussion to a more generalized setting.

We consider two first-order systems G1(s) = 1
τ1s+1 and

G2(s) = 1
τ2s+1 , where τ1, τ2 > 0 are the time constants

of each system. The baseline tracking error of each system
is denoted e1,b(t) and e2,b(t), respectively. The tracking error
when pre-cascading G−11 to G2 and when pre-cascading G−12

to G1 are denoted by e2,1(t) and e1,2(t), respectively.

Example 1. Consider the two first-order systems with transfer
functions G1(s) and G2(s). Without loss of generality, we
assume τ2 < τ1. Then, for a given desired trajectory yd,
transferring the inverse G−12 to G1 always leads to positive
transfer, i.e. ‖e1,2‖2 < ‖e1,b‖2. However, the reverse is not
true. For the same trajectory yd, transferring the inverse G−11

to G2 is positive (‖e2,1‖2 < ‖e2,b‖2) iff τ1 satisfies τ1 < 2τ2.

Proof. By directly evaluating the convolution integral for the
output of a linear system, one can show that e1,b(t) =
1
τ1
e−t/τ1I − yd(t) and e1,2(t) =

(
1− τ2

τ1

)
e1,b(t), where

I =
∫ t
0
yd(z)e

z/τ1dz. It follows that ‖e1,2‖2 < ‖e1,b‖2 iff
τ2 < 2τ1. By assumption, τ2 < τ1, and thus the condition of
positive transfer from G−12 to G1 is always satisfied. For the re-
verse direction, one can similarly show that ‖e2,1‖2 < ‖e2,b‖2
iff τ1 < 2τ2. Thus, transfer from G−11 to G2 is positive iff τ1
is sufficiently small (i.e., τ1 < 2τ2).

Remark 2. For the systems we consider in Example 1, the
time constant τ of each system represents the rise time of the
system in response to a step input, which can be interpreted as
the system’s aggressiveness with a smaller value indicating a
higher aggressiveness. The result then implies that it is easier
to guarantee positive transfer from a more aggressive system
to a less aggressive system, but not vice versa.

We can extend the insight by leveraging the ν-gap metric
from robust control, which provides a notion of ‘distance’
between two systems. For two SISO minimum phase sys-
tems satisfying ‖G2(−jω)G1(jω))‖∞<1, the ν-gap metric
can be written as δν(G1, G2) = supω ψ(G1(jω), G2(jω)),
where ψ(G1(jω), G2(jω)) = |G1(jω)−G2(jω)|√

(1+|G1(jω)|2)(1+|G2(jω)|2)
is

the chordal distance between the projections of G1(jω) and
G2(jω) onto the Riemann sphere [20]. For a desired trajec-
tory with frequency ω, we can decompose the error transfer
function into a symmetric and an asymmetric component:

|E1,2(jω)| = ψ(G1(jω), G2(jω))︸ ︷︷ ︸
symmetric

Ψ(G1(jω), G2(jω))︸ ︷︷ ︸
asymmetric

,

where Ψ(G1(jω), G2(jω)) =

√
1+|G1(jω)|2
ψ(G2(jω),0)

. The term
ψ(G1(jω), G2(jω)) is the symmetric term providing a notion
of ‘distance’ between G1 and G2. Systems close in this sense
will have reduced |E1,2(jω)|. The term Ψ(G1(jω), G2(jω))
reflects the direction of transfer. Note that, since ψ(G2(jω), 0)
represents the chordal distance between G2(jω) and 0, we
can interpret ψ(G2(jω), 0) as a measure of the aggressiveness
of the system. As a result, if G2 is more aggressive, then
Ψ(G1(jω), G2(jω)) and thus |E1,2(jω)| is further reduced.
This implies that transferring an inverse module from a more
aggressive system is more likely to reduce the tracking error of
a less aggressive system and thereby results in positive transfer.

We note that the asymmetric nature of transfer learning is
not limited to our inverse module transfer framework. The
asymmetric behaviour is also found in frameworks such as
alignment-based transfer learning [10], [21]. To guarantee
positive transfer, it is important to define a measure of simi-
larity between the source and target domains [11], [12]. Such
measures of similarity should account for the direction of
transfer, which has a direct impact on transfer success.

V. QUADROTOR EXPERIMENTS

In this section, we demonstrate Alg. 1 and the asymmetric
nature of the transfer problem with quadrotor experiments.

A. Experiment Setup
We consider one target robot Rt, whose tracking is to be

improved, and five source robots (Fig. 1b), whose inverse



modules have been previously trained and can be leveraged
to improve the tracking of Rt. The target robot in our
experiments is the Crazyflie 2.0 quadrotor; its mass is 36 g,
with a rotor-to-rotor distance of 14 cm. The five source robots
are: Rs1 – Crazyflie 2.0 quadrotor (light), Rs2 – Crazyflie
simulator, Rs3 – Parrot ARDrone 2.0, Rs4 – Parrot ARDrone
simulator, and Rs5 – Parrot Bebop 2. The simulators Rs2 ,
Rs4 emulate the dynamics and control of Rt and Rs3 , but
do not account for effects such as aerodynamic drag or time
delays. The mass of the source robots are 0.86, 1, 13.7, 13.7
and 14.5 times that of the target, respectively, and the rotor-to-
rotor distance of the source robots are 1, 1, 3.9, 3.9, and 3.1
times that of the target, respectively. The baseline controllers
for the target Rt and sources Rs1 and Rs2 are designed by
exploiting the differential flatness of quadrotors [22], while
the baseline controllers for sources Rs3–Rs5 are designed
based on a combination of feedback linearization and PD
control [15]. We assume that the position dynamics of each
quadrotor is decoupled in the x-, y-, and z-directions. The
inverse module of each source system is approximated by a
deep neural network (DNN) trained on 400 seconds of data
collected on each source baseline system [5].

Our experiments consist of three parts: in Sec. V-B, we
apply Alg. 1 to estimate the upper bound on tracking error of
the target quadrotor when using the inverse module from each
source quadrotor. In Sec. V-C, we verify the upper bounds on
five random periodic trajectories. In Sec. V-D, we illustrate
the asymmetric nature of this transfer problem. We note that
in the upper bound estimation experiments and test trajectory
experiments, we rely on the input/output data from the source
and target quadrotors, and do not require knowledge of their
exact dynamics or system structures.

B. Tracking Error Upper Bound Estimation
We apply Alg. 1 proposed in Sec. IV-B to identify the

upper bounds on the tracking errors of the target quadrotor
system pre-cascaded with the DNN inverse modules of the
source quadrotors. Since by assumption the dynamics of the
source and target systems are decoupled in the x-, y-, and
z-directions, we apply Alg. 1 to each direction separately.
We denote the tracking error of Rt using an inverse module
from source Rsn in the x-, y-, and z-directions by et,sn,x(t),
et,sn,y(t), and et,sn,z(t), respectively. Our goal is to estimate
Ê∗t,sn,x, Ê∗t,sn,y , and Ê∗t,sn,z to compute the error bounds on
‖et,sn,x‖2, ‖et,sn,y‖2, and ‖et,sn,z‖2 (see (1)). As outlined
in Alg. 1, we estimate the error norms Ê∗t,sn,x, Ê∗t,sn,y ,
and Ê∗t,sn,z iteratively by running periodic trajectories on
the baseline systems along the x-, y-, and z-directions. The
estimates of the error norms converged in six iterations in the
x- and y-directions, and five iterations in the z-direction.

The converged estimates Ê∗t,sn,x, Ê∗t,sn,y , and Ê∗t,sn,z are
summarized in Table I. Sources Rs1 and Rs2 are of similar
size and agility as the target Rt, and thus the upper bound
on tracking error in each direction when using their inverse
modules is low. Conversely, sources Rs3–Rs5 are much larger
and less agile than the target, leading to a larger upper
bound on tracking error when using their inverse modules.
These differences are especially pronounced in the x- and y-
directions. From Table I, we expect transferring the inverse
modules from source quadrotors similarly aggressive to the

TABLE I: A summary of the error norm estimates Ê∗t,sn of the target
quadrotor when using the inverse modules from the five source quadrotors.

Direction Ê∗t,s1 Ê∗t,s2 Ê∗t,s3 Ê∗t,s4 Ê∗t,s5
x 0.22 0.25 2.70 2.19 3.03
y 0.23 0.28 3.20 2.23 3.25
z 0.22 0.24 0.56 1.55 0.98

target (Rs1 and Rs2 ) would lead to lower tracking error on
the target quadrotor as compared to transferring the inverse
modules from less aggressive source quadrotors (Rs3–Rs5 ).

Note that to compute the estimates in Table I, we required
209 seconds of data from the target quadrotor, approximately
half of the data needed to train its inverse module from scratch.
As we show in Sec. V-C, the estimated upper bounds allow us
to safely reuse an inverse from a source quadrotor to improve
the target quadrotor tracking performance.

C. Test Trajectory Tracking Experiments
We validate the estimated upper bounds on the tar-

get system tracking error (Table I) on five test trajecto-
ries. The test trajectories are parameterized as yd(t) =
[0.25 sin (ωxt), 0.25 cos (ωyt), 0.25 sin (ωzt)], where ωx, ωy,
and ωz are randomly sampled between 0 and 2 rad/sec, which
is the maximal range for the target quadrotor to track.

We quantify the tracking performance of the target quadro-
tor as et,· = (‖et,·,x‖22+‖et,·,y‖22+‖et,·,z‖22)1/2. Using the es-
timates in Table I, we can bound the tracking error of the target
Rt when using the inverse module from Rsn as et,sn ≤ e∗t,sn ,
where e∗t,sn = ((Ê∗t,sn,x ‖yd,x‖2)2 + (Ê∗t,sn,y ‖yd,y‖2)2 +

(Ê∗t,sn,z ‖yd,z‖2)2)1/2. We guarantee positive transfer from
Rsn to Rt if the condition e∗t,sn < et,b is satisfied.

We ran each test trajectory on the target quadrotor baseline
system with and without the source inverse modules. As shown
in Table II, for each trajectory and each source robot Rsn ,
we have that et,sn<e

∗
t,sn , verifying the efficacy of the upper

bounds. By comparing the baseline tracking error et,b to the
upper bounds e∗t,sn , we observe that we can guarantee positive
transfer for sources Rs1 and Rs2 , as e∗t,sn<et,b for n∈{1, 2}.
From the estimated upper bounds, we can predict positive
transfer for Rs1 and Rs2 before testing their inverse modules
on the target quadrotor. Using inverse modules from Rs1 and
Rs2 improve the target quadrotor performance by an average
of 74% without requiring retraining an inverse module for the
target system. Conversely, for Rs3–Rs5 , we cannot guarantee
positive transfer; indeed, when using these source inverse
modules, we observe negative transfer (et,sn>et,b).

D. The Asymmetric Nature of Inverse Module Transfer
Although from the tracking experiments, we see that using

an inverse module from a less similar robot (e.g., Rs5 ) can
cause negative transfer to the target Rt, the reverse is not
necessarily true. To demonstrate the asymmetric nature of
transfer, we train an inverse module for the target robot Rt
and pre-cascade this module to the baseline controller of Rs5 .

As an example, in the y-direction for one test trajectory
from Sec. V-C, when using the inverse module from Rs5 ,
the tracking error of Rt, ‖et,s5,y‖2, is increased by 13%
relative to its baseline error. However, when transferring the
inverse module from Rt to Rs5 , the tracking error of Rs5 ,



TABLE II: Quadrotor trajectory tracking experiment results. For each source system Rsn , we display the actual tracking error et,sn , the tracking error upper
bound e∗t,sn , and the baseline tracking error et,b of the target robot. Positive transfer cases (i.e., entries with values less than et,b) are indicated with boldface.
For all cases, we have that et,sn < e∗t,sn , verifying the efficacy of the upper bounds. Positive transfer is guaranteed for Rs1 and Rs2 .

Traj.† Transfer from Rs1 Transfer from Rs2 Transfer from Rs3 Transfer from Rs4 Transfer from Rs5 Baseline
et,s1 [m] e∗t,s1 [m] et,s2 [m] e∗t,s2 [m] et,s3 [m] e∗t,s3 [m] et,s4 [m] e∗t,s4 [m] et,s5 [m] e∗t,s5 [m] et,b [m]

yd1 0.144 0.358 0.161 0.335 0.775 2.401 0.542 2.440 0.610 3.263 0.562
yd2 0.174 0.419 0.162 0.399 0.834 2.990 0.557 2.871 0.822 3.962 0.665
yd3 0.224 0.358 0.210 0.335 0.926 2.396 1.041 2.441 0.923 3.264 0.817
yd4 0.215 0.354 0.215 0.331 0.890 2.382 1.076 2.418 0.903 3.244 0.867
yd5 0.252 0.357 0.258 0.334 0.945 2.389 1.110 2.434 1.081 3.252 0.972

†The frequencies (ωx, ωy, ωz) of the five sinusoidal test trajectories were uniformly sampled between 0 and 2 rad/sec using the Matlab function rand. The values are
(ωx, ωy, ωz) ∈ {(1.087, 0.557, 0.849), (1.690, 0.009, 0.243), (1.342, 1.652, 0.273), (1.150, 1.783, 0.418), (1.957, 1.623, 0.344)} rad/sec.
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Fig. 2: Using an inverse module from Rs5 for Rt increases the tracking error
of Rt, ‖et,s5,y‖2, by 13%, relative to its baseline tracking error. The inverse
module from Rs5 amplifies the reference yd (red) to produce a reference yr
(green). The over-amplification of the reference adversely causes an increase
in tracking error of Rt compared to its baseline (black).

‖es5,t,y‖2, is reduced by 9%, relative to its baseline error.
The intuition of this asymmetry is discussed in Sec. IV-C. The
negative transfer from Rs5 to Rt is a result of Rs5 being less
aggressive. As compared to Rt, the baseline system of Rs5
has larger delays and damping. To compensate for the slow
response, as seen in Fig. 2, given a desired trajectory (red),
the inverse of Rs5 tends to produce a significantly amplified
reference (green). When sending the amplified reference to
the target robot Rt, the target robot Rt follows the Rs5 DNN
reference (green) ‘too well’, causing it to overshoot the desired
trajectory. Conversely, when pre-cascading the inverse of Rt,
the more aggressive robot, to Rs5 , the less aggressive robot,
the Rt inverse module slightly amplifies the reference signal
to compensate for the slow response of Rs5 . This results in
positive transfer from Rt to Rs5 .

VI. CONCLUSION AND FUTURE WORK

In this paper, we considered an inverse module transfer
framework in which an inverse dynamics module from a
source system is transferred to a target system with the
goal of improving the tracking performance of the target
system. We derived an upper bound on the l2-norm of the
tracking error of the target system when using a source inverse
module and proposed an algorithm to estimate this bound
using input/output data from the source and target systems.
We also highlighted the asymmetric nature of this transfer
framework. In quadrotor experiments, we demonstrated the
efficacy of the upper bounds, showed how the estimated bound
can be used for guaranteeing positive transfer, and illustrated
the asymmetric nature in the inverse transfer framework with
two quadrotors cross-sharing their inverse modules.

As future work, we would like to extend our theoretical
results on transfer performance guarantees and the asymmetric
nature of this transfer framework to multi-input multi-output
nonlinear systems and explore the asymmetric nature of trans-
fer learning in other robot learning-based control frameworks.
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