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Abstract— Handling orientations of robots and objects is
a crucial aspect of many applications. Yet, ever so often,
there is a lack of mathematical correctness when dealing
with orientations, especially in learning pipelines involving, for
example, artificial neural networks. In this paper, we investigate
reinforcement learning with orientations and propose a simple
modification of the network’s input and output that adheres to
the Lie group structure of orientations. As a result, we obtain
an easy and efficient implementation that is directly usable
with existing learning libraries and achieves significantly better
performance than other common orientation representations.
We briefly introduce Lie theory specifically for orientations in
robotics to motivate and outline our approach. Subsequently,
a thorough empirical evaluation of different combinations of
orientation representations for states and actions demonstrates
the superior performance of our proposed approach in different
scenarios, including: direct orientation control, end effector
orientation control, and pick-and-place tasks.

I. INTRODUCTION

The orientation of robots, end effectors, or objects is a
central state in almost all robotics applications, such as drone
flying [1], [2], [3], highly dynamic locomotion [4], [5], or
manipulation of objects [6], [7], [8]. While positions can be
trivially described with Cartesian coordinates in Euclidean
space, orientations require more attention. Since orientations
form a mathematical group, they have favorable structural
properties that can simplify and improve calculations when
respected [9], [10]. However, in practice, this group structure
is often only partially considered or even entirely ignored,
leading to, for example, issues with singularities in Euler
angles. Moreover, learning orientations with artificial neural
networks often conflicts with the group structure because
such networks typically operate in Euclidean space, i.e., Rn,
since most practical learning implementations provide full
support only for such a representation [11], [12]. Another
complexity is that orientations can be expressed by many
different representations, which have different advantages
and disadvantages, such as computational speed, smoothness,
multi-cover, and singularities [13].

This paper focuses on treating orientations mathemati-
cally consistently in reinforcement learning (RL). Our cen-
tral claim is that in an RL setting, adhering to the Lie
group structure of orientations where possible results in
mathematically sound expressions and practically superior
performance in learning progress, computational speed, and
policy performance. Specifically, our contributions are:

• A modification of network inputs and outputs in rein-
forcement learning based on the Lie algebra of orienta-
tions that is mathematically sound, practically efficient
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Fig. 1. Top: Our proposed learning architecture. Starting with an orientation
state s ∈ M, we take the Log to obtain a vector Eτs ∈ R3 in the tangent
space. This vector is passed into the neural network to obtain an action
vector sτa ∈ R3 relative to s. By taking the Exp, we obtain a relative
action a ∈ M which is composed with the original state s to obtain the
new state s′ = s · a ∈ M. Bottom: The hardware setup for the pick-and-
place task. A cube is moved from an initial pose to a goal pose in the air.

to implement, and leads to improved policy performance
compared to other common implementations.

• A practical introduction to Lie theory for orientations in
robotics to motivate and outline the modified network
architecture.

• An empirical evaluation of different combinations of
orientation representations for observations and actions
to determine the most suitable representation for RL
with orientations.

A. Problem setting

We consider reinforcement learning (RL) for a goal-
conditioned Markov decision process with state s ∈ S, goal
g ∈ Gs, action a ∈ A, and sparse reward r ∈ {−1, 0}. The
state can be composed of positions and orientations. The
actions are position or orientation commands relative to the
current state, resulting in the dynamics s′ = f(s,a).

The objective in goal-conditioned RL is to find a policy
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a = π⋆(s, g) that maximizes the expected future reward:

π⋆ = argmax
π

E
π

[ ∞∑
t=0

γtr(st, gt,π(st, gt))

]
, (1)

with discount factor γ ∈ [0, 1).
For the reward, we consider the distance between the state

and the goal. For Euclidean quantities, i.e., positions, the
distance is the norm of the state-to-goal difference:

dE(s, g) = ∥s− g∥ ∈ R. (2)

For orientations, the distance is the norm of the orientation
difference in the tangent space between state and goal
orientations:

dM(s, g) = ∥s⊖ g∥ ∈ R. (3)

This distance is simply the angle between the two orien-
tations, independent of the representation, and, therefore,
comparable between different representations. We explain
how this difference is computed in Sec. II-B and refer to
[10] for further details and notation.

The sparse reward is 0 if the Euclidean distance is smaller
than a threshold ϵE ∈ R+ and the orientation distance is
smaller than a threshold ϵM ∈ R+, and −1 otherwise, i.e.,

r(s, g,a) =

{
0 if dE ≤ ϵE and dM ≤ ϵM

−1 otherwise
. (4)

For our experiments, we use the deep deterministic policy
gradient (DDPG) learning algorithm [14] with hindsight
experience replay [15].

B. Related work

The correct treatment of orientations in robotics is gain-
ing increasing interest to improve performance. Learning
methods based on artificial neural networks require careful
attention due to their Euclidean structure in practice, which
is not directly compatible with the manifold structure of
orientations. Accordingly, [16] investigates which orientation
representations exhibit discontinuous maps to the rotation
group SO(3) and how these discontinuities lead to the-
oretical and practical learning deficiencies. Continuing in
this direction, [17] investigates supervised learning with
orientations both at the input and output of networks. While
both works address differences in rotation representations
for supervised learning, they still treat the representations as
Euclidean vectors, requiring, for example, the projection of
the network output onto the orientation manifold. In contrast,
we propose a method that adheres to the orientation structure
both at the network input and output.

One approach to treat the orientation manifold structure
correctly in reinforcement learning can be found in [18].
Here, the focus is on orientations in the action space, which
are treated as a Riemannian manifold at the network output.
This view can be complex and, if not handled correctly, is
subject to subtle issues described in detail in [19]. Initial
ideas in [20], where instead of the Riemannian manifold

view, the Lie group perspective is taken, simplify computa-
tions for orientations. However, the real-world experiments
in [20] are limited, and no study of the mutual influence
of representation combinations in the action and observation
space is considered. In our paper, we conduct a thorough
study across many different parametrizations and show re-
sults for complex, real-world robotic tasks.

A fundamentally different approach is to adapt the entire
network architecture to adhere to the group structure of orien-
tations. Several authors have investigated such methods [21],
[22], [23], [24], and there are a number of works specifically
on quaternion representations [25], [26]. However, since
most state-of-the-art learning libraries have limited support
for such network structures, we focus on modifying the
network input and output to leverage existing packages and
provide a practically beneficial method.

II. BACKGROUND ON LIE THEORY FOR ORIENTATIONS

Unlike the position of an object, its orientation is a non-
Euclidean state. An intuitive example of this fact is that
incrementally rotating an object will decrease the global
orientation once the orientation exceeds π. Nonetheless, the
set of all possible orientations can be associated with a
mathematical group on a smooth manifold, which has the
same shape everywhere, making it a Lie group. In this
section, we often follow the excellent introduction to Lie
groups for robotics by [10] and refer to this work for
further details. In our paper, we only provide the background
necessary for learning in robotics with orientations.

First, we provide representations that are commonly used
to describe orientations. Then, we explain how distances
between orientations can be computed and how relative
orientations can be composed. Finally, we give insights into
how these representations are used in learning with neural
networks.

A. Lie groups as orientation representations

The orientation of an object is a geometric property. In
order to work with orientations, we need a mathematical
representation. Since there are different applications with
distinct requirements, various orientation representations are
commonly used, and a summary of common representations
is given in Tab. I.

Representation Structure Size Dim. Cover

Rotation matrices Lie Group SO(3) 9 3 single
3× 2 matrices Lie Group SO1:2(3) 6 3 single
Quaternions Lie Group S3 4 3 double
Quaternions+ Group 4 3 single
Euler angles Vector space R3 3 3 multi
Axis-angle Lie Algebra m ∼= R3 3 3 multi

TABLE I
ORIENTATION REPRESENTATIONS

Some of these representations are a group. Citing [10], a
group (G, ·) is a set, A, with a composition operation, ·, that,



for elements x,y, z ∈ G, satisfies the following axioms:

Closure under · : x · y ∈ G (5a)
Identity E : E · x = x · E = x (5b)

Inverse x−1 : x−1 · x = x · x−1 = E (5c)
Associativity : (x · y) · z = x · (y · z) (5d)

As mentioned above, if the elements of a group exist on a
smooth manifold that looks the same everywhere, it is a Lie
group. An example is the group of rotation matrices SO(3)
with the composition being matrix-matrix multiplication, the
identity element being the identity matrix, E = I3×3, and
the inverse defined as the matrix transpose, R−1 = RT.

Since the 3 × 3 rotation matrices R ∈ SO(3) evolve
smoothly on their manifold, they form a Lie group. There
is a bijective (one-to-one) mapping between the elements of
the SO(3) group and the elements of the set of all possible
orientations. Therefore, SO(3) is typically referred to as the
orientation (or rotation) group.

A related and less common yet practically useful repre-
sentation are the 3× 2 matrices R ∈ SO1:2(3) composed of
the first two columns of the matrices in SO(3) [16]. Given
a matrix in SO1:2(3), the third column can be uniquely
reconstructed from the first two with the cross product,
making SO1:2(3) isomorphic (same structure but different
representation) to SO(3), i.e., SO1:2(3) ∼= SO(3). The
advantage of fewer parameters in the SO1:2(3) representation
comes at the cost of losing direct matrix-matrix or matrix-
vector multiplication.

Another way to represent orientations is with the compu-
tationally efficient four-parameter unit quaternions q ∈ S3,
with quaternions q ∈ H, ∥q∥ = 1. Unit quaternions also
form a Lie group, but there is a surjective (here many-
to-one) mapping from S3 to SO(3). Specifically, there is
a double cover, i.e., both q and −q represent the same
orientation. Yet, the group of unit quaternions, as well as
unit-quaternion distances and incremental changes, can be
formulated smoothly.

There are also orientation representations that are not Lie
groups. In order to avoid non-uniqueness issues with the
double cover, unit quaternions can be limited to a single
cover S3+ by negating quaternions with negative real part.
While S3+ still satisfies the group axioms (5) by modifying
the composition operation to always negate negative-real-part
quaternions, this modification breaks the Lie group structure
because of the loss of a smooth manifold.

Another widespread representation is three-parameter Eu-
ler angles e ∈ R3. Euler angles have a non-smooth mapping
to orientations at specific configurations, i.e., singularities.
In such configurations, a small local change of orientation
can only be achieved by a discontinuity in Euler angles, as
shown in Fig. 2. Euler angles also have a surjective mapping
to orientations, where in singularities, infinitely many Euler
angles represent the same orientation.

Yet another representation is axis-angle θ ∈ R3. This
representation builds on the fact that any representation can
be expressed as a three-dimensional unit-norm rotation axis
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Fig. 2. A comparison of continuous and discontinuous orientation repre-
sentations. Top: the initial frame (1) is first turned −90◦ around the local
y-axis to obtain frame (2), and then turned 90◦ around the local z-axis to
obtain frame (3). Bottom: Representing this frame transformation with a
rotation matrix or a quaternion (with double cover) evolves continuously on
their respective manifolds. Using Euler angles results in a discontinuity at
the singularity.

u ∈ R3 and a rotation angle θ ∈ R, resulting in θ = θu.
There is a surjective mapping from axis-angle to orientations
with a multi-cover. A different perspective is to consider this
representation as an isomorphism to the Lie algebras for the
Lie groups SO(3), SO1:2(3), and S3, which we discuss in
the next section.

B. Lie algebra for distances and increments

Every Lie group has an associated Lie algebra closely
related to the group. The Lie algebra is a vector space tangent
to the group at the identity element, and its elements can be
represented by vectors. That is, the Lie algebra m is the
tangent space TEM at the identity E of the Lie group M.
The relationship between Lie group and algebra is visualized
in Fig. 3. Elements τ∧ ∈ m of the Lie algebra m can be
uniquely represented by vectors τ ∈ Rm, where m is the
dimension of the group, i.e., m ∼= Rm. Table II contains
orientation Lie groups, Lie algebras, and the Lie algebra
vector representations.

Lie Group M Lie Algebra m Vector Representation Rm

SO(3) θ× ∈ so(3) θ ∈ R3

SO1:2(3) ∼= θ× ∈ so(3) θ ∈ R3

S3 θ/2 ∈ Hp θ ∈ R3

TABLE II
LIE GROUPS AND ALGEBRAS

The × operation in θ× creates a 3 × 3 skew-symmetric
matrix from θ. For orientation Lie groups such as SO(3),
SO1:2(3), and S3, the elements of the Lie algebra repre-
sented as vectors are axis-angles θ ∈ R3.

There exists a simple relation between a Lie group element
x ∈ M and its associated Lie algebra element τ∧ ∈ m (and
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Fig. 3. Visualization of a Lie group on manifold M, its Lie algebra m,
i.e., the tangent space at the identity TEM, and a tangent space at TxM
at x ∈ M, where the following holds: y = x · Exp(xτ ).

τ ∈ Rm):

x = exp(τ∧) = Exp(τ ), (6a)
τ∧ = log(x), (6b)
τ = Log(x). (6c)

The Lie algebra allows us to easily compose relative orien-
tations and compute orientation differences. An incremental
orientation xτ ∈ TxM expressed in the local tangent space
at the orientation x ∈ M is achieved by the following
composition:

y = x⊕ xτ = x · Exp(xτ ). (7)

Because of the group composition and exponential map,
adding a relative orientation change remains on the group
manifold and does not require any projection. Similarly, the
difference between two orientations can be computed as

xτ = y ⊖ x = Log(x−1y). (8)

With the group operations (5) and the Lie algebra, we can
also define a distance metric d : M × M → R with the
following properties for elements x,y, z ∈ M:

Zero self distance : d(x,x) = 0 (9a)
Positive for x ̸= y : d(x,y) > 0 (9b)

Symmetry : d(x,y) = d(y,x) (9c)
Triangle inequality : d(x, z) ≤ d(x,y) + d(y, z). (9d)

Defining such a metric is not trivial: if we want to know the
distance of an orientation to the origin, i.e., the identity, we
cannot simply take the norm of the orientation representation
element as we would do for Euclidean vectors since, for
example, any rotation matrix, including the identity matrix,
has a norm ∥R∥F =

√
3. Accordingly, several different

metrics exist that measure the distance between orientations
[27]. However, we consider the geodesic distance to be
the geometrically “correct” metric. The geodesic distance is
simply the rotation angle between two orientations.

The Lie algebra is an axis-angle representation and can be
used directly as a distance measure. As a result, the distance
to the origin for an orientation x ∈ M is the norm of its Lie
algebra element: ∥log(x)∥ = ∥θ∥ = θ. The distance between

two orientations x,y ∈ M is the distance of the relative
orientation between the two to the origin: ∥log(y−1x)∥.

Since Euler angles do not constitute a Lie group, we treat
them as a vector space and compose orientations by adding
Euler angles. Distances are computed by first converting Eu-
ler angles to a Lie group representation and then computing
the Lie algebra distance.

III. LEARNING WITH ORIENTATIONS

Neural networks can be interpreted as learning a nonlinear
feature representation for an input and producing a weighted
output of these features. Most network architectures operate
in Euclidean vector spaces, i.e., they have vector inputs
and outputs, as well as addition and scalar multiplication
as operations. Accordingly, the feature representation for
orientations happens in Euclidean space by representing
orientation representations as Euclidean vectors at the inputs
and outputs.

When using Lie group representations and directly passing
them into a network, they are mathematically incorrectly
treated as vectors at the input, for example, by flattening
a rotation matrix Rin ∈ SO(3) into a vector rin ∈ R9.
More problematically, the network’s output is also a vector
and not on the orientation manifold SO(3). Therefore, some
form of projection back onto the manifold is required, for
example, based on singular-value decomposition, to obtain
the “closest” rotation matrix Rout ∈ SO(3) from a non-
SO(3) matrix R′

out ∈ R3×3.
As an alternative, we propose to properly consider the Lie

group structure of orientations when learning with neural net-
works. To this end, instead of directly feeding an orientation
state s as a vector at the input, we pass in the associated
Lie algebra element Eτ s = Log(s) ∈ R3 which is, in fact, a
vector. The network then performs operations that are within
the algebraic structure of the Lie algebra and also provides
an output that is a Lie algebra element sτa ∈ R3. An
orientation action is recovered from this element by taking
the exponential a = Exp(sτa) ∈ M. Finally, the new state
s′ is obtained by composing the current state s and action
a: s′ = s · a ∈ M. The full process is visualized in Fig. 1.

In practice, the exponential and logarithm can either be
manually implemented in closed form (cf. [10]) or by using
the matrix and quaternion exponential and logarithm existing
in most linear algebra packages.

IV. EXPERIMENTS

We investigate three settings with increasing complexity
to provide empirical results on reinforcement learning with
orientations:

A. Directly learning a policy for orienting a frame with
incremental rotation actions without any robot embod-
iment to obtain a “clean” baseline.

B. Moving the end effector of a robot arm to a desired
orientation to investigate the learning of embodied
orientation.
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Fig. 4. Comparison of different orientation representations for state and action: Lie algebra m, rotation matrices SO(3) (SO3), two-column rotation
matrices SO1:2(3) (SO1:2

3 ), positive-real-part quaternions S3+, quaternions S3, Euler angles ∡, and Riemannian manifold action RM. Top row: Results
for direct orientation control. Bottom row: Results for end effector orientation control. Left column: Average success rate during training to measure
convergence speed and overall success. Higher (blue) is better. Center column: Final success rate to measure best task success. Higher (blue) is better.
Right column: Average reward per step of the final policy to measure policy performance. Closer to zero (blue) is better.

C. Picking and placing a cube with the robot arm where
the orientation of the unactuated cube cannot be con-
trolled directly.

We use MuJoCo [28] for the robot simulation, and DDPG
for learning, although we repeated some of the experiments
with TD3 for verification and obtained similar results.

A. Direct orientation control

We compare 36 orientation representation combinations by
evaluating the six representations listed in Tab. I for the state
and action. The task is to rotate an initial frame into a goal
frame by applying incremental rotation actions, visualized in

s0 s1 s2 s3

a0 a1 a2

Fig. 5. Task progression for direct orientation control. From the initial
state s0, relative rotation actions ai are taken to move toward the goal (not
shown).

Fig. 5. The initial state s and goal g are sampled uniformly
in S3 and then converted to other representations. For all
representations, the action is limited to a relative rotation
angle of at most 0.1π. We also repeated the experiments
with 0.05π and 0.2π and obtained similar results. During
each episode, the agent can take 50 steps to reach the goal.
We train the agent for 200,000 environment steps.

We also compare to the Riemannian manifold approach in
[18]. Note that the method in [18] only provides a different
way of treating actions, but not states.

The results are shown on the top row of Fig. 4. We
show three metrics: The average success rate during the
training process indicates how quickly and consistently train-
ing progress is made, and higher values represent faster
training progress. The final success rate at the end of training
indicates if the policy is at all able to solve the task. And
the average reward per step during 160 rollouts of the final
policy shows how well the policy performs, as reaching the
goal faster yields a higher reward. For all results, we take
the average of 100 runs.

A comparison of the required time for a full training run



is provided in Tab. III. We use the same representation for
state and action and show the time spent on network training
and policy rollout.

Time (s) m SO3 SO1:2
3 S3+ S3 ∡ RM

Train 18.8 29.0 20.5 27.0 25.9 45.1 28.9
Rollout 19.5 38.6 24.8 21.3 19.9 20.0 32.7

TABLE III
TIME SPENT DURING TRAINING (SEE FIG. 4 FOR LABELS)

B. End effector orientation control

We evaluate the applicability of the baseline results to
robotic systems by requiring the end effector of a robot
arm to reach a desired goal frame from the single initial
robot configuration. We compare the same 36 orientation
representation combinations for state and action as in Sec.
IV-A. The task is to rotate the end effector from the initial
frame into a goal frame without restrictions on the position.
As before, the goal g is sampled uniformly in S3 and then
converted to other representations, and the action is limited
to a relative rotation angle of at most 0.1π. During each
episode, the agent can take 100 steps to reach the goal. We
train the agent for 2,000,000 environment steps.

The results are shown on the bottom of Fig. 4. As before,
we provide results for the average success rate, the final
success rate, and the average reward per step of the resulting
policy. For all results, we take the average of ten runs.

C. Pick-and-place task

Finally, we perform a pick-and-place task, where the robot
arm needs to grasp and move a cube to a desired position and
orientation. For this scenario, we use the same representation
for state and action and showcase three orientation represen-
tations: Lie algebra m, rotation matrix SO(3), and positive-
real-part quaternion S3+. The robot arm is initialized in a
single configuration. The cube’s position is initialized in a
plane on the ground, and its orientation is randomized and
then projected to lie flat on the ground. The goal position is
in the air, and the orientation is uniformly varied up to π

2
around a random axis from the initial orientation. The action
is limited to a relative rotation angle of at most 0.2π. During
each episode, the agent can take 100 steps to reach the goal.
We train the agent for 10,000,000 environment steps. We
use an expert policy to guide learning similar to the process
described in [8].

The hardware setup is shown in Fig. 1 and the training
results for three best representations, Lie algebra, rotation
matrix, and positive-real-part quaternion, are shown in Fig.
6. For the results, we take the average of five runs.

We conduct two experiments on hardware. For the first
experiment, we place the cube in the center of the table and
use eight uniformly spaced starting orientations. The goals
are sampled randomly, as in the simulation. We record four
trials for each orientation. The second experiment has four
different initial cube positions on a rectangle, and we use four
uniformly spaced staring orientations. The goals are sampled
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Fig. 6. Comparison of the training performance of selected orientation
representations for the pick-and-place task with the same representation for
state and action: Lie algebra m (blue), rotation matrices SO(3) (red), and
positive-real-part quaternion S+ (green).

randomly, as in the simulation. We record two trials for each
orientation. The results for evaluation on hardware are shown
in Tab. IV.

Experiment Trials Success

Center position 32 46.9%
Rectangle positions 32 50.0%

TABLE IV
SUCCESS RATES FOR PICK-AND-PLACE HARDWARE EXPERIMENTS

V. DISCUSSION

The results for direct and end effector orientation control,
as well as picking-and-placing, show that, overall, the action
representation has a larger effect on training performance,
and the best training is achieved with our proposed Lie
algebra actions, matching the theoretical motivation outlined
in the paper. Rotation matrices (SO(3) and SO1:2(3)) and
positive-real-part quaternions (S3+) achieve good results,
and the discontinuity in S3+ does not appear to deteriorate
the performance. The results for the state representation are
less conclusive. A potential reason could be that networks
are able to extract relevant features from all representations,
even without adhering to the theoretical manifold at the
input. Nonetheless, Euler angles and quaternions perform
consistently worse than other representations. A possible
reason for this result could be the multi-cover of orientations
in these representations. Using the Riemannian manifold
actions proposed in [18] does not provide good performance.
We refer to [19] for potential reasons.

The resulting policies with Lie algebra actions perform
slightly worse than certain other representations despite their
better training performance. We attribute this result to the
fixed box-bound action scale, which results in a smaller
maximum rotation in certain directions for Lie algebra
actions compared to other representations. Accordingly, the
final average reward is lower since it takes longer to reach
the goal. Scaling the action dynamically to achieve the
full range considerably deteriorates training performance,
possibly because now the action scale also has to be learned.

Due to the computationally faster projection, the Lie
algebra representation also has the lowest training and rollout



times. For the same reason, the Lie algebra representation is
also faster than the Riemannian manifold action due to the
simpler mapping from manifold to tangent space and back.

VI. CONCLUSIONS

We presented a novel state and action orientation repre-
sentation for learning with neural networks in reinforcement
learning based on the Lie algebra of orientations. Our results
show that specifically using the Lie algebra actions results
in better training performance and faster training and policy
rollout, making them generally a suitable choice for learning
with orientations in robotics. Our findings are consistent
across tasks with increasing complexity, indicating that the
results generally apply to different robotics settings.
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