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SUMMARY

In this work, hybrid systems with regional dynamics are considered.

These are systems where transitions between different dynamical regimes occur as

the continuous state of the system reaches given switching surfaces. In particular,

the attention is focused on the optimal control problem associated with such sys-

tems. More precisely, given a specific cost function, the goal is to determine the

optimal path of going from a given starting point to a fixed final state during an

a priori specified time horizon.

The key characteristic of the approach presented in this thesis is a hierarchical

decomposition of the hybrid optimal control problem, yielding to a framework

which allows a solution on different levels of control. On the highest level of

abstraction, the regional structure of the state space is taken into account and a

discrete representation of the connections between the different regions provides

global accessibility relations between regions. These are used on a lower level of

control to formulate the main theorem of this work, namely, the Hybrid Bellman

Equation for multimodal systems, which, in fact, provides a characterization of

global optimality, given an upper bound on the number of transitions along a

hybrid trajectory. Not surprisingly, the optimal solution is hybrid in nature, in

that it depends on not only the continuous control signals, but also on discrete

decisions as to what domains the system’s continuous state should go through in

the first place.

The main benefit with the proposed approach lies in the fact that a hierarchical

Dynamic Programming algorithm can be used to representing both a theoretical

characterization of the hybrid solution’s structural composition and, from a more

application-driven point of view, a numerically implementable calculation rule

xvii



yielding to globally optimal solutions in a regional dynamics framework. The op-

eration of the recursive algorithm is highlighted by the consideration of numerous

examples, among them, a heterogeneous multi-agent problem.

xviii



CHAPTER I

INTRODUCTION AND OBJECTIVE

This chapter highlights the notable relevance of hybrid models in the characteri-

zation and description of complex dynamical systems, which have recently gained

remarkable significance through the more and more advanced investigations in

almost every modern field of application. In this context, the particular optimal

control problem addressed in this work is presented, which is followed by a brief

outline of the main contents in this thesis.

1.1 Motivation

During the last decade, a vast body of research on hybrid control systems has been

produced, drawing its relevance from the fact that hybrid models are becoming

more and more common. This trend is driven by the fact that many modern ap-

plication domains involve complex systems, in which sub-system interconnections,

mode-transitions, and heterogeneous computational devices are present.

Hybrid models, in which continuous and discrete dynamical components inter-

act, have proved useful for capturing these types of phenomena. In fact, one can

argue that the “hybridization” of the models is useful for two distinctly different

reasons. The first reason is that by decomposing complex control tasks down into

simpler building-blocks, the overall control design problem becomes easier, and as

a result, a non-hybrid problem becomes hybrid by choice. The benefit from this

divide and conquer approach is that a number of relatively easier conrol tasks can

be solved, and the resulting controllers are then concatenated together to produce

the global system behavior. As an example of this, consider the behavior-based

robotics paradigm for mobile robot navigation. The other reason why hybrid mod-

els are useful is that some problems are inherently hybrid in that mode-transitions

1



occur in response to events, that may be exogeneous as well as being triggered by

events in the continuous state space.

In this work, the latter of these types of systems is considered, namely hybrid

systems in which transitions between different dynamical regimes occur as the

continuous state of the system reaches a given switching surface. In particular, the

attention is focused on the optimal control problem associated with such systems.

More precisely, given a specific cost function the goal is to determine the optimal

path of going from a given initial state ξ0 to a fixed final state ξT during a time

horizon T , where T is also specified a priori. Note that stochastic approaches to

similar problems were proposed in [27,44].

Optimal control of hybrid systems is certainly not a new topic. For example,

the hybrid maximum principle has been well-studied, and the community now has

a clear grasp of what constitutes necessary optimality conditions for very general

classes of hybrid systems [15, 60–62, 64]. Moreover, a number of results of a more

computational flavor have complemented the work on the maximum principle, in

which specialized classes of systems are considered. See for example [6, 23, 28,

54, 69]. These computational contributions typically fall in one of two camps,

namely the camp in which the switching times are available to the controller as

a design parameter [23, 69], or, the camp in which a more restrictive class of

model dynamics, for example, piecewise linear or affine discrete-time models, is

considered, for which mixed-integer programming techniques can be used [6, 28].

The novelty of the solution herein lies in the treatment of global optimality

conditions for the general class of regional dynamics systems, where the hybrid

nature is inherent in that transitions between different dynamical regimes are

triggered as the continuous state intersects certain surfaces in the state space.

Based on a hierarchical structuring of the optimal control problem associated with

such systems, along the lines of [11,12,32], a Hybrid Bellman Equation is derived,

representing both, a mathematical formulation and theoretical characterization of

the hybrid solution’s structural composition and, from a more application-driven

2



point of view, an implementable, numerically computable calculation rule.

1.2 Outline of the Thesis

This work is structured as follows:

In Chapter 2, a brief summary on optimal control theory is given, particularly

focusing on results, definitions, and ideas fundamental for the understanding of

our subsequent discussions on hybrid systems. Chapter 3 presents an explana-

tory and illustrative description of the hybrid optimal control problem addressed

in this work and, moreover, provides a rough sketch of the proposed solution

scheme. The purpose of Chapter 4 is to present a first, preliminary approach to

the mathematically precise treatment of the general hybrid point-to-point problem

introduced in Chapter 3 considering only two regions, i.e., two different discrete

modes, and a simplified dynamic behavior. The bimodal system (with limited dy-

namics) is considered at first with the intention of illustrating various important

mathematical assumptions and definitions needed later to accurately formulate

and solve a general hybrid point-to-point problem. Finally, in Chapter 5, global

optimality conditions for the multiregional point-to-point problem are presented

and the main theorem of this work, the Hybrid Bellman Equation for multimodal

systems, is stated. However, Chapter 6 shows the universal validity of the derived

automaton-based Dynamic Programming recursion, which applies, in fact, to a

much huger class of hybrid optimal control problems characterized by more gen-

eral dynamic regimes, differently defined geometric structures, and special cost

functions. In the end, in Chapter 7, the powerful computational operation of the

proposed approach, established in Chapter 4 and Chapter 5, is proven by solving a

hybrid multi-agent problem. Chapter 8 concludes the investigations in this thesis

and highlights the work’s main contributions.

3



CHAPTER II

BACKGROUND – OPTIMAL CONTROL

This chapter provides a summary on optimal control theory and is particularly

focused on results, definitions, and ideas fundamental for the understanding of our

subsequent discussions.

Even advanced readers are highly encouraged to read the following sections

not only because they present a concise review of two basic optimal control ap-

proaches, the Dynamic Programing algorithm (Section 2.2) and Pontryagin’s Min-

imum Principle (Section 2.3), but especially because, in the course of this work,

frequent references are made to notations, conclusions and considerations high-

lighted in this chapter. In fact, many concepts, as for example the Principle of

Optimality and the idea of defining a cost-to-go function, can be adapted to the

subsequently arising problems and are useful means to their solution. However,

in order to obtain a profound introduction to optimal control and to understand

the theoretical and mathematical background, the reader is referred to a recom-

mendable selection of books presented in Section 2.4.

Now, as a first step, a formal mathematical definition of the optimal control

problem is given.

2.1 The Optimal Control Problem

The goal in the theory of optimal control is to determine, given a dynamical

system, the system input which minimizes a specific performance measure.

This section presents a formal statement of the optimal control problem in

terms of a continuous-time formulation, Section 2.1.1, and the corresponding

discrete-time statement, Section 2.1.2. The continuous-time version provides an

excellent basis for the more advanced expressions necessary to define the hybrid
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optimal control problem in Chapter 4 and Chapter 5. The discrete-time version is

used to introduce the Dynamic Programming method in Section 2.2 which plays

an important role in deriving the main result of this thesis, the Hybrid Bellman

Equation for multi-modal systems.

2.1.1 The Continuous-Time Optimal Control Problem

First, consider a continuous-time system described by the equation

ẋ(t) = f(x(t), u(t), t) , (2.1)

where u is the control input of the system and f is assumed to be continuously

differentiable in x (for all u). Besides the given dynamics (2.1), which represent a

mathematical model of the real system, further key elements specifying an optimal

control problem are the performance measure J , which is to be minimized, and the

constraints on the state x and input u of the system. The performance measure

J , also referred to as the cost functional, is defined as the sum of an integral term,

called stage cost, and a term representing the terminal penalty, namely,

J =

∫ tf

t0

`(x(t), u(t), t) dt+ Φ(x(tf ), tf ). (2.2)

In this work, only finite time intervals T = [t0, tf ] with −∞ < t0 ≤ tf <∞ are

taken into account. Moreover, due to the time-invariance of the problems consid-

ered in the following, T = [0, T ] , T <∞ can be chosen without loss of generality.

The state constraints are given by

x(τ) ∈ X ⊆ R
n, τ ∈ (t0, tf ) . (2.3)

Additionally, the starting point x(t0) and the end point x(tf ) are required to satisfy

x(t0) ∈ X0 ⊆ X and x(tf ) ∈ Xf ⊆ X , (2.4)

respectively, where X denotes the closure of X . One special case of (2.4), arising

in the optimal control problem considered in this work, later also referred to as

the hybrid point-to-point problem, is the definition of a fixed initial state x(t0) =
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ξ0 and a fixed final state x(tf ) = ξf . As regards the input of the system, the

constraints are represented by

u(τ) ∈ U(x, t) ⊆ R
m, τ ∈ [t0, tf ] . (2.5)

However, for the sake of simplicity input constraints are neglected in the subse-

quent chapters of the thesis.

Now, by making use of the notation g(·) for a function g defined only on the

interval T = [t0, tf ], i.e. g(·) = {g(τ) : τ ∈ [t0, tf ] }, the general optimal control

problem can be stated as follows:

Problem 2.1 (The continuous-time optimal control problem, cf. [42]).

Determine the input signal u∗(·), such that

(i) the equations specifying the system dynamics (2.1), the state constraints

(2.3), the boundary conditions (2.4) and the input constraints (2.5) are sat-

isfied and

(ii) the cost functional J given by (2.2) takes on the least possible value.

That is to say,

inf
u(·)

J subject to the equations (2.1) – (2.5). (2.6)

2

The input u∗(·) is called an optimal control input. The corresponding cost func-

tional J∗ (u∗(·)), referred to as value function, satisfies J ∗ (u∗(·)) ≤ J(u(·)) for

all admissible u(·), i.e. for all input signals u(·) meeting the specifications (2.1)

– (2.5). Figure 2.1 gives an illustrative example of the presented optimal control

setting. The resulting optimal trajectory x∗(·) associated with the optimal input

signal u∗(·) is depicted for the case of an one-dimensional state x(t) ∈ R.

2.1.2 The Discrete-Time Optimal Control Problem

The discrete-time optimal control problem can be developed in an analogous way.

In this case, only a finite number of input values, namely an optimal input sequence

6



{u∗(k)} = {u∗(k0), . . . , u
∗(kf − 1)}, has to be determined. The following is a

formal, mathematical way of expressing this optimal control problem:

Problem 2.2 (The discrete-time optimal control problem, cf. [9]).

inf
{u(k)}

J, where J =

kf−1∑

k=k0

` (x(k), u(k), k) + Φ (x(kf ), kf ) , (2.7)

subject to

the system dynamics x(k + 1) = f(x(k), u(k), k), (2.8)

the state constraints x(k) ∈ X , (2.9)

the boundary conditions x(k0) ∈ X0 , x(kf ) ∈ Xf , and (2.10)

the input constraints u(k) ∈ U(x(k), k), (2.11)

where k ∈ {k0, . . . , kf − 1} ⊆ N ∪ {0} and ∞ /∈ N. 2

The concept of admissibility, introduced for continuous-time systems, can also be

adopted in the case of a discrete-time optimal control problem. Additionally, a

set of admissible input values Uad(x(k), k) can be explicitly determined for each

given value x(k) ∈ X , k ∈ {k0, . . . , kf − 2} using the equations (2.11), (2.8), and

(2.9)

Uad(x(k), k) =
{
u(k) ∈ U(x(k), k)

∣∣ f(x(k), u(k), k) ∈ X
}
. (2.12)

Furthermore, in order to take the final constraint x(kf ) ∈ Xf into account, the

admissible set of input values Uad for k = kf − 1 and x(kf − 1) ∈ X is defined as

Uad(x(kf−1), kf−1) =
{
υ ∈ U(x(kf − 1), kf − 1)

∣∣ f(x(kf − 1), υ, kf − 1) ∈ Xf

}
.

(2.13)

2.2 Dynamic Programming

A key concept of solving optimal control problems is Dynamic Programming (DP).

After having established the main objectives of optimal control in the previous

section, a general idea of finding optimal solutions, namely the Principle of Opti-

mality, is introduced (Section 2.2.1). Based on this principle, in Section 2.2.2, a
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t

x

t0 t′ tf

ξ0
x∗(tf)

x∗(t′)(1)

(2’)

(2)

Xf

Figure 2.1: Solution of a Continuous-Time Optimal Control Problem with
x(t0) = ξ0 ∈ R, x(tf ) ∈ Xf – The solid line represents the optimal trajectory.

Dynamic Programming (DP) algorithm is derived solving the discrete-time opti-

mal control problem (Problem 2.2). However, this Dynamic Programming method

represents an impressively wide-ranging concept valuable in solving very general

multistage decision problems [55], that is, problems which can be divided into sub-

problems whose sequential solution can be used to find the solution of the overall

problem. In particular, the hybrid optimal control problem considered in this work

can be interpreted as a multistage decision problem and the ideas presented in this

section are strongly involved in our hybrid optimal solution. The conclusion of

this section discusses some crucial characteristics of the Dynamic Programming

method. These properties hold also in the following hybrid optimal approach,

which is presented in its most general form in Section 5.

2.2.1 The Principle of Optimality

The fundamental concept of Dynamic Programming lies in the Principle of Opti-

mality, which can be stated as follows [4]:

An optimal policy has the property that whatever the initial state and the initial

decision are, the remaining decisions must constitute an optimal policy with regard

to the state resulting from the first decision.

Another more specific way of presenting this idea is shown in Figure 2.1; see
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also [38]. The optimal state trajectory x∗(·) has the property that no matter how

an intermediate state x∗(t′) is reached, the rest of the trajectory, designated path

(2), should coincide with an optimal trajectory calculated with the intermediate

point x∗(t′) as the starting point. If this is not the case, i.e. if a “more opti-

mal” path (2’) exists determined with the initial condition x∗(t′), it is possible to

concatenate the first part (1), from x∗(t0) to x∗(t′), with path (2’) resulting in a

smaller overall cost which contradicts the supposed optimality of (1)–(2). Simply

said, end pieces of optimal trajectories (u∗(·), x∗(·)) are optimal.

In fact, the following hybrid optimal control approach and especially the ideas

in Section 3.2 are a direct consequence of this intuitive principle.

2.2.2 Backwards Dynamic Programming Recursion

In the following, the Principle of Optimality is used to derive a strategy for solving

the discrete-time optimal control problem of Section 2.1 leading to a recurrence

relation known as the Bellman equation. Later, in Section 4.4 and Section 5.6 a

Hybrid Bellman Equation is developed which is closely related to the result shown

below. As a consequence, the solution techniques as well as the computational

considerations presented in this section can be transfered directly to the hybrid

control problem.

An important step in solving the discrete-time optimal control problem, intro-

duced in Section 2.1, is the definition of a so-called cost-to-go function V . Infor-

mally stated, V (x(m),m) is the smallest cost of going from state x(m) ∈ X at

stage m to a terminal state x(kf ) ∈ Xf while following the dynamics (2.8) and

satisfying the input and state constraints, (2.11) and (2.9), respectively. Recalling

the definitions (2.12) and (2.13), the cost-to-go function V (x(m),m) is precisely
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given by

V (x(m),m) = inf
{u(m), ..., u(kf−1)}





kf−1∑

k=m

` (x(k), u(k), k) + Φ (x(kf ), kf )





(2.14)

subject to

x(k + 1) = f(x(k), u(k), k)

u(k) ∈ Uad(x(k), k)

∀ k ∈ {m, . . . , kf − 1} ,

where x(m) ∈ X and k0 ≤ m ≤ kf − 1. Using the above definition along with

the Principle of Optimality, a recurrence relationship can be derived providing a

solution for the considered optimal control problem.

Theorem 2.1 (Backwards Dynamic Programming Recursion, cf. [9]).

The cost-to-go function V , defined by (2.14), satisfies the following recursive equa-

tion

V (x(m),m) = inf
u∈Uad(m, x(m))

{
`
(
x(m), u,m

)
+V

(
f(x(m), u,m), m+1

)}
, (2.15)

where m = k0, . . . , kf − 1 and x(m) ∈ X . By performing a backwards recursion

starting with V (x(kf ), kf ) = Φ (x(kf ), kf ) and evaluating equation (2.15) succes-

sively for m = kf − 1, . . . , k0, the cost-to-go functions V (x(m),m) are found for

all x(m) ∈ X , m = kf − 1, . . . , k0. As a result, the desired value function J ∗

associated with Problem 2.2 can be given by

J∗ = inf
x(k0)∈X0

{
V

(
x(k0), k0

)}
. (2.16)

The optimal input values u∗(m), m = k0, . . . , kf − 1 are obtained immediately

while calculating the cost-to-go functions V (x(m),m):

u∗(m) = arg inf
u∈Uad(m,x(m))

{
`
(
x(m), u,m

)
+ V

(
f(x(m), u,m), m+ 1

)}
. (2.17)

2

The Bellman equation (2.15) makes it possible to calculate V successively begin-

ning from V (x(kf ), kf ) = Φ (x(kf ), kf ) and continuing to the functions V (x(k0), k0)
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`(x(0), u(0), 0)

Φ(2, 2) = 0

Φ(1, 2) = 4

Φ(0, 2) = 8

`(x(1), u(1), 1)

u = 1

u = 0

u = −1

Figure 2.2: Example Illustrating the Dynamic Programming Method – The solid
arrows represent possible transitions between states. The dashed arrows display
the optimal path corresponding to the specifications given in Example 2.1.

needed to get the desired value function J ∗. The technique itself used to find J∗

with the aid of (2.15) is called dynamic programming [9].

In the following, the beauty of the Dynamic Programming approach is illus-

trated by solving a simple discrete-time optimal control problem.

Example 2.1. Shown in Figure 2.2 is a controlled discrete-time system with x(k+

1) = x(k)+u(k), X = {0, 1, 2}, k0 = 0 and kf = 2. A cost function J , as defined

in equation (2.7), is given through

`(x(k), u(k), k) = 2x(k) + u(k) + k and Φ(x(kf ), kf ) = 8 − 4x(kf ),

where the values of ` are displayed in Figure 2.2 for each possible state transition

illustrated by an arrow connecting the corresponding states. Furthermore, the

arrows indicate all possible choices of input values at a given state x(k), i.e. they

specify the set U(x(k), k). The boundary conditions are given by X0 = Xf = X .

Now, using (2.15) and working backwards, the “first” cost-to-go functions to be

determined are V (x(k), k), x(k) ∈ X with k = kf − 1 = 1. Examplarily, the

cost-to-go function V (2, 1) is calculated

V (2, 1) = inf
u∈{0,−1}

{` (x(2, u, 1) + Φ (f(2, u, 1), 2)} = inf {5 + 0, 4 + 4} = 5,

where in this case u = 0 leads to the smallest value for V (2, 1). Analogously,

V (1, 1) = 4 and V (0, 1) = 6 can be computed. After having performed this first
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minimization, each “node” x(1) ∈ X is associated with an optimal cost-to-go value

V (x(1), 1) and a corresponding optimal path, leading from x(1) to the final set Xf .

Important to note is that V (x(1), 1) must be calculated for every value x(1) ∈ X

in order to complete the next recursion step, the determination of V (x(0), 0). As

an example, V (0, 0) is determined

V (0, 0) = inf
u∈{0,1}

{` (0, u, 0) + V (f(0, u, 0), 1)} = inf {0 + 6, 1 + 4} = 5.

Simultaneously, the minimizing input value is obtained, in this case u = 0. In

a similar way, the values V (1, 0) = 6 and V (2, 0) = 7 are computed. Note that

instead of accomplishing the minimization as a whole problem, i.e. determining the

cost functions for all 17 allowed paths and minimizing over all these possibilities, a

sequence of very simple minimization problems is solved which involve comparing

only two or three numbers at each node. Finally, by applying equation (2.16) the

value function J∗ can be computed

J∗ = inf {V (0, 0), V (1, 0), V (2, 0)} = inf {5, 6, 7} = 5.

The dashed arrows in Figure 2.2 illustrate the optimal path and picture the opti-

mal input sequence {u∗(k)} = {1, 1}. 2

References [4, 5, 9, 13, 38] describe further applications of the Dynamic Program-

ming algorithm and a wider range of illustrative examples.

2.2.3 Characteristics and Conclusion

The conclusion of this section on Dynamic Programming identifies and describes

important properties in view of the later application to hybrid systems.

As highlighted in the previous example, in order to solve the original optimal

control problem, an entire set of minimization problems is solved. Precisely, all

cost-to-go functions V (x(k), k), x(k) ∈ X , k0 ≤ k ≤ kf are computed, starting

with k = kf and proceeding in a backwards manner. As a result, we obtain not only

the “quality” V (x(k), k) of each node x(k) in terms of its future performance under

an optimal policy but also the appropriate optimal control input itself (2.17), and,
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with this, the associated optimal path from x(k) to Xf . In fact, this procedure

is equivalent to finding concurrently the optimal trajectories corresponding to

various initial sets X0 at different stages k0,new : k0 ≤ k0,new ≤ kf . Therefore,

solving the optimal control problem under changed initial conditions requires very

little additional calculation.

In order to consider some further computational aspects, the total number of

additions nadd and the total number of comparisons ncomp is chosen as a measure

for the inherent computational effort needed to complete a DP algorithm. For the

number of comparisons, it is supposed that only two members can be compared at

a time. In the following, an optimal control problem with |U(x(k), k)| = a different

input values, |X | = b state values, and |{k0, . . . , kf}| = c time stages is regarded,

where |S| denotes the number of elements in the set S. For simplicity, X0 =

Xf = X is chosen. When this problem is solved by using the introduced Dynamic

Programming algorithm, i.e. equations (2.15) and (2.16), the total number of

additions is generally given by

nadd = ab(c− 1) (2.18)

and the total number of comparisons adds up to

ncomp = ab(c− 1) + b− 1. (2.19)

Consequently, increasing one of the numbers a, b, c and fixing the other two, the

computational effort increases linearly. To demonstrate the quality and impor-

tance of this result, the Dynamic Programming approach is compared with the

tedious way of calculating the cost for all possible routes from X0 to Xf and

minimizing afterwards. Since the number of possible routes npaths from X0 to

Xf runs up to npaths = ac−1b, the computational effort of this method increases

polynomially while increasing the number of input values a and even increases

exponentially if the number of time stages c grows. Therefore, from this point of

view, the Dynamic Programming method is highly efficient and reduces the num-

ber of calculations dramatically, see also [1]. However, assumed the discrete states
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are obtained by quantizing a continuous state space X ⊆ R
n, the number b of

states x(k) increases exponentially if the dimensionality n of the continuous state

space raises. Therefore, in practice, for high-dimensional systems the number of

high-speed storage locations becomes restrictive [1]. Being forced to use low-speed

storage, the solution of the optimal control problem may become time-consuming.

This difficulty, the so-called “curse of dimensionality” [4], is observed especially

while solving the multi-agent problem in Chapter 7.

Finally, especially with respect to the later approach to multimodal systems,

it is valuable again to emphasize the universal validity of the Principle of Opti-

mality and the general applicability of the Dynamic Programming concept. In

the following chapters, the idea of defining a cost-to-go function and deriving a

recurrence relationship is adopted and expanded in a sophisticated way. Used

in this approach and of great importance either way is the property that, in the

context of a decision problem [55], the optimization technique chosen to solve

the individual subproblems does not affect the Dynamic Programming technique

itself by any means.

Besides the Dynamic Programming method which provides a globally optimal

solution, Theorem 2.1, and which is mainly used in a discrete framework, this work

is based on another concept solving optimal control problems which is introduced

in the following section.

2.3 Pontryagin’s Minimum Principle

Pontryagin’s Minimum Principle (PMP) represents a basic optimal control ap-

proach primarily dealing with continuous-time problems.

The goal of this section is to provide the reader with the main result, known as

Pontryagin’s Minimum Principle (PMP) presented as an adaptation to the prob-

lems arising in the subsequent chapters. In Chapter 4, Chapter 5, and also in the

application-driven investigations in Chapter 7, the result serves as a method to

solve the individual subproblems of our multistage decision problem [55] and is,
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therefore, a crucial element in the solution of the entire hybrid control problem.

In the course of this section, the solution to these subproblems, in case of a lin-

ear system and quadratic cost functional, is shown as an example for applying

Pontryagin’s Minimum Principle to continuous-time optimal control problems.

2.3.1 The Minimum Principle

This section considers a continuous-time optimal control setup as in Problem 2.1,

however, with the following specifications: A time-invariant framework is chosen,

i.e.

f = f (x(t), u(t)) , ` = ` (x(t), u(t)) , Φ = Φ(x(tf )), (2.20)

and, cf. the comments on equation (2.2),

T = [t0, tf ] = [0, T ] . (2.21)

The restrictions on the state values are given by

X = R
n, X0 = {x ∈ X | h0(x) = 0} , and Xf = {x ∈ X | hf (x) = 0} , (2.22)

where h0(x) ∈ R
p and hf (x) ∈ R

q. No constraints are enforced on the input values

and therefore

U(x, t) = R
m. (2.23)

Additionally, the following assumptions hold:

Assumption 2.1. The functions ` (x, u) and f (x, u) are continuous and contin-

uously differentiable with respect to x and u. Furthermore, Φ(x), h0(x), and hf (x)

are continuous and continuously differentiable with respect to x. 2

Now, in order to state Pontryagin’s optimality conditions concisely, some useful

notations are introduced first. The absolute value of a number a ∈ R is denoted by

|a|, whereas ‖A‖ represents the norm of a vector or a matrix A ∈ R
n×m, n,m ∈ N.

The gradient of a scalar function F (x) ∈ R, x ∈ R
n is defined as

∂F

∂x
(x) =

(
∂F

∂x1

∂F

∂x2

· · · ∂F

∂xn

)
(2.24)
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and the Jacobian of a vector-valued function f(x) = (f1(x) f2(x) · · · fm(x))′,

x ∈ R
n, where (·)′ symbolizes the transpose of the vector, is given by

∂f

∂x
=




∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn

...
...

. . .
...

∂fm

∂x1

∂fm

∂x2
· · · ∂fm

∂xn




. (2.25)

Using these notations and the specifications above, Pontryagin’s Minimum

Principle can be formulated as follows:

Theorem 2.2 (Pontryagin’s Minimum Principle, cf. [52]). Let (x∗(·), u∗(·))

be an optimal solution to Problem 2.1, specified by Assumption 2.1 and equations

(2.20)–(2.23). Then, there exist a λ∗
0 ∈ R,

µ∗
0 =

(
µ∗

0,1, . . . , µ
∗
0,p

)
∈ R

1×p, and µ∗
f =

(
µ∗

f,1, . . . , µ
∗
f,q

)
∈ R

1×q

where |λ∗0| + ‖µ∗
0‖ +

∥∥µ∗
f

∥∥ 6= 0 and λ∗0 ≤ 0, such that for the Hamiltonian defined

as

H (x(t), ψ(t), λ0, u(t)) = ψ(t)f (x(t), u(t)) − λ0` (x(t), u(t)) (2.26)

and the costate ψ∗(·), solving the adjoint equation

ψ̇∗(t) = −∂H
∂x

(x∗(t), ψ∗(t), λ∗0, u
∗(t))

= −ψ∗(t)
∂f

∂x
(x∗(t), u∗(t)) + λ∗

0

∂`

∂x
(x∗(t), u∗(t)) ,

(2.27)

the following conditions hold:

1. the Minimum Principle

∂H

∂u
(x∗(t), ψ∗(t), λ∗0, u

∗(t)) = 0, t ∈ T , (2.28)

2. the transversality conditions for the initial costate

ψ∗(0) = −µ∗
0

∂h0

∂x
(x∗(0)) , (2.29)
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x(0) = ξ0

x(T ) = ξT

ẋ(t) = Ax(t) + Bu(t)
x∗(·)

Figure 2.3: A Basic Optimal Control Problem: Finding the Optimal Path,
starting at a given point ξ0 and going to a fixed state ξT .

3. the transversality conditions for the final costate

ψ∗(T ) = −λ∗0
∂Φ

∂x
(x∗(T )) + µ∗

f

∂hf

∂x
(x∗(T )) . (2.30)

2

This theorem, obtained by employing local variational methods, provides a first-

order necessary optimality condition. Therefore, not every trajectory (x(·), u(·))

satisfying the equations (2.26)–(2.30) is optimal, however, any trajectory repre-

sents a possible candidate for an optimal trajectory.

The following example shows how the Minimum Principle can actually be used

to determine optimal trajectories. Moreover, this example represents a key element

in solving the subsequent hybrid optimal control problem in case of linear dynamics

and quadratic cost functional. However, the point-to-point problem considered in

the following has to be solved under a large number of different conditions in order

to finally obtain the hybrid trajectory. Therefore, in the subsequent section, some

computational issues are also taken into account.

2.3.2 The Point-To-Point Problem in One Region

Our goal is to find the optimal path for going from a given starting point x(0) = ξ0

to a fixed final state x(T ) = ξT under a specific cost functional J , where the

time horizon T is known a priori. For this basic optimal control problem, illus-

trated in Figure 2.3, a linear dynamical behavior and a quadratic cost functional

are assumed. Precisely, this problem can be formulated in the previously intro-

duced optimal control framework (cf. Problem 2.1 with equations (2.20)–(2.23)

and Assumption 2.1) as described in the following:
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• The system dynamics are given by

f (x(t), u(t)) = Ax(t) +Bu(t) with (A,B) controllable. (2.31)

• The cost functional is defined with

` (x(t), u(t)) = x′(t)Qx(t) + u′(t)Ru(t) and Φ(x(tf )) = 0, (2.32)

where Q = Q′ ≥ 0 and R = R′ > 0.

• The boundary conditions can be written as

h0(x) = x− ξ0 and hf (x) = x− ξT . (2.33)

The notation A > 0 is used to express the positive definiteness of a (symmetric)

matrix A; A ≥ 0 denotes a positive semi-definite (symmetric) matrix A..

As a consequence of Theorem 2.2, for an input u to be optimal it must satisfy

the Minimum Principle (2.28). From this condition, a function u = u(x, ψ) is

obtained. In our case, with the choice of λ0 = −1, the Hamiltonian H(x, ψ, u)

(2.26) is read as

H(x, ψ, u) = ψ (Ax+Bu) + x′Qx+ u′Ru (2.34)

and equation (2.28) provides

∂H

∂u
!
= 0 ⇔ u(x, ψ) = −1

2
R−1B′ψ′. (2.35)

In addition, along with the equations (2.27), (2.29), and (2.30), the dynamics of

the costate ψ are given by

ψ̇ = −2x′Q− ψA, ψ(0) = −µ0, ψ(T ) = µf , (2.36)

where µ0 and µf are arbitrary. The precedent considerations (2.35) and (2.36)

together with the system dynamics ẋ = Ax + Bu, x(0) = ξ0, x(T ) = ξT yield to

a two-point boundary value problem (TPBVP), which is written as


ẋ

ψ̇′


 =




A −1
2
BR−1B′

−2Q −A′




︸ ︷︷ ︸
M



x

ψ′


 , (2.37)
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with the boundary conditions x(0) = ξ0, x(T ) = ξT . Here, (·)−1 denotes the

inverse of a matrix. Note that the values ψ(0), ψ(T ) can be chosen arbitrarily.

Actually, with the controllability assumption (2.31), it can be shown, cf. [3,

39,43] that our particular optimal control problem has a unique optimal solution,

which, of course, necessarily has to satisfy (2.37). Consequently, the optimal

trajectory is determined as


x∗(t)

ψ∗(t)′


 = eMt




ξ0

ψ∗(0)′


 , (2.38)

where the value ψ∗(0)′ is to be chosen in a such way that the boundary conditions

on x are satisfied, i.e. with eMt =
(

φ11(t) φ12(t)
φ21(t) φ22(t)

)

ψ∗(0)′ = φ−1
11 (T )

(
ξT − φ11(T ) ξ0

)
. (2.39)

This result, combined with equations (2.38) and (2.35), provides the solution to

the point-to-point optimal control problem.

As mentioned before, the point-to-point problem emerges while dealing with

hybrid optimal control problems, as can be seen in the following chapters. Ac-

tually, the presented approach solves the entirety of subproblems arising in our

considerations on multimodal systems. As can be seen in the further endeavour,

the optimal hybrid trajectories are a concatenation of the optimal segments cal-

culated in this section. Already at this point, it is important to highlight that

in order to decide how to put together the several parts (x∗(·), u∗(·)), provided

by the calculations above, together, the value functions J ∗ associated with each

optimal section (x∗(·), u∗(·)) are indispensable. Of course, for an optimal part

(x∗(·), u∗(·)), the value J∗ can be obtained by using the integral equation (2.2).

However, from a computational point of view, the numerical integration necessary

to calculate J∗ for each of the parts is very time-consuming. Therefore, a more

favorable way of determining the value function J ∗ is derived.

Proposition 2.1 (The Value Function). The value function J ∗ associated with

the optimal trajectory (x∗(·), u∗(·)), defined by (2.39), (2.37), and (2.35), is given
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by

J∗ =

(
ξ′0 ψ∗(0)

) [(
eMT

)′
S eMT − S)

]



ξ0

ψ∗(0)′


 , (2.40)

where the equations (2.37) and (2.39) specify M and ψ∗(0), respectively, and the

matrix S is defined as

S = −1

4




0 In×n

In×n 0


 (2.41)

with In×n ∈ R
n×n denoting the identity matrix. 2

Proof. Evaluating the cost function (2.2), specified by (2.32), for the optimal

trajectory (x∗(·), u∗(·)), determined by (2.38) and (2.35), provides the following

expression

J∗ =

(
ξ′0 ψ∗(0)

) ∫ T

0

(
eMt

)′


Q 0

0 1
4
BR−1B′




︸ ︷︷ ︸
X

eMt dt




ξ0

ψ∗(0)′


 . (2.42)

Now, the central idea of this proof is to find a matrix S satisfying the relation

(
eMt

)′
XeMt =

d

dt

[(
eMt

)′
SeMt

]
=

(
eMt

)′
[M ′S + SM ] eMt. (2.43)

Supposed a matrix

S ∈ R
2n×2n : M ′S + SM = X (2.44)

can be found, then, equation (2.40) follows immediately from (2.43) and (2.42).

Indeed, with the choice for S, suggested in Proposition 2.1, and the matrix M , as

defined in (2.37), equation (2.43) is satisfied and the proof is completed. �

This result reveals an elegant way of computing the value function J ∗ for our

considered point-to-point problem, especially when recalling the Matlab function

expm(X) which generates the matrix exponential eX of an arbitrary matrix X.

The following numerical example presents an illustrative summary of the re-

sults in this section.
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Figure 2.4: Optimal Trajectory Corresponding To Example 2.2

Example 2.2. A planar system x(t) =
(
x1(t) x2(t)

)′ ∈ R
2 is driven between the

boundary points ξ0 = (−1 0)′ and ξT = (1 0)′ under the system dynamics

ẋ(t) =




0.8 1

−3 5


 x(t) +




0.3

3


 u(t) (2.45)

during a time horizon T = [0, 3]. The particular cost function (2.32) under consid-

eration is the energy of the control signal u(·), i.e. Q = 0 and R = 1. Figure 2.4

shows the resulting optimal input u∗(·) and the corresponding state trajectory

(x∗1(·), x∗2(·)), where the associated cost (2.40) takes the value J ∗ ≈ 18.82. 2
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Finally, the introduced point-to-point problem not only solves the subproblems

arising in the subsequent multimodal approach, but also represents a special case

of the problem, where only one region is considered while generally the state space

is divided into multiple regions (modes).

2.4 Further Reading

This section completes our introductory notes on optimal control by providing

some references recommended for further studies.

The purpose of the preceding sections is to introduce and explain selected op-

timal control topics fundamental for the understanding of our later considerations

on hybrid systems. While reviewing some basic optimal control methods, numer-

ous indications are provided regarding the reasons that the concepts are presented

and the way in which they are used in our following approaches. Examples closely

related to the problems arising in the subsequent chapters are shown.

However, a thorough introduction to optimal control and the associated math-

ematical theory is explained in Kirk’s well-known book [37] which covers a broad

range of topics such as the Principle of Optimality, Dynamic Programming, calcu-

lus of variations, and Pontryagin’s Minimum Principle. Furthermore, the continuous-

time version of the Dynamic Programming method, the so-called Hamilton-Jacobi-

Bellman equation, is derived. Another widely read book is the work of Bryson

and Ho [13] which additionally considers a huge number of problems from var-

ious disciplines. A concise treatment of the optimal control basics is given by

Knowles [38] and Locatelli [42]. Anderson and Moore [1] as well as Chui and

Chen [18] especially dealing with linear systems.

Particularly focused on Dynamic Programming is the primary work of Bell-

man [4, 5], which also discusses a huge variety of different examples and applica-

tions. Pontryagin presents his results in [52]. A detailed and illustrative proof of

Pontryagin’s Principle is provided by Pinch [51].
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CHAPTER III

THE HYBRID POINT-TO-POINT PROBLEM

The goal of this chapter is to provide an explanatory description of the hybrid

framework considered in this work. After an illustrative introduction to the opti-

mal control problem of interest in Section 3.1, Section 3.2 provides a rough sketch

of the proposed solution scheme.

3.1 The Point-To-Point-Problem with Regional

Dynamics

The optimal control problem of interest can be qualified as a hybrid point-to-point

problem, where the governing dynamics ẋ = fi(x, u), i ∈ N vary depending on the

region Di, the continuous state x is evolving in.

This section introduces an overview of the central issue of our subsequent dis-

cussions, namely, a hybrid optimal control problem (HOCP) with regional dynam-

ics. On the basis of an explicatory illustration, Figure 3.1, only the main features

of this problem are described; however, the mathematical details are presented in

Chapters 4 and 5.

D3

Σ2 : ẋ = f2(x, u)
Σ3 : ẋ = f3(x, u)

Σ4 : ẋ = f4(x, u)
x(0) = ξ0

x(T ) = ξT

(t1s, ξ
1

s)
∗

(t2s, ξ
2

s)
∗

(t3s, ξ
3

s)
∗

D3

D4
D1

D2

Σ1 : ẋ = f1(x, u)

X

x∗(·)

Figure 3.1: System with Regional Dynamics – Optimal Trajectory
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As illustrated in Figure 3.1 by means of different shades of gray, the key char-

acteristic in our hybrid control framework is a state space X partitioned into

multiple regions Di ⊆ X , i ∈ N. The black lines in Figure 3.1 depict the bound-

aries between each of two regions. Additionally, a particular dynamical system

Σi : ẋ = fi(x, u), i ∈ N is associated with each region. Hence, the evolution of the

continuous state x at a time t is determined by the vector field fi corresponding to

the state’s current region Di : x(t) ∈ Di. The different regions can, consequently,

be regarded as different modes of operation between which the system’s behavior

switches. As a result, besides the continuous evolution of the state x(t) ∈ X

within a region, discrete transitions between different dynamical regimes occur as

the continuous state of the system reaches specified boundaries. At a boundary,

also referred to as a switching surface, two ways of further execution are possible:

(i) The trajectory “passes through” the switching surface and then evolves un-

der another dynamical regime in a different region. This behavior is ob-

served, for example, at the switching times (t2s)
∗

and (t3s)
∗

in Figure 3.1.

(ii) Another option for the continuous state’s execution is to “bounce back” into

the original region as it occurs at the switching point (t1s, ξ
1
s )

∗, Figure 3.1.

In this case, the dynamical regime remains the same; however, the control

input may change discontinuously at that point.

Note that both ways of “transitioning”, (i) as well as (ii), are called switching or

switch. In summary, the preceding specifications describe a hybrid system, where

mode-transitions are triggered by events in the continuous state space.

In fact, in this part of the research, the attention is focused particularly on

the optimal control problem associated with such systems. More precisely, the

goal is to solve the point-to-point problem, as considered in Section 2.3.2 for a

linear system, in the case of the presented hybrid dynamics. Thus, given a cost

function J , the goal is to determine the optimal path of moving from a given

initial state x(0) = ξ0 to a fixed final state x(T ) = ξT during an a priori specified
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time horizon T , where the above regional dynamics are assumed. Indeed, this

HOCP fits perfectly in the time-invariant optimal control setup previously defined

by Problem 2.1 and equations (2.20)–(2.23), where the characteristic boundary

conditions of the point-to-point problem are given by (2.33). Furthermore, the

dynamical behavior in the hybrid control setup is described by the preceding ex-

planations and illustrations (Figure 3.1). The blue trajectory in Figure 3.1 shows

the optimal solution x∗(·) for one particular cost functional J . Note that in the

following investigations, a “global” cost J is considered, which applies for each

region Di, i ∈ N. However, among other generalizations, the subsequent approach

also allows the definition of individual cost functions Ji for each region Di, cf.

Chapter 6.

The next section outlines the principle approach to solving the introduced

point-to-point problem and can definitely be counted as one of the most important

sections of this thesis.

3.2 The Dynamic Programming Approach

The novelty of the solution herein lies in the treatment of global optimality condi-

tions for regional dynamics systems through a Dynamic Programming approach,

where the hybrid point-to-point problem is considered as a multistage decision

problem [55].

After having drawn an illustrative picture of the hybrid point-to-point prob-

lem (Section 3.1), the main focus of this section is on providing the central ideas

of the solution procedure. Thereby, special emphasis is placed on an accessible

presentation of the basic concepts helpful in understanding the detailed and pre-

cise approaches of Chapter 4 and Chapter 5, where mathematical notations and

formalisms come to the fore.

The approach presented in this thesis is primarily based on the considerations

in Section 2.2. Inspired by the Principle of Optimality and the Dynamic Program-

ming method, important conclusions are made about the optimal solution of our
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hybrid point-to-point problem. Having Figure 3.1 in mind or looking at Figure 3.2,

a fundamental implication of the Principle of Optimality (Section 2.2.1) provides

valuable insights into the evolution of the hybrid optimal solution x∗(·) depicted

in blue:

The Principle of Optimality states implicitly that along an optimal hybrid tra-

jectory x∗(·) the execution of the continuous state x between two consecutive switch-

ing points (tms , ξ
m
s )∗, (tm+1

s , ξm+1
s )∗ is optimal and so is the part of the optimal

hybrid input u∗(·) from the mth switching time to the (m + 1)th switching time.

Moreover, the region of the trajectory between (tms , ξ
m
s )∗ and (tm+1

s , ξm+1
s )∗ must be

an optimal location for this segment of the trajectory x∗(·).

The latter property is illustrated in Figure 3.2 for the section between (t2s, ξ
2
s )

∗

and (t3s, ξ
3
s )

∗, where both the optimal execution forced to stay in region 1 (solid

line) and the trajectory optimally evolving in region 2 (dashed line) are depicted.

In this example, region 1 represents the optimal location.

As a result of the considerations above, given two consecutive switching points

(tms , ξ
m
s )∗, (tm+1

s , ξm+1
s )∗, the optimal path between these points, the associated

cost, and the optimal region of the corresponding segment can be determined

without knowing more about the course of the hybrid optimal trajectory. Precisely

speaking, in this case a standard (non-hybrid) state-constrained optimal control

problem has to be solved [7, 17, 21, 22, 26, 30, 53]. The previous comments also

apply to the initial and the final piece of the optimal hybrid trajectory, namely

to the segment from (0, ξ0) to (t1s, ξ
1
s )

∗ and to the path between (tM
∗

s , ξM∗

s )∗ and

(T, ξT ), where M ∗ denotes the optimal number of switches associated with the

hybrid optimal trajectory x∗(·) assuming a given upper bound N ∈ N on the total

number of switches along a hybrid trajectory. The individual segments between

optimal switching points (tms , ξ
m
s )∗ as well as the initial and the final piece of

the trajectory are depicted by solid blue curves in Figure 3.2 which concatenated

result in the hybrid optimal trajectory x∗(·). Of course, the hybrid optimal input

u∗(·) is also obtained by a concatenation of optimal (input) pieces calculated for
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Figure 3.2: The Idea of Dynamic Programming In the Context of A Regional
Dynamics System

each individual segment.

Recalling the time-invariance of the considered hybrid system (Section 3.1),

an important step of our further proceeding is the introduction of the function

c(ξ1, ξ2, ∆), ξ1, ξ2 ∈ X as the infimum of the costs associated with driving the

hybrid system from the state ξ1 to the point ξ2 during a time horizon ∆ with-

out a switch taking place, i.e. while staying in one region with the points ξ1, ξ2

possibly on the boundary. Of course, this value can be computed between each

pair (ξ1, ξ2) ∈ X × X and is infinity if the points ξ1, ξ2 lie in different regions.

Figure 3.2 illustrates this idea by presenting the individual costs c(·, ·, ·) along

the hybrid optimal trajectory. Obviously, the value function corresponding to the

hybrid optimal trajectory in Figure 3.2 is now given by the sum of the displayed

individual costs.

The previous observations highlight interesting attributes observed along op-

timal trajectories in regional dynamics systems. These properties are highly in-

volved in the subsequent derivations of an algorithm to solve the hybrid point-to-

point problem.

Primarily, the success of this approach is based on an appropriate division of

the hybrid control problem into smaller subproblems. This goal is achieved by

the definition of a specific cost-to-go function V M , M ∈ N ∪ {0} which implicitly
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identifies the single subproblems. The idea of introducing a cost-to-go function

as well as the consequent derivations, which finally (in Chapter 4 and 5) result in

a Hybrid Bellman Equation (HBE), are closely related to the Dynamic Program-

ming approach for discrete-time systems (Section 2.2.2). Discovering the analogies

proves to be advantageous to gain further insight in the considered point-to-point

problem. In the hybrid case, the cost-to-go function V M(ξ1, ξ2, τ) is defined as

the infimum of the costs of going from ξ1 ∈ X to ξ2 ∈ X during the time τ using

exactly M switches. This central definition makes it possible to derive a recurrence

relation solving the considered hybrid point-to-point problem. First, the optimal

trajectory depicted in Figure 3.2 is used to explain the general procedure:

Example 3.1. Fundamental to this approach is the initial assumption of an a priori

given number M of switches along the optimal hybrid trajectory. Consistent with

the illustration in Figure 3.2, in this example M = 3 is chosen. Starting with the

recursive procedure, our first subproblem is the determination of an optimal path

of going from a point ξ on the boundary ∂D to the final point ξT without any switch

taking place during a time horizon τ . Important to note is that this problem is

solved for every point ξ on the boundary and every time τ ∈ [0, T ] providing the

values V 0(ξ, ξT , τ) = c(ξ, ξT , τ) for each of the time-state combinations. Later,

in order to being able to implement the proposed recursion method, the time

interval T = [0, T ] as well as the boundary itself are discretized resulting in a

finite number of time-state pairs. Continuing the recursive scheme, the second

subproblem determines the optimal path between a point ξ ∈ ∂D and the final

point ξT using exactly one switch. The solution of this subproblem resulting in

values V 1(ξ, ξT , τ), where ξ ∈ ∂D and τ ∈ [0, T ], is obtained by the equation

V 1(ξ, ξT , τ) = inf
ξ ∈ ∂D,

t∈ [0,τ ]

{
c(ξ, ξ, t) + V 0(ξ, ξT , τ − t)

}
, (3.1)

which depends on the previously computed functions V 0(ξ, ξT , τ) and, addition-

ally, on the functions c(ξ1, ξ2, t) with ξ1, ξ2 ∈ ∂D and t ∈ [0, T ]. The latter
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functions can be calculated in advance, since they are not affected by the recur-

sion equation (3.1) and are, in fact, completely independent of the given initial

and final conditions, x(0) = ξ0 and x(T ) = ξT . Continuing in the same way, the

functions V 2(ξ, ξT , τ) are determined, and finally

V 3(ξ0, ξT , T ) = inf
ξ ∈ ∂D,

t∈ [0,T ]

{
c(ξ0, ξ, t) + V 2(ξ, ξT , T − t)

}
(3.2)

provides the desired value for M = 3. Typically, instead of a fixed number M of

switches, an upper bound N ∈ N on the total number of switches along a hybrid

trajectory is given. 2

Applying the ideas described in the example above to a general multimodal

system, as for example depicted in Figure 3.1, a universally valid but rather vague

recurrence relation can be derived:

V K(ξ1, ξ2, τ) = inf
ξ on a boundary,

t∈ [0,τ ]

{
c(ξ1, ξ, t) + V K−1(ξ, ξ2, τ − t)

}
, (3.3)

where the initial condition is given by V 0(ξ1, ξ2, τ) = c(ξ1, ξ2, τ) and 0 < K ≤ N .

In the end, the optimal solution associated with the original problem, assuming a

given upper bound N on the total number of switches, is obtained by minimizing

over all V K(ξ0, ξT , T ), 0 ≤ K ≤ N

WN(ξ0, ξT , T ) = min
0≤K≤N

V K(ξ0, ξT , T ). (3.4)

In Chapter 4 and 5, the recursive equation (3.3) is specified more precisely, finally

yielding to the so-called Hybrid Bellman Equation.

Subsequently, special emphasis is placed on the noticeable analogy between

the backwards Dynamic Programming recursion, derived in Section 2.2.2 to solve

the discrete-time optimal control problem, and hybrid Dynamic Programming ap-

proach (3.3) for regional dynamics systems. In a careful comparison, the following

observations are made:

• The basic concept in both approaches is the definition of an appropriate cost-

to-go function which represents the “quality” of a “node” with respect to its
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future performance and is used to solve the problem in a backwards manner

starting at a given final state and going back in time until the initial state is

reached. Note that, in the approach presented in this section, the recursion

is accomplished by starting with V 0 and continuing the computation with

the help of (3.3) until V N is obtained. Contrarily, in Section 2.2.2, the first

cost function is computed for the time stage k = kf and then k is decreased

until k = k0 is reached.

• In the hybrid case, the time-state pairs introduced in Example 3.1 play the

role of the states x(k) in the discrete-time problem.

• The fascinating correspondence between the discrete (time) stages k in Sec-

tion 2.2.2 and the number of switches K along a hybrid trajectory can be

observed.

• The cost c(·, ·, ·) of the non-hybrid state-constrained optimization problem

has the same function as the “transition cost” `(·, ·, ·) in the discrete-time

problem.

A crucial consequence of the similarity of both approaches is that most of the

properties and conclusions mentioned in Section 2.2 and especially in Section 2.2.3

can be adopted directly.

To conclude this section, we return to the starting point of the derivations,

i.e. to the division of the complex hybrid point-to-point problem into smaller non-

hybrid optimization problems. This procedure establishes a multistage decision

problem [55], which allows the hybrid optimal control problem to be solved on

different levels of abstraction. On a higher level, the problem is approached by

using a Dynamic Programming scheme based on the values c(·, ·, ·) and the cost-

to-go functions V K(·, ·, ·). However, no attention is paid to the method used

to obtain the values c(·, ·, ·). Moreover, the way of calculating c(·, ·, ·) does not

affect the Dynamic Programming technique in any way. Hence, the computation of

c(·, ·, ·) is part of the lower level of the solution concept. This hierarchic structure
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is helpful in understanding the complexity of the considered hybrid problem and,

as mentioned, in finally solving the problem. In fact, in Chapter 5 a further level

of abstraction, the transition automaton, is introduced.
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CHAPTER IV

THE BIMODAL CASE

The purpose of this chapter is to present a first approach to the mathematically

precise treatment of the general hybrid point-to-point problem (Section 3.1, 3.2)

considering only two regions and limited dynamics which do not allow “bounce

back” at a boundary.

Based on the explanatory description of the hybrid optimal control setup

(Section 3.1) and the roughly sketched solution scheme (Section 3.2), a Hybrid

Bellman Equation for bimodal systems is derived revealing the characteristic struc-

ture of the hybrid solution and yielding to a computational framework in which

numerical results are obtained showing the hybrid behavior under an optimal

control policy. The bimodal system (with limited dynamics) is considered at first

with the intention of illustrating various important mathematical assumptions and

definitions needed later to accurately formulate and solve a general hybrid point-

to-point problem. The bimodal approach represents a straightforward conclusion

of Section 3.1 and 3.2 and serves as an introduction to the more complex concepts

developed in Chapter 5 in order to approach the general multimodal point-to-

point problem, where additionally a precise definition of the discrete control input

and the introduction of a further level of abstraction, the transition automaton,

is necessary.

The outline of this chapter is as follows: Section 4.1 describes the structure of

the partitioned state space including assumptions on the boundaries and on the

vector fields associated with each region. The actual hybrid dynamic behavior,

especially when reaching a given switching surface, is explained in Section 4.2.

Based on these definitions, a mathematically precise formulation of the hybrid

point-to-point problem is presented (Section 4.3). The main theorem, the Hybrid
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Bellman Equation, is stated in Section 4.4, followed, in Section 4.5, by a discussion

on the computational issues concerning the derived recursion equation. Illustrative

examples are shown in Section 4.6.

Most of the results stated in this chapter are presented in the 2007 paper, “A

Hybrid Bellman Equation for Bimodal Systems”, [14].

4.1 The Bimodal System – Regions and Geomet-

ric Framework

Important assumptions and definitions regarding the structure of the state space,

the dynamics, and, in particular, the relation between the geometry of the re-

gions and the associated dynamic regimes complete the descriptive statements of

Section 3.1.

In the bimodal case, two open, connected, and simply connected regions D1

and D2 with D1∩D2 = ∅ are given, forming a partition of the compact state space

X ⊂ R
n in the sense that

X = (D1 ∪ ∂D1) ∪ (D2 ∪ ∂D2), (4.1)

where the boundaries ∂Di, i = 1, 2 are assumed to be finite unions of closed,

smooth codimension one submanifolds sk
i of X

∂Di =

ni⋃

k=1

sk
i , ni ∈ N. (4.2)

That is, each boundary ∂Di is composed of ni submanifolds sk
i , 1 ≤ k ≤ ni. The

intersection of the boundaries ∂D1 and ∂D2 is denoted by ∂D.

With each region Di, i = 1, 2 a time-invariant vector field fi(x, u) is asso-

ciated which uniquely describes the continuous dynamics in the corresponding

partition. However, in order to properly define the hybrid point-to-point problem

(Section 4.3), the regional dynamics must satisfy the following assumption, where

in the bimodal case I = {1, 2}:
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Assumption 4.1. The dynamic behavior within a given contributing region Di, i ∈

I is defined by

Σi : ẋ(t) = fi(x(t), u(t)), x(t) ∈ Di.

The continuous-time control input u(·) of the considered hybrid system lies in the

set U = U (U,L∞ ([0, T ])) which contains all bounded measurable functions on the

interval [0, T ] , T <∞ taking values in the set U .

In order to assure existence and uniqueness of the executions in each con-

stituent region Di, i ∈ I the vector fields fi(x, u) are assumed to be continuously

differentiable in x (for all u) on the closure of Di (and hence uniformly continuous

and uniformly Lipschitz in x on the closure of Di).

Furthermore, we assume that the vector field fi(x, u), i ∈ I, satisfies the

”transversality” condition in the sense that

(i) fi(x, u) is non-tangential to the boundary ∂Di at any point x ∈ ∂Di for all

choices of u and

(ii) at points x ∈ sk
i ∩ sl

j 6= ∅, i, j ∈ I, k ∈ {1, . . . , ni} , l ∈ {1, . . . , nj} the

vector field fi(x, u) is non-tangential to each of the tangent spaces of the

intersecting components sk
i and sl

j, for all choices of u.

The solutions are interpreted in the Carathéodory sense, and the initial condition

ξ0 of an admissible execution satisfies ξ0 ∈ Di, i ∈ I. 2

An example for the defined bimodal system is depicted in Figure 3.2.

After having specified the geometric framework, the dynamic behavior within

the regions, and some important restrictions on the dynamic regimes fi(x, u) at

boundary points, the next step is to describe the transition behavior, that is to say

the possible executions and, in particular, to define the dynamics of the bimodal

system on the boundaries ∂Di, i ∈ I.
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4.2 The Bimodal System – Dynamics and Exe-

cutions

Having entered the boundary ∂D from one region, the further execution of the

continuous state x, in the considered bimodal system, is unambiguously deter-

mined by “transitioning through” the boundary and subsequently evolving in the

complementary region.

A general explanation of the transition behavior in a regional dynamics sys-

tem, where both “passing through” and “bouncing back” are possible, is given

in Section 3.1 and Figure 3.1 illustrates an example of a possible optimal hybrid

trajectory. However, in the presented bimodal approach, the simple case is con-

sidered, where the switching behavior is restricted to the “transitioning through”

option; hence, only case (i) in Section 3.1 can occur. Consequently, the further

evolution of the continuous state x arrived at the boundary ∂D is clearly defined

– without any ambiguity:

In order to precisely describe the transition behavior, the notation xk, where

ẋk(t) = fk(xk(t), u(t)), k ∈ I = {1, 2}, is used to emphasize which dynamic regime

fk determines the execution of the trajectory at a given point xk(t) ∈ Dk ∩ ∂Dk.

Assuming a given starting state ξ0 ∈ Di, i ∈ I, of the continuous state’s evolution,

the control input u(·) ∈ U gives rise to a trajectory evolving according to ẋi =

fi(xi, u). If there is a finite time ts < T such that the state x enters the boundary

∂D, that is

ξs = lim
t→ts

xi(t) ∈ ∂D,

then, at that time, a switch “through” the boundary occurs and the continuous

state x evolves afterwards in the complementary region j with the dynamics ẋj =

fj(xj, u) and the initial condition xj(ts) = ξs, where j = 1 if i = 2 and j = 2 if

i = 1, until a further possible intersection with the boundary ∂D. Therefore, as

depicted in Figure 3.2, the location of the continuous state’s evolution, displayed

by the solid blue line, alternates between region 1 and 2.
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Figure 4.1: Discrete-State Trajectory Corresponding To The Continuous State’s
Evolution In Figure 3.2

With the intention of specifying the actual region of the continuous state x(t),

a discrete state q(t) is introduced taking values from the discrete state space

Q = {q1, q2}, which is in one-to-one correspondence to the set of regions D =

{Di : i ∈ I} . Obviously, in case the continuous (valued) state x(t) lies in the

interior of Di the corresponding discrete state is q(t) = qi. However, when x(t)

lies on the boundary ∂D the interpretation of the possible discrete state values

q(t−) = q1 or q(t−) = q2 is that the continuous state has arrived at x(t) along

a trajectory which most recently lay in D1, or respectively, D2, and a switch of

the discrete state to q(t) = qj, where j = 2, or respectively, j = 1, indicates

that the system trajectory “passes through” the boundary and will evolve in the

complementary region Dj under the jth vector field on a time interval with initial

instant t.

In brief, the description of the hybrid execution includes both continuous- and

discrete-valued states, where the latter have right-continuous trajectories in R

which are piecewise constant. Figure 4.1 shows the discrete-valued state q(t), t ∈

[0, T ] corresponding to the continuous state’s evolution depicted in Figure 3.2.

Additionally, from the previous specifications it follows that over the finite interval

[0, T ], with x(0) = ξ0 ∈ Di for some i ∈ I, the resulting controlled trajectories

x(·) are continuous for any control function u(·) ∈ U .

Especially noteworthy is also that, as a consequence of the restricted bimodal

dynamics, the behavior on the boundary is clearly determined, that is, no decision
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is to be made if the continuous state x arrives at the boundary. As can be seen

in Chapter 5, the solution of the general hybrid point-to-point problem, where

both phenomena, “passing through” and “bouncing back”, can occur, involves

the introduction of a (controlled) discrete input specifying the action at a certain

switching point. However, in order to make this first approach more accessible

the discrete input events are avoided by the presented precise assumptions on the

bimodal transition behavior.

Based on the previous definitions, the following section formally introduces the

hybrid point-to-point optimization problem.

4.3 The Optimization Problem

The explanatory problem formulation in Section 3.1, combined with the assump-

tions given in Section 4.1 and the bimodal dynamics presented in Section 4.2,

yields to an exact formulation of the considered hybrid point-to-point problem.

To begin with, the complementary indicator qc(t) ∈ Q = {q1, q2} is introduced,

which gives in each case, q(t) = q1 and q(t) = q2, the opposite (discrete) state,

qc(t) = q2 and qc(t) = q1, respectively. With this definition and a given upper

bound N ∈ N ∪ {0} on the total number of switches along the optimal trajectory,

the hybrid optimization problem, addressed in this paper and previously illustrated

in Section 3.1, is stated as follows:

Problem 4.1 (The Bimodal Point-To-Point Problem).

PN : inf
u(·)∈U

∫ T

0

`(x(t), u(t)) dt (4.3)

subject to

• the discrete-state dynamics

q(t) = qc(tks−), t ∈
[
tks , t

k+1
s

)
, (4.4)

if 1 ≤ k ≤M and the initial region is given by q(t) = qi0 , t ∈ [0, t1s),
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• the continuous-state dynamics

ẋik(t) = fik(xik(t), u(t)), t ∈
[
tk−1
s , tks

)
, (4.5)

where 0 < k ≤M +1, xik(t) ∈ X , and ik is uniquely specified by the discrete

dynamics (4.4),

• and the corresponding initial and final conditions

x(0) = xi1(t
0
s) = ξ0 ∈ Di0 ,

xik+1
(tks) = lim

t→tks

xik(t) = ξk
s ∈ ∂D,

x(T ) = xiM+1
(tM+1

s ) = ξT ∈ DiT ,

(4.6)

if 0 < k ≤M and i0, iT ∈ I.

The number of switches M along the trajectory satisfies 0 ≤ M ≤ N and is even

if i0 = iT and odd if i0 6= iT . 2

Note that ξ0, ξT /∈ ∂D and (tks , ξ
k
s ), 0 < k ≤ M denotes the kth switching point

along the trajectory.

The subsequent section derives, based on the above problem formulation, a

recursion relation solving the bimodal point-to-point problem.

4.4 The Hybrid Bellman Equation

Along with the illustrations in Section 3.2, a Hybrid Bellman Equation for bimodal

systems is obtained providing a characterization of global optimality.

Recalling the definition of the discrete variable q(t) ∈ Q, which assigns a

region, and concurrently also a governing dynamical system, to each continuous

state x along a hybrid trajectory, the functions c(·, ·, ·) and V ·(·, ·, ·) introduced

in Section 3.2 are defined more precisely:

Definition 4.1. The infimum of the costs associated with driving the system from

ξ1 ∈ Di1 ∪ ∂Di1 to ξ2 ∈ Di1 ∪ ∂Di1 , i1 ∈ I over a time horizon ∆ without leaving

Di1 ∪ ∂Di1 and without a switching taking place is denoted c(ξ1, qi1 , ξ2, qi2 ,∆),
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where qi1 ∈ Q and qi2 ∈ Q represent the discrete states associated with points

ξ1 and ξ2, respectively. Clearly, the cost c(ξ1, qi1 , ξ2, qi2 , ∆) is infinite if ξ2 is

inaccessible from ξ1 by trajectories remaining in Di1 ∪ ∂Di1 and along which no

switch occurs. 2

Definition 4.2. The cost-to-go function V M(ξ1, qi1 , ξ2, qi2 , τ) is defined as the

infimum of the costs of going from ξ1 ∈ X to ξ2 ∈ X during the time horizon

τ using exactly M switches and starting in region Di1. Again, the values qi1 ∈

Q and qi2 ∈ Q represent the discrete states associated with the points ξ1 and

ξ2, respectively. If ξ2 cannot be reached from ξ1 under the given specifications,

V M(ξ1, qi1 , ξ2, qi2 , τ) is infinity. 2

By the preliminary sections, Section 2.2 and 3.2, a profound background and a

detailed explanation of our general idea to solve the hybrid point-to-point problem

is given, which allows now to establish the main theorem as a direct consequence.

On the basis of the previously defined functions c(·, ·, ·, ·, ·) and V ·(·, ·, ·, ·, ·),

the Hybrid Bellman Equation for bimodal systems is stated as follows:

Theorem 4.1 (The Hybrid Bellman Equation for Bimodal Systems).

Assume that all hypotheses for the existence and uniqueness of the bimodal execu-

tions hold and that all infima exist in the definition of the hybrid value functions

V ·(·, ·, ·, ·, ·), for all admissible argument values, whenever the expressions are

finite. Then, the recurrence relation is expressed by

V K(ξ1, qi1 , ξ2, qi2 , τ)

= inf
ξ ∈ ∂D,

t∈ [0,τ ]

{
c(ξ1, qi1 , ξ, q

c
i1
, t) + V K−1(ξ, qc

i1
, ξ2, qi2 , τ − t)

}
. (4.7)

This relation holds as long as K ≥ 1. If K = 0, the following direct simplification

is obtained

V 0(ξ1, qi1 , ξ2, qi2 , τ) = c(ξ1, qi1 , ξ2, qi2 , τ). (4.8)

2
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Since the bimodal point-to-point problem (Problem 4.1) does not insist on an a

priori given number of switches, it is finally necessary to relate V K(ξ1, qi1 , ξ2, qi2 , τ)

to the original problem, cf. Equation (3.4). With the boundary conditions,

x(0) = ξ0 ∈ Di0 and x(T ) = ξT ∈ DiT , i0, iT ∈ I, and the given upper bound

N on the total number of switches along a hybrid trajectory, the optimal cost

WN(ξ0, qi0 , ξT , qiT , T ) corresponding to the initially defined problem is given by

WN(ξ0, qi0 , ξT , qiT , T ) = min
0≤K≤N

V K(ξ0, qi0 , ξT , qiT , T ). (4.9)

Illustrated in the subsequent section is the actual computational procedure

involved in solving the bimodal point-to-point problem based on the derived re-

currence relation (4.7).

4.5 Implementation and Computational Issues

In brief, two main characteristics are associated with the recursive algorithm pro-

posed in Theorem 4.1: first, a large preliminary computational effort – allowing,

however, fast solutions afterwards – and, second, the discretization of the bound-

ary distinguishing our method from other approaches which actually insist on

discretizing the entire state space X , see e.g. [6, 28].

In continuing this section, the procedure of computationally performing the

recursion scheme, given in Theorem 4.1, is illustrated, where special emphasis is

placed on the discretization needed to numerically solve the hybrid point-to-point

problem. Moreover, of peculiar interest is also the efficiency of the proposed (Dy-

namic Programming) algorithm. At the end, it remains to say a few words about

the particular method used in Section 4.6 to exemplarily solve some interesting

bimodal point-to-point problems.

A helpful starting point for the following considerations is the explanatory de-

scription in Section 3.2 and, particularly, in Example 3.1, which explicitly points

out the necessity of calculating the functions c(ξ1, qi1 , ξ2, qi2 , τ) between all pairs

(ξ1, ξ2) ∈ ∂D×∂D for all τ ∈ [0, T ] and i1 ∈ I = {1, 2} in order to accomplish the

recursion routine (4.7). Actually, these functions can be computed prior to the
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backwards minimization procedure, since they depend neither on the intermediate

results of (4.7) nor on the boundary conditions ξ0 and ξT . This fact highlights

again the hierarchical structure of the hybrid point-to-point problem consisting

of a lower level of abstraction which includes the calculation of the functions

c(·, ·, ·, ·, ·) between any two boundary points and a higher level represented by

the Hybrid Bellman Equation (4.7). As regards the hierarchical decomposition

of the problem, supplementary remarks are made in Section 2.2 and Section 3.2,

where the hybrid optimal control problem is characterized as a multistage deci-

sion problem [55] and further interesting properties concerning, in particular, the

solution procedure on different levels of abstraction are mentioned.

From the preceding introductory comments and with a careful consideration

of the recurrence relation given in Theorem 4.1, the computational routine solving

the bimodal point-to-point problem follows immediately:

The first step in the course of computation is the calculation of the costs

c(ξ1, qi1 , ξ2, qi2 , τ) for all pairs (ξ1, ξ2) ∈ ∂D × ∂D with τ ∈ [0, T ] and i1 ∈

I = {1, 2}. Note that the cost c(ξ1, qi1 , ξ2, qi2 , τ) is not affected by the discrete

state qi2 associated with the final point ξ2, cf. Definition 4.1. Indeed, the actual

calculation of the costs c(·, ·, ·, ·, ·) is performed by discretizing the boundary ∂D

as well as the time interval [0, T ] and solving for all discrete combinations

(ξd
1 , ξ

d
2 , τ

d, i1), i1 ∈ I, (4.10)

where τ d lies in the finite set of time values Tdiscrete ⊂ [0, T ] and ξd
1 , ξ

d
2 are elements

from the set Ddiscrete ⊂ ∂D consisting of a finite selection of boundary points.

The notation (·)d points out that the variable (·) takes values from a finite set of

elements. For the purpose of estimating the computational effort associated with

these preliminary calculations, the boundary ∂D is supposed to be given by

∂D =
{
x ∈ R

n
∣∣∣ xi ∈ [αi, βi ] , i ∈ {1, 2, . . . , n− 1} ;

xn = g(x1, x2, . . . , xn−1)
}
. (4.11)
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With the definition (4.11) and under the assumption that the intervals [αi, βi ] ,

i ∈ {1, 2, . . . , n− 1} are discretized into (Nx − 1) subintervals, leading to a finite

set of discrete values
{
αi, x

1
i , x

2
i , . . . , x

Nx−2
i , βi

}
for each direction i, the discrete

combinations (ξd
1 , ξ

d
2 , τ

d, i1) ∈ D2
discrete ×Tdiscrete ×I are uniquely specified by the

grid G

G =
(
×n−1

i=1

{
αi, x

1
i , x

2
i , . . . , x

Nx−2
i , βi

})2 × Tdiscrete × {q1, q2} , (4.12)

where |Tdiscrete| = Nτ is assumed. As a consequence, the number of costs c(·, ·, ·, ·, ·),

to be calculated initially, is given by

ncost = 2Nτ

(
Nn−1

x

)2
(4.13)

and, hence, the effort associated with this first computational step increases lin-

early when raising Nτ , polynomially when raising Nx, and exponentially when

raising the dimensionality n of the state space X . The latter results in a time-

consuming computation for high-dimensional systems as, for example, observed in

Chapter 7.

In fact, as illustrated e.g. in Figure 3.2, except for the initial and final pieces of

the hybrid optimal trajectory, that is, from ξ0 to the first intersection of the switch-

ing boundary and from the last intersection to ξT , the optimal hybrid execution is

simply given by a concatenation of trajectories between points on the boundary.

Consequently, the only computation, which still needs to be done before starting

the recursion algorithm (4.7), is the evaluation of the costs c(ξ0, qi0 , ξ
d
2 , qi2 , τ

d)

and c(ξd
1 , qi1 , ξT , qiT , τ

d), where τ d ∈ Tdiscrete, ξd
1 , ξ

d
2 ∈ Ddiscrete, and i1 ∈ I. This

step obviously depend on the given initial and final states, ξ0 and ξT , whereas the

calculations before are independent of the boundary conditions.

After the costly preparation of all relevant values c(·, ·, ·, ·, ·), the minimiza-

tions in (4.7), associated with the actual Dynamic Programming recursion of

Theorem 4.1, can be easily accomplished. As for the computational effort in-

herent in the recursive algorithm, the comments made in Section 2.2.3 on the
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(discrete-time) Bellman equation apply also for the recently derived Hybrid Bell-

man Equation (4.7). The analogy between both approaches, previously illustrated

in Section 3.2, immediately allows some interesting conclusions on the numerical

properties of the proposed hybrid algorithm (Theorem 4.1). Roughly speaking, in

the hybrid backwards recursion procedure, the pairs (ξd
1 , τ

d) ∈ Ddiscrete × Tdiscrete

play the same role as the discrete states x(k) in the original Bellman equation

(2.15). Taking that analogy a step further, the number of switches K along a

hybrid trajectory, cf. equation (4.7), corresponds to the discrete (time) stages

k in (2.15). However, considering the Hybrid Bellman Equation (4.7), the mini-

mization is formulated over the time-state pairs (ξ, t) ∈ ∂D× [0, τ ] instead of the

input segments {u(s) ∈ R
m | s ∈ [0, t ] }, where t ∈ [0, τ ]. Consequently, compar-

ing the original Bellman Equation (2.15) with the discretized version of (4.7), the

set Uad(m,x(m)) is “replaced by” a set

{(
ξd, td

)
|

(
ξd, td

)
∈ Ddiscrete × Tdiscrete , 0 ≤ td ≤ τ

}
. (4.14)

Based on the previously stated analogies, a rough estimate on the computational

effort associated with the bimodal Dynamic Programming approach, Theorem 4.1,

is obtained by approximately estimating the numbers a, b, and c, defined in Section

2.2.3,

a ≈ NτN
n−1
x , b ≈ NτN

n−1
x , and c = K. (4.15)

Recalling the relations (2.18) and (2.19) presented in Section 2.2.3, the following

conclusions can be made on the computational effort associated with the bimodal

recursion algorithm, cf. (4.15): the computational effort increases quadratically

when raising Nτ and polynomially when raising Nx. Moreover, the mentioned

“curse of dimensionality” [4], Section 2.2.3, describing the exponential growth of

the computational effort when increasing the dimensionality n of the state space

X , is also inherent in the hybrid approach as can be seen by using (4.15) in

equations (2.18), (2.19).
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In summary, a computational framework is established, in which a large com-

putational burden is needed initially when preparing the costs c(·, ·, ·, ·, ·), but

once that price is paid, fast solutions are possible using the Hybrid Bellman Equa-

tion (4.7). In fact, the calculation of the costs c(ξ1, qi1 , ξ2, qi2 , τ) between pairs

of boundary points (ξ1, ξ2) ∈ ∂D × ∂D can be interpreted in terms of optimality

zones. Refer to [15] for a detailed introduction to this topic. In addition, especially

noteworthy is that the introduced discretization, necessary to numerically solve

the bimodal point-to-point problem, might have a huge influence on the actual

optimal solution obtained by the previously described computational procedure.

Indeed, only the discrete state-time pairs (ξd, td) ∈ Ddiscrete ×Tdiscrete are possible

choices for switching points (ξk
s , t

k
s) along a hybrid trajectory when performing the

recursion algorithm (4.7). Furthermore, it is implicitly assumed that the envelope

of Ddiscrete contains the optimal switching points occurring along a hybrid optimal

execution. As a consequence, the discretization of both the boundary ∂D and the

time interval [0, T ] must be chosen very carefully.

The last comments of this section are made on the particular computational

methods used in Example 4.1 and 4.2, Section 4.6, to calculate the hybrid optimal

trajectories of two illustrative bimodal point-to-point problems. As emphasized

previously, the minimizations (4.7) on the higher level of abstraction depend en-

tirely on the subordinate calculation of the costs c(·, ·, ·, ·, ·), which represents a

non-hybrid state-constrained optimization problem. In the subsequent examples,

however, only bimodal systems or, more specifically, only bimodal point-to-point

problems (Problem 4.1) are considered for which the state constraints are inactive

along the hybrid optimal trajectory. More precisely, the following assumption is

satisfied:

Assumption 4.2. Along a hybrid optimal trajectory x∗(·) associated with a par-

ticular bimodal point-to-point problem, Problem 4.1, the individual contributing

segments between two consecutive points
(
tk, xk

)
,
(
tk+1, xk+1

)
, 0 ≤ k ≤ M ∗ of
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the sequence

(
(0, ξ0), (t1s, ξ

1
s )

∗, (t2s, ξ
2
s )

∗, . . . , (tM
∗

s , ξM∗

s )∗, (T, ξT )
)

=
(
(t0, x0), (t1, x1), (t2, x2), . . . , (tM

∗

, xM∗

), (tM
∗+1, xM∗+1)

)
, (4.16)

where (tms , ξ
m
s )∗ ∈ (0, T ) × ∂D, i ∈ {1, 2, . . . , M ∗} represents the time-state pair

of the mth switch along the optimal hybrid trajectory and M ∗ denotes the op-

timal number of switches, coincide with the trajectories obtained by solving the

corresponding unconstrained optimal control problem between the respective states
(
tk, xk

)
and

(
tk+1, xk+1

)
:

P : inf
u∈U

∫ tk+1

tk
`(x(t), u(t)) dt (4.17)

subject to ẋ(t) = fi (x (t) , u (t)) with the initial condition x(tk) = xk and the final

condition x(tk+1) = xk+1, where i = 1 if the original segment of the hybrid optimal

trajectory lies in region D1 and i = 2 otherwise. 2

As a consequence of Assumption 4.2, the functions c(·, ·, ·, ·, ·) preparing the Dy-

namic Programming algorithm can be considered in an ordinary unconstrained

optimal control framework. In fact, in the case of linear dynamics and a quadratic

cost function as chosen in Example 4.1 and 4.2, the approach presented in Section

2.3.2 or, more specifically, equation (2.40) yield to the desired costs c(·, ·, ·, ·, ·).

Since the key objective of the following numerical computations is to investi-

gate the efficiency and computability of the recursive scheme associated with

the derived Hybrid Bellman Equation (4.7), Assumption 4.2 represents a reason-

able simplification avoiding the implementation of a routine for solving the ac-

tual state-constrained problem c(·, ·, ·, ·, ·). However, investigations dealing with

state-constrained optimization problems can be found in [7, 17,21,22,26,30,53].

4.6 Examples

Two examples are presented with the objective of both highlighting the operation

of the proposed Dynamic Programming approach and illustrating, concurrently,
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the dynamic behavior of the introduced bimodal systems subjected to an optimal

control policy. The examples are chosen in such a way that Assumption 4.2 holds.

Consequently, the relevant costs c(·, ·, ·, ·, ·) are simply given by (2.40).

First, a bimodal framework is considered showing exactly the same optimal

control parameters as the non-hybrid point-to-point problem in Example 2.2.

However, in the second half of the state space, a different dynamical regime de-

termines the continuous states’ execution. Hence, this setup is ideally suited to

explore the hybrid character of the bimodal solution compared to the ordinary

one-regional solution depicted in Figure 2.4(b).

Example 4.1. In this example, the planar state space X ⊂ R
2 is divided into the

regions D1 = {x ∈ R
2 | (1 1) x > 0} and D2 = {x ∈ R

2 | (1 1) x < 0}. The

regional dynamics determining the hybrid behavior of the continuous state x(t) =
(
x1(t) x2(t)

)′ ∈ X are given by

ẋ(t) =








0.8 1

−3 −5


 x(t) +



−0.3

3


 u(t), x(t) ∈ D1




− 0.3 0.05

−0.5 0


 x(t) +




0.1

1


 u(t), x(t) ∈ D2,

(4.18)

where the dynamical regime in region D1 corresponds to the governing dynam-

ics (2.45) in Example 2.2. Furthermore, the boundary conditions, x(0) = ξ0 =

(−1 0)′ and x(3) = ξT = (1 0)′, as well as the cost function (4.3), specified by

`(x(t), u(t)) = u(t)2, are identical in both examples. With an unconstrained input

U = R and the maximum number of intersections being given by N = 20, the

bimodal point-to-point problem, Problem 4.1, is fully defined.

In fact, the numerical solution is obtained by discretizing the time interval T =

[0, 3] into 60 equally spaced temporal steps and the boundary ∂D : (1 1) x = 0

into 40 equally spaced spatial steps over the interval x1 ∈ [−3, 3]. Figure 4.2(a)

shows the resulting optimal trajectory (x∗1(·), x∗2(·)) in blue (solid line); the dashed

line represents the boundary ∂D and the circles depict the particular switching
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points. In this case, the optimal solution is obtained, when only one crossing of

the boundary takes place, with the corresponding optimal cost (4.9) being

W 20(ξ0, q2, ξT , q1, 3) = V 1(ξ0, q2, ξT , q1, 3) ≈ 14.99. (4.19)

Finally, it is interesting to compare the optimal trajectory corresponding to the

point-to-point problem solved in one region, Figure 2.4(b), with the optimal exe-

cution under a bimodal regime (4.18) as depicted in Figure 4.2(a). 2

In order to highlight the fact that multiple switches may be to prefer, another

linear situation is considered:

Example 4.2. A bimodal system under the regional dynamics

ẋ(t) =








ε11 ω1

−ω1 ε12


 x(t) +




0

1


 u(t), x(t) ∈ D1




ε21 ω2

−ω2 ε22


 x(t) +




0

1


 u(t), x(t) ∈ D2,

(4.20)

with D1 = {x ∈ R
2 | (1 1) x > 0.5} and D2 = {x ∈ R

2 | (1 1) x < 0.5}, is

driven between the points x(0) = ξ0 = (−0.5 0)′ and x(T ) = ξT =
(
1/
√

8 1/
√

8
)′

,

where

ω1 =
π

2
, ω2 =

π

4
, and T =

π

2ω2

+
π

2ω1

+
3π

2ω2

+
π

4ω1

= 9.5. (4.21)

As in the previous example, the cost function under consideration is the control

energy of the control signal, that is, `(x(t), u(t)) = u(t)2 and, again, the input u(t)

is supposed to be unconstrained, i.e. u(t) ∈ U = R, t ∈ T = [0, T ].

Actually, if εij = 0, i, j ∈ {1, 2}, a zero control effort would result in a three-

switch situation. By making ε11 = ε12 = −0.1 and ε21 = ε22 = −ε11, a slightly

disturbed oscillation dynamic is obtained in each region. Using exactly the same

discretization parameters as in the example above, the three-switch situation is

still optimal, cf. Figure 4.2(b), with

W 20(ξ0, q2, ξT , q1, 3) = V 3(ξ0, q2, ξT , q1, 3) ≈ 0.043. (4.22)
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Figure 4.2: Optimal Trajectories (x∗1(·), x∗2(·)) Corresponding To Example 4.1
And Example 4.2, Respectively.
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Figure 4.3: Optimal Trajectories Corresponding To Example 4.2

Figure 4.3 depicts both the optimal input u∗(·) and the optimal states x∗1(·), x∗2(·)

over the time interval T = [0, 9.5]. Here, the dashed gray line represents the

discrete state q∗(·), where the upper level corresponds to the value q2 and the

lower level to q1. 2
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CHAPTER V

THE MULTIMODAL SYSTEM

This chapter completes the previous considerations of Section 3.1, Section 3.2,

and Chapter 4 by finally presenting global optimality conditions for the general

multimodal point-to-point problem, which is characterized by an arbitrary large,

but finite, number of regions and the possibility of “passing through” or “bouncing

back” at a boundary.

The subsequent approach represents a mathematically precise treatment of

the informally introduced multiregional point-to-point problem (Section 3.1) and

its briefly adumbrated solution scheme (Section 3.2). However, considering the

outline of this work, the results in this chapter can also be regarded as a straight

continuation of the work done in Chapter 4 approaching the bimodal point-to-

point problem. The following derivations are primarily driven by these preliminary

discussions and provide a notable extension and generalization of the conclusions

in Chapter 4. Based on the definitions and assumptions introduced in the bimodal

case, a similar strategy is pursued finally yielding to a Hybrid Bellman Equation

for multimodal systems. Compared to the bimodal solution scheme, Theorem 4.1,

the Dynamic Programming algorithm solving the general multiregional point-to-

point problem is particularly characterized by the following two features neglected

in the precedent simplified bimodal procedure, which considered only two regions

and limited dynamics.

(i) One novelty in the subsequent considerations is the advanced geometric

structure, namely, a state space X which is divided into multiple, arbitrary

connected regions. In order to solve the hybrid point-to-point problem in

this structural framework, an important step is to establish an appropriate

representation of the composed state space X . This goal is accomplished
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by introducing an additional level of abstraction, the so-called transition

automaton, which contains the entire global knowledge of the given geom-

etry and, therefore, provides information on the connections between the

individual regions and on possible sequences of transitions leading from one

region to another. At this point, an important remark should be made

on the previously considered bimodal point-to-point problem in Chapter 4,

which considers only one specific regional arrangement. As a consequence,

in this case, the global information on the geometric structure is directly

included in the Hybrid Bellman Equation, cf. (4.7), and the additional level

of abstraction can be avoided.

(ii) Furthermore, the dynamic restrictions, assumed in the bimodal approach

(Section 4.2), are lifted, which means that both transition characteristics

illustrated in Section 3.1, “passing through” and “bouncing back”, are ad-

missible at boundary points, forcing the definition of a discrete control input,

which uniquely specifies the behavior at a certain switching point. Conse-

quently, the optimal solution of the multimodal point-to-point problem is

hyrbid in nature in that it depends not only on the continuous control signal

u(·), but also on a discrete (control) input sequence specifying the domains

the system should go through in the first place.

The outline of this chapter reflects the analogy between the bimodal approach

(Chapter 4) and the way of proceeding in the general multimodal case. Start-

ing, in Section 5.1, with an illustration of the hierarchic structure inherent in the

considered multimodal point-to-point problem, the following sequence of sections

runs completely parallel to the endeavor in Chapter 4: Based on the preliminary

results for bimodal systems, in a first step, a formal description of the regional

dynamics system is introduced. This is done by a discussion on the geometric

structure of the partitioned state space (Section 5.2) and a precise formulation

of the hybrid dynamic behavior (Section 5.3). The following section, Section 5.4,

is devoted to the new level of abstraction, the transition automaton, encoding
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the way in which the system can transition from one region to another. Against

this background, Section 5.5 presents the mathematically precise formulation of

the hybrid point-to-point problem and the main theorem, the Hybrid Bellman

Equation for multimodal systems, is stated in Section 5.6. This is followed, in

Section 5.7, by some comments on the computational effort needed to accomplish

the derived recursion algorithm. Finally, in Section 5.8, a number of examples are

presented to highlight the operation of the proposed approach.

This chapter represents a continuation and extension of the developments be-

gun in [14] and the results of the following sections are summarized in the paper,

“A Hybrid Bellman Equation for Systems with Regional Dynamics”, [58].

5.1 The Hierarchic Structure of The Problem

This section provides a big-picture look at the general point-to-point problem de-

livering insight into the problem’s structural composition, which represents the un-

derlying framework of the proposed solution scheme illustrated later by Section 5.4

and Section 5.6.

As already indicated in the introductory sections, Section 2.2.3 and Section 3.2,

a clear analysis and a careful structuring of the hybrid point-to-point problem offer

a deep understanding of the problem’s complexity and, even more important,

also an advantageous starting point for deriving a solution concept yielding to a

characterization of global optimality. Here, the novelty lies in the interpretation

of the hybrid point-to-point problem as a multistage decision problem [55], which

creates a hierarchical structure consisting of different levels of abstraction and

makes it possible to apply an adequate Dynamic Programming algorithm, cf.

Section 3.2 and Section 4.4.

In this work, the general multimodal point-to-point problem is approached

on three different levels of control: On the highest level, the given geometric

framework is taken into account. The introduced transition automaton, a discrete

representation of the composed state space X , specifies the connections between
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the different regions and the associated language provides all sequences of tran-

sitions, which are possible in the given partitioned state space X . Furthermore,

the subsequent section, Section 5.4, illustrates that, on this level of control, arbi-

trary switching rules can be incorporated by arranging the connections between

the automaton’s discrete states in an appropriate way.

At a level below, based on the language generated by the automaton a Hy-

brid Bellman Equation is derived. This equation provides, for an a priori given

number M of switches along the hybrid trajectory, the optimal switching points

(tis, ξ
i
s)

∗, i ∈ {1, 2, . . . ,M} together with the corresponding sequence of do-

mains, the continuous state x goes through. In addition, the associated cost

V M(ξ0, qi0 , ξT , qiT , T ), as defined in Definition 4.2, is provided. However, in or-

der to solve the original problem, where an upper bound N on the total number

of switches is given (cf. Section 3.2 and Section 4.3), a minimization over all

V M(ξ0, qi0 , ξT , qiT , T ), 0 ≤ M ≤ N , cf. equation (4.9), is necessary leading to an

optimal number of switches M ∗ associated with an optimal sequence of switching

points and the corresponding optimal series of passed regions.

Using this result, the actual optimal path connecting the calculated switching

points and the initial and final point, ξ0 ∈ Di0 and ξT ∈ DiT , respectively, is

obtained by separately solving – on the lowest level of control – a standard (non-

hybrid) state-constrained optimal control problem for each two consecutive pairs

(
(0, ξ0), (t1s, ξ

1
s )

∗, (t2s, ξ
2
s )

∗, . . . , (tM
∗

s , ξM∗

s )∗, (T, ξT )
)
. (5.1)

Refer to [7, 17, 21, 22, 26, 30, 53] for more details on the solution of the state-

constrained optimization problem.

Compared to the presented three-tier structure, the preliminary bimodal ap-

proach in Chapter 4 shows a simpler set-up composed only by two levels of ab-

straction or, more precisely, consisting exactly in the two lower levels of the above

hierarchic arrangement. The additional, superordinate automaton level is not

necessary since the geometric framework is clearly given by the problem’s defini-

tion. This fact was previously explained in the discussions at the beginning of this
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chapter. As a consequence, the bimodal solution procedure, which is based on the

two-level hierarchic structure and explicitly explained in Section 4.5, represents an

easily approachable special case of the general multimodal point-to-point problem.

However, the idea of taking advantage of the revealed hierarchic structure in the

way that the optimal control problem is partially solved on each level of control

can be observed already in the simplified bimodal approach.

In the following, after a precise definition of the regional dynamics system in

Section 5.2 and Section 5.3, the different levels of abstraction and their inherent

functions are described in greater detail. This is done by explaining, in Section 5.4,

the transformation of a given geometric structure into the associated transition

automaton and, in Section 5.6, by deriving a Dynamic Programming algorithm

representing an applicable solution scheme for the considered point-to-point prob-

lem, which is based on both the transition sequences provided by the automaton

on the highest level of control and the cost functions c(·, ·, ·, ·, ·) computed on the

lowest level of control.

5.2 The Multimodal System – Regions and Ge-

ometric Framework

A straight-forward extension of the regional definitions and assumptions, intro-

duced in the bimodal case (Section 4.1), yields to a precise description of the

multimodal geometric framework and, hence, lays the foundation for the further

approach to a solution of the hybrid point-to-point problem in multiple regions.

The descriptive explanations in Section 3.1 already provided an pictorial un-

derstanding of what constitutes a general multimodal system. As indicated in

Figure 3.1, in a regional dynamics system, the compact state space X is divided

into an arbirtrary, but finite, number q of open, connected, and simply connected

regions Di, i ∈ I = {1, 2, . . . , q} , q ∈ N, such that

X =

q⋃

i=1

(Di ∪ ∂Di), (5.2)

where Di ∩ Dj = ∅, ∀i, j ∈ I, i 6= j. As in the bimodal case, the boundaries
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D3

Σ2 : ẋ = f2(x, u)
Σ3 : ẋ = f3(x, u)

Σ4 : ẋ = f4(x, u)

D3

D4
D1

D2

Σ1 : ẋ = f1(x, u)

X

m(2,3) = m(3,2)

m(1,2) = m(2,1)
m(1,3) = m(3,1)

m(1,4) = m(4,1)

m(3,4) = m(4,3)

Figure 5.1: System with Regional Dynamics – Boundaries

∂Di, i ∈ I are assumed to be finite unions of closed, smooth codimension one

submanifolds sk
i of X and are precisely given by equation (4.2). However, in

contrast to the bimodal framework, where only one switching surface ∂D exists

dividing the state space X into its two regionsD1 andD2 as depicted in Figure 3.2,

the general case shows multiple switching manifolds m(i,j) defined by

m(i,j) = ∂Di ∩ ∂Dj, i, j ∈ I, (5.3)

where m(i,j) 6= ∅ if region i and j are adjacent. This definition is visualized in

Figure 5.1 for the regional dynamics example in Figure 3.1. As a consequence of

equation (5.3), the relations

m(i,j) = m(j,i) and m(i,i) = ∂Di, i, j ∈ I (5.4)

hold. Note that m(i,i) contains the part of the boundary ∂Di which does not meet

the boundary of any other region. Moreover, the meaning of the regional structure

is consistent with the one in the bimodal case (Section 4.1); that is, with each

region Di, i ∈ I a time-invariant vector field fi(x, u) is associated which uniquely

describes the continuous dynamics in the corresponding partition:

ẋ(t) = fi(x(t), u(t)) if x(t) ∈ Di. (5.5)

Analogous to Section 4.1, Assumption 4.1 holds for all i ∈ I = {1, 2, . . . , q}.
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The previous considerations represent a pure extension of the bimodal case in

Section 4.1, where simply a larger set I = {1, 2, . . . , q} is chosen. However, in

the following section, which defines the possible executions in a regional dynamics

system and, in particular, the dynamics of the multimodal system on the bound-

aries, a new feature, the discrete control variable e, is introduced, which precisely

specifies the transition behavior of the continuous state arrived at a boundary.

As mentioned in the introductory comments at the beginning of this chapter, be-

cause of the limited dynamics in the bimodal case, a discrete input variable was

not required in the precedent approach of Chapter 4.

5.3 The Multimodal System – Dynamics and Ex-

ecutions

A novel attribute, the discrete input variable e, qualifies the continuous state’s

behavior at a switching manifold m(i,j), where a decision is to be made between

“passing through” the boundary into a new region with a different dynamical

regime and “bouncing back” into the previous region, where the state’s execution

is ruled by the same dynamics again.

Proceeding in a similar manner as in the bimodal case (Section 4.2), the goal

of this section is to precisely define what constitutes executions of systems as

introduced in Section 5.2; that is, to specify the way the system’s continuous

state x travels through the different domains Di, i ∈ I = {1, 2, . . . , q}.

In a first step, the definition of the discrete state space Q, initially introduced

for the bimodal case of Section 4.2, is extended to multiple regions. In one-to-one

correspondence to the enlarged set of regions D = {Di : i ∈ I}, the discrete state

space of a multimodal system is given by Q = {qi | i ∈ I}. In fact, the discrete

state q(t) and the continuous state x(t) are related in the following way: For an

interior point x(t) ∈ Di, the discrete state q(t) is clearly given by q(t) = qi, cf.

Section 4.2. However, when the state x(t) lies in a boundary segment m(i,j), i, j ∈

I, the interpretation of the possible discrete state values q(t−) = qi or q(t−) = qj
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is that the continuous state has arrived at x(t) along a trajectory which most

recently lay in Di, or respectively, Dj, and a switch of the discrete state to, say,

q(t) = qi, indicates that the system’s trajectory will evolve in Di under the ith

vector field on a time interval with initial instant t.

Recalling the notation xk emphasizing the dynamical regime fk which deter-

mines the execution of the trajectory at a given point xk(t) ∈ Dk ∩ ∂Dk, i.e.,

ẋk(t) = fk(xk(t), u(t)), k ∈ I, the transition behavior of the multimodal system

can be described as follows: Given a continuous starting state ξ0 ∈ Di, i ∈ I

and the associated discrete start state qi ∈ Q, the continuous-time control input

u(·) ∈ U gives rise to a trajectory evolving according to ẋi = fi(xi, u). If there is

a finite time ts such that the state enters a switching manifold

m(i,j) = ∂Di ∩ ∂Dj, j ∈ I , (5.6)

that is,

ξs = lim
t→ts

xi(t) ∈ m(i,j), (5.7)

then, corresponding to the previous explanations and illustrations in Section 3.1

and Figure 3.1, there are two different possibilities of further execution:

(i) One possible option is that the trajectory passes through the switching mani-

fold and, in the following, evolves in region j as ẋj = fj(xj, u) with the initial

condition xj(ts) = ξs until a further possible intersection with a switching

surface m(j,k), k ∈ I. In this case, the switching at m(i,j) corresponds to a

transition from domain i to j.

(ii) However, it is also counted as a switch, if the continuous state x after arriving

atm(i,j) under the dynamics fi(xi, u) bounces back into region i, where, again,

the state’s dynamics are determined by ẋi = fi(xi, u) with initial condition

xi(ts) = ξs (until a further possible intersection with a switching manifold

m(i,j)).
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Note that at a switching point (tis, ξ
i
s) in the case of ”passing through” as well as

in the case of ”bouncing back” the vector field determining the execution of the

hybrid trajectory changes discontinuously.

In brief, characteristic for the evolution in a general regional dynamics system

is the ambiguity in the continuous state’s behavior when entered a switching man-

ifold m(i,j), i, j ∈ I. The decision on which way will be taken is determined by

a discrete control input e ∈ E , where E denotes a finite set of transition labels.

In this context, the discrete value e ∈ E uniquely specifies the region of the tra-

jectory’s further execution once arrived at a switching manifold m(i,j), i, j ∈ I.

Clearly, the set of possible transitions at a given switching point ξs ∈ m(i,j) de-

pends on the location of ξs in the state space X and also on the family of vector

fields defined at ξs. If, for example, ξs lies in m(i,j) ∩m(k,l), i, j, k, l ∈ I, the loca-

tion of ξs only allows a switch to region Di, Dj, Dk, and Dl. However, supposed

there exists no u ∈ U such that fj(ξs, u) meets the open set Dj, then, the set of

possible future regions is to be cut down to Di, Dk, and Dl.

In the following, the previously suggested (controlled) discrete dynamics, in-

herent in the considered multimodal system behavior, are introduced in a formal

way: A controlled discrete transition from qi ∈ Q to qj ∈ Q is defined at the

continuous state x and denoted by

DSC : qj = Γ
(
qi, eij

)
, j 6= i, (5.8)

in case

(i) x ∈ m(i,j),

(ii) there exists a continuous control u ∈ U such that the oriented vector at x

given by the vector field fj(x, u) meets the open set Dj within all neighbor-

hoods of x, and

(iii) the controlled input event e ∈ E takes the value eij.
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In addition, a controlled discrete transition from qi ∈ Q back to qi ∈ Q is defined

at the continuous state x and denoted by

DSC : qi = Γ
(
qi, eii

)
, (5.9)

in case

(i) x ∈ m(i,j), j ∈ I,

(ii) there exists a continuous control u ∈ U such that the oriented vector at x

given by the vector field fi(x, u) meets the open set Di within all neighbor-

hoods of x, and

(iii) the discrete control input e ∈ E takes the value eii.

In a nutshell, the above definitions state that, in case the trajectory x(·) enters

a switching manifold m(i,j), i, j ∈ I from domain Di, one of the discrete inputs,

eij or eii, identifies the region of further execution, Dj or Di, respectively. The

function Γ : Q × R
n × E → Q represents a time-independent, partially defined

discrete transition map, which specifies transitions only for points on the boundary

x ∈ m(i,j), i, j ∈ I. The set E contains the labels of all possible transitions in the

given partitioned state space X . Later, in Section 5.4, an untimed automaton, a

discrete representation of the multiregional state space X , is introduced, which

explicitly specifies the desired set E .

In addition, rather more significant is the following assumption: If at any

x ∈ m(i,j), i, j ∈ I one of the two conditions above, (5.8) or (5.9), is satisfied,

then, the condition holds for all other continuous states in m(i,j), too. Hence, the

discrete transition events e ∈ E are well defined.

Moreover, note that the discrete dynamics, (5.8) and (5.9), with inputs eij, i, j ∈

I represent the continuous state’s switches between different regions and cause

the discontinuous behavior in the discrete state’s trajectory q(·). Consequently,

in accordance with the defining comments at the beginning of this section, the
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Figure 5.2: The Discrete Input Values eij and ejj Qualify the Discontinuous
Transitions of the Discrete-State Trajectory q(·).

discrete-valued state q(·) has right-continuous trajectories in R, which are piece-

wise constant. These characteristics regarding the discrete state q were previously

illustrated for the bimodal case in Section 4.2 and, especially, in Figure 4.1. Ad-

ditionally, Figure 5.2 visualizes the impact of the controlled discrete transitions,

(5.8) and (5.9), on the discrete variable q(·) at two specific time instances t1s and

t2s, where x(t1s) ∈ m(i,j), i, j ∈ I and x(t2s) ∈ m(j,k), k ∈ I.

In conclusion, a hybrid execution is uniquely determined by a given initial

condition ξ0 ∈ Di, i ∈ I, the continuous-time control input u(·) ∈ U , and a

compatible discrete control sequence

S (τ , w) =
((
t1s, e1

)
,
(
t2s, e2

)
, . . . ,

(
tMs , eM

))
, (5.10)

where τ = (t1s, t
2
s, . . . , t

M
s ), 0 < t1s < t2s < · · · < tMs < T denotes the strictly

increasing sequence of switching times and w = e1e2 . . . eM represents the corre-

sponding string of appropriate discrete control inputs ei ∈ E , i ∈ {1, 2, . . . , M}.

The positive integer M determines the number of switches. Of course, the se-

quence S (τ , w) is empty, if no switch occurs along the hybrid trajectory. In brief,

the admissible control actions available are the continuous control u(·) ∈ U and

the discrete control input sequence S (τ , w). Both control inputs are part of our

optimization problem which is explicitly defined in Section 5.5. In fact, not only

is the system’s input hybrid in nature, but so is the description of the actual

execution consisting of the continuous state x(·) and the discrete variable q(·).

Moreover, from these specifications of the hybrid system executions, it follows
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that over any finite interval [0, T ], starting at ξ0 ∈ Di for some i ∈ I, the resulting

controlled trajectory is continuous for any continuous control function u(·) ∈ U

and any discrete control input sequence S (τ , w). An example for the resulting

controlled dynamics of a hybrid trajectory evolving in a partitioned state space X

is pictured in Figure 3.1.

Remark 5.1. Important to note is that most of the former approaches, such as [59]

and [68], define the transition behavior of their hybrid dynamic systems in a

different way. In contrast to the multimodal system introduced in the precedent

sections, the models in [59] and [68] do not include the possibility of “bouncing

back” at a switching manifold. However, since this work’s multimodal system

allows to inhibit the “bouncing back” switches (and also other kinds of switches)

on a higher level of control, cf. Section 5.4, which may yield to the models proposed

in [59] and [68], the recently presented hybrid modeling turns out to be a more

general approach in view of possible ways of transition. 2

The subsequent section introduces the previously announced transition au-

tomaton, which relates the geometric structure of the state space X to the set of

possible transitions E and, thus, specifies the discrete dynamics (5.8) and (5.9).

In doing so, the automaton encodes the manner in which the system’s trajectory

can transition from one region to another.

5.4 The Transition Automaton

A key concept in the hierarchic approach to a solution of the multimodal point-

to-point problem, cf. Section 5.1, is the mapping of the given multiregional state

space X to a finite state machine, referred to as the transition automaton, which

contains information about the contributing regions and their connections among

each other.

In this section, an important part of the multimodal solution scheme or, more

precisely, the highest level of abstraction in the hierarchical structure introduced
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in Section 5.1, is established, distinguishing the general multiregional approach

from the preliminary bimodal considerations in Chapter 4.

To begin with, the hybrid optimal control problem considered in this work

and previously illustrated in Section 3.1 is briefly stated again: Given a specific

cost function, the goal is to determine the optimal path of going from a given

initial state ξ0 = xi0(0) ∈ Di0 to a fixed final state ξT ∈ DiT during a time

horizon T , where T is also specified a priori. In order to solve this optimization

problem and even in order to formulate this problem in a precise manner, what

is done in Section 5.5, a discrete representation of the geometric framework, ex-

plicitly specifying the connections between the constituent regions Di, i ∈ I, is

indispensable. Therefore, a deterministic automaton, the transition automaton,

is introduced modeling the switching surfaces m(i,j), i, j ∈ I in the way that a

transition between the discrete automaton states i and j, representing the region

Di and Dj, respectively, is only possible if the switching surface m(i,j) 6= ∅. Fur-

thermore, information about the optimal control problem, in particular, about the

initial region Di0 , ξ0 ∈ Di0 and the final region DiT , ξT ∈ DiT are incorporated in

the automaton. Consequently, the automaton answers the question: Which ways,

i.e. which sequences of transitions, are possible in order to get from ξ0 to ξT ?

A formal definition of the transition automaton, following the notation of [16],

is given by the six-tupel

A = (Ds, E , g, h, d0,Dm), (5.11)

where

• the set of (automaton) states is Ds = I,

• the set of events is given by E = {eij | i, j ∈ I},

• the transition function is defined as g(i, eij) = j if m(i,j) 6= ∅, i, j ∈ I and is

not defined for all other cases,

• the initial state d0 = i0, where ξ0 ∈ Di0 , and
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• the set of marked states is given by Dm = {iT | ξT ∈ DiT }.

The active event function h is defined by the specifications above.

In this formalism, the states Ds = I represent the discrete state space Q =

{qi | i ∈ I}, and, with this, the different regions Di, i ∈ I. An event eij char-

acterizes the transition, i.e. the switch, from region Di to region Dj and the

set of events E corresponds to the previously defined set of transition labels, cf.

Section 5.3. Comparable with the discrete transition map Γ in Section 5.3, the

transition function g indicates, on the automaton level, which transitions eij ∈ E

are possible for a given state i ∈ Ds. In addition, especially noteworthy is that

the elements Ds, E , g, and h of the six-tupel (5.11), specifying the transition au-

tomaton A, are immediately given by the geometric structure of the state space

X , whereas the initial state of the automaton d0 and the set of marked states Ds

depend on the HOCP formulation, namely on the initial and final state, ξ0 and

ξT , respectively.

An implicit assumption in the above model of the regional dynamics system,

(5.11), is that the condition (ii) in the definition of the discrete dynamics, (5.8)

and (5.9), does not restrict the set of regions the continuous state x can go to,

when arrived at a switching manifold m(i,j), i, j ∈ I. That is, it is taken for

granted that there always exist (continuous) control values ui, uj ∈ U such that

the oriented vectors at x ∈ m(i,j), i, j ∈ I given by the fi(x, ui) and fj(x, uj) meet

the open set Di and Dj,respectively, within all neighborhoods of x.

Note that in the automaton description (5.11), the geometric shape of a region

Di, i ∈ I is reduced to a discrete state i and the switching manifold m(i,j), i, j ∈ I

to a single event eij. Furthermore, an important observation is that the automaton

does contain information about the initial state ξ0 ∈ Di0 and the final state ξT ∈

DiT , but does not contain any time-valued information.

A simple example for the transformation of a given geometric structure to the

corresponding transition automaton is depicted in Figure 5.3, where a direct graph
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Figure 5.3: Transformation of a Given Geometric Structure to the Corresponding
Transition Automaton

1 2

e21

e12

Figure 5.4: Transition Automaton Associated with the Bimodal Point-To-Point
Problem of Chapter 4; i0 = 2 and iT = 1

representation, as proposed in [16], is used to picture the automaton. In this il-

lustration, arrows between different states imply the continuous state’s transition

from one region to another, whereas self-loops signalize the “bouncing back” be-

havior of the continuous state x.The transition automaton associated with the ini-

tially considered bimodal point-to-point problem, defined in Section 4.3, is shown

in Figure 5.4, where, because of the limited dynamics, cf. Section 4.2, self-loops

does not appear. In fact, depending on the initial and final region, the bimodal

case allows only two different automaton representations characterized by i0 = iT

or i0 6= iT . The illustration in Figure 5.4 assumes i0 = 2 and iT = 1 for the initial

and final region.

Remark 5.2. The previously introduced transition automaton, a discrete model

of the multiregional state space X , represents the connections between the con-

stituent regions Di, i ∈ I and displays possible sequences of transitions leading
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Figure 5.5: Example For The Incorporation of Additional Switching Rules on
the Automaton Level

from i0, where ξ0 ∈ Di0 , to iT : ξT ∈ DiT , i0, iT ∈ I. However, especially inter-

esting is that, on this highest level of abstraction, arbitrary switching rules can be

incorporated. An example is given in Figure 5.5, where a state space X composed

of four different regions is considered. In this case, the transitions from state 1

to 3 and from state 2 to 4, that is, switches from region D1 to D3 and from D2

to D4, are obviated by the proposed automaton. Moreover, in order to disable

undesirable transitions, supervisory control [16] and other related methods can be

applied on this level of control. Note that the transversality assumptions on the

vector fields fi(x, u), i ∈ I, Assumption 4.1, can be partially relaxed if certain

transitions eij, i, j ∈ I are inhibited by the automaton. 2

A crucial role in the further approach to a hybrid optimal solution of the

multimodal point-to-point problem, illustrated in Section 3.1, plays the language

L(A) generated by the transition automaton A defined in (5.11), cf. [16],

L(A) =
{
e ∈ E∗

∣∣∣ g(d0, e) is defined
}
, (5.12)

where E∗ denotes the set of all finite strings, or sequences, of elements in E includ-

ing the empty string ε and g(d0, e), e ∈ E∗ is interpreted in the following recursive

manner, cf. [16]:

g(i, ε) = i, i ∈ Ds, (5.13)

g(i, uv) = g (g (x, u) , v) for u ∈ E∗ and v ∈ E . (5.14)
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The notation uv indicates the concatenation of string u and v. In particular, the

marked language Lm(A) associated with the automaton A given by (5.11),

Lm(A) =
{
e ∈ L(A)

∣∣∣ g(d0, e) ∈ Dm

}
, (5.15)

is used to formulate and solve the multimodal point-to-point problem. In the

considered framework, the marked language Lm(A) represents the set of all strings,

that is, of all sequences of transitions, leading from state i0, where ξ0 ∈ Di0 , to

state iT with ξT ∈ DiT . Refer to [16] for a more detailed introduction to the

languages generated by a deterministic automaton.

With the objective of restricting the strings w ∈ Lm(A) to a certain length

M , i.e., to find all ways from ξ0 to ξT using exactly M switches, an additional

language LM is defined as

LM =
{
e ∈ E∗

∣∣∣ |e| = M
}
, (5.16)

where the function | · | : E∗ → N ∪ {0} determines the length of a string e ∈ E ∗,

that is, the number of events the string e consists of. The length of the empty

string ε is zero, |ε| = 0. Finally, the intersection

Lm(M,A) = Lm(A) ∩ LM (5.17)

provides the desired set of strings leading from state i0 to iT and consisting of

exactly M events. Moreover, especially useful in the later derivation of the general

Hybrid Bellman Equation for multimodal systems (Section 5.6), is the definition

of the language

FK(M,A) = LK ∩ suff (Lm (M,A)) (5.18)

as the set of all suffices of L(M,A) consisting of K events, where the set suff(L) =

{s ∈ E∗ | ∃u ∈ E∗ with us ∈ L} represents the suffix closure of the language L.

Note that the set F0(M,A) only contains the empty string ε, i.e., F0(M,A) = {ε}.

In conclusion, the language Lm(M,A), (5.17), associated with the introduced

automaton A, (5.11), provides global accessibility relations in the way that words
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w = ei0j1ei2j2ei3j3 . . . eiM iT ∈ Lm(A) with a prescribed number M of events are

determined which correspond to potential accessibility relations, namely possible

sequences of switchings, between the specified discrete states qi0 , indicating that

ξ0 ∈ Di0 , and qiT , where ξT ∈ DiT , along trajectories with a prescribed number

M of switchings. At the base (continuous) system level, Section 5.6, these global

accessibility relations are used to constrain the infimization in the Hybrid Bellman

Equation, that is, in the characterization of the optimal switching states (ξ i
s)

∗
, i ∈

{1, 2, . . . ,M} , the optimal discrete control sequence, S∗ (τ , w) , and the associated

optimal continuous control functions. The global knowledge available through the

automaton A, (5.11), and even the model of the automaton itself are solely useful

and necessary since, in contrast to other hybrid optimal control approaches, this

work considers an optimization problem, where both, the initial and the final state

of the hybrid optimal trajectory, are given a priori, see Section 3.1.

Remark 5.3. In the bimodal case, Chapter 4, which might be represented by an

automaton as depicted in Figure 5.4, the language Lm(M,A), M ∈ N ∪ {0} con-

tains exactly one word, i.e., one possible sequence of switchings, if M is even and

i0 = iT or M is odd and i0 6= iT ; otherwise, the set Lm(M,A) is empty. As a con-

sequence, depending on i0 and iT , only odd or even numbers M have to be taken

into account and the uniquely given sequence of switchings is directly incorporated

in the Hybrid Bellman Equation (4.7). 2

Against this background, the following section precisely defines the point-to-

point problem for a general regional dynamics system.

5.5 The Optimization Problem Formulation

A mathematically precise formulation of the considered hybrid optimal control

problem in multiple regions involves, compared to the bimodal case (Section 4.3),

two important additional concepts: the definition of a discrete control input se-

quence S (τ , w), given by (5.10), and the global accessibility relations provided by

the language Lm(M,A), equation (5.17).
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Given an upper bound N ∈ N0 on the total number of switches, the multimodal

point-to-point problem, previously illustrated in Section 3.1, is formally defined

by the following problem statement:

Problem 5.1 (The Multimodal Point-To-Point Problem).

PN : inf
u(·)∈U ,

S(τ ,w)

∫ T

0

`(x(t), u(t)) dt (5.19)

subject to, for 0 ≤M ≤ N ,

• the geometric structure

w = ei1j1ei2j2 . . . eiM jM
∈ Lm(M,A), (5.20)

• the discrete dynamics

qjk
= Γ (qik , eikjk

) (5.21)

at a switching time tks , where 1 ≤ k ≤ M , yielding to the discrete-state

dynamics q(t) = qik , t ∈
[
tk−1
s , tks

)
with 0 < k ≤M + 1 and iM+1 = jM ,

• the continuous-state dynamics

ẋik(t) = fik(xik(t), u(t)), t ∈
[
tk−1
s , tks

)
, (5.22)

where 0 < k ≤M + 1 and iM+1 = jM ,

• and the corresponding initial and final conditions

x(0) = xi1(t
0
s) = ξ0 ∈ Di0 ,

xik+1
(tks) = lim

t→tks

xik(t) = ξk
s ∈ m(ik,jk),

x(T ) = xiM+1
(tM+1

s ) = ξT ∈ DiT ,

(5.23)

if 0 < k ≤M .

2
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Note that ξ0, ξT /∈ ∂Di, i ∈ I and (tks , ξ
k
s ), 0 < k ≤M denotes the kth switching

point along the trajectory.

Based on above’s precise problem definition, the subsequent section finally

answers the original question of this thesis, cf. Section 3.1, “Which path is optimal

if the system’s continuous state is required to pass, under a regional dynamics

regime, from a given starting point to a fixed final state during an a priori specified

time horizon?”.

5.6 The Hybrid Bellman Equation

The main result of this work, the Hybrid Bellman Equation for multimodal sys-

tems, is presented.

In fact, the multiregional point-to-point problem, precisely stated in Section 5.5,

provided the motivation for all previous considerations: Starting with a brief re-

view on the basic optimal control concepts in Chapter 2, especially illustrating

the Dynamic Programming idea fundamental to the actual hybrid solution proce-

dure, the point-to-point problem in multiple regions is explained in an informal,

illustrative way, Section 3.1, and a rough sketch of the proposed solution scheme

is shown in Section 3.2. The following mathematically precise bimodal approach,

Chapter 4, represents a great basis for general multiregional approach begun in

Section 5.2 and Section 5.3 by a clear definition of the multiregional geometry

and dynamics and the introduction of a discrete representation of the regional

geometric framework in Section 5.4. This section presents the final conclusion

of all precedent results by solving the point-to-point problem in multiple regions

and, indeed, providing a recursive algorithm providing a characterization of global

optimality.

In order to derive a Dynamic Programming recursion describing the cost-to-go

dynamics of the general multimodal point-to-point problem, let end : E ∗\ {ε} →

I denote the mapping

end(s) = end(ei1j1ei2j2 . . . eikjk
) = jk, (5.24)
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which is used to specify the region Djk
associated with the last index of the last

transition label eikjk
of a string s. Additionally, as in the bimodal case, a concise

formulation of the multimodal Hybrid Bellman Equation is based on the cost-to-

go function V ·(·, ·, ·, ·, ·), see Definition 4.2, and the cost c(·, ·, ·, ·, ·), given by

Definition 4.1, where I = {1, 2, . . . , q} in the multiregional case. However, of par-

ticular importance is that, in the multimodal case, the determination of the func-

tions V M(ξ1, qi1 , ξ2, qi2 , τ) is based on global accessibility relations represented by

a particular transition automaton Ã. That is, given a certain geometric framework,

specifying the variables Ds, E , g, and h in the definition of the transition automa-

ton Ã, cf. (5.11), in order to obtain the value V M(ξ1, qi1 , ξ2, qi2 , τ) only hybrid

trajectories have to taken into account, whose execution is determined by a discrete

input word, i.e., by a switching sequence, satisfying w ∈ Lm(M, Ã) = Lm(Ã)∩LM ,

where the corresponding automaton Ã is given by Ã = (Ds, E , g, h, i1, {i2}), cf.

(5.11), and the languages Lm(Ã) and LM are defined as in (5.15) and (5.16),

respectively.

Finally, the main theorem of this work, a solution scheme for the general

multiregional point-to-point problem (Problem 5.1), reads as follows:

Theorem 5.1 (The Hybrid Bellman Equation for Multimodal Systems).

Assume that all hypotheses for the existence and uniqueness of regional dynamics

hybrid systems hold and that all infima exist in the definition of the hybrid value

functions V ·(·, ·, ·, ·, ·), for all admissible argument values, whenever the expres-

sions are finite. Then, given the transition automaton A, cf. (5.11), corresponding

to the multimodal point-to-point problem, Problem 5.1, the recurrence relation is

expressed by

V K(ξ1, qi1 , ξ2, qi2 , τ)

= inf
t∈(0,τ)

inf
ξ∈m(i1,j)

inf
j∈I

{
c(ξ1, qi1 , ξ, qj, t) + V K−1(ξ, qj, ξ2, qi2 , τ − t)

}
(5.25)

such that

70



e = ei1j , w ∈ FK−1(M,A) , (5.26)

end(w) = i2 , ew ∈ FK(M,A) . (5.27)

This relation holds for 0 < K ≤M . The initial condition of the recursive scheme

is given by

V 0(ξ1, qi1 , ξ2, qi2 , τ) = c(ξ1, qi1 , ξ2, qi2 , τ). (5.28)

2

Since the multimodal point-to-point problem (Problem 5.1) does not insist on an a

priori given number of switches M, 0 ≤M ≤ N , where N denotes the given upper

bound on the total number of switches along a hybrid trajectory, in a last step, the

functions V M(ξ1, qi1 , ξ2, qi2 , T ) are related to the original problem. Recalling that

ξ0 ∈ Di0 and ξT ∈ DiT , i0, iT ∈ I, the optimal cost associated with the original

problem WN(ξ0, qi0 , ξT , qiT , T ) is given by (4.9)

WN(ξ0, qi0 , ξT , qiT , T ) = min
0≤K≤N

V K(ξ0, qi0 , ξT , qiT , T ) . (5.29)

By carefully studying the above recursion relation (5.25) and the associated

high level language constraints (5.26) and (5.27), the following notable interpre-

tations are made: As mentioned in Section 5.4, the languages FK(M,A), 0 <

K ≤ N , which represent the global accessibility conditions in a given geomet-

ric framework, may enormously – depending on the structure of the partitioned

state space X and the upper bound N – constrain the effort needed to accom-

plish the recursion proposed in Theorem 5.1. Precisely speaking, the language

FK(M,A) explicitly specifies which combinations (K, qi1 , qi2) , qi1 , qi2 ∈ I for

V K(ξ1, qi1 , ξ2, qi2 , τ), 0 < K ≤ N are relevant and have to be computed. To

illustrate this, the geometric setup shown in Figure 5.5 is considered. Assuming

the upper bound N = 3 on the total number of switches along a hybrid trajectory,

in this example, for instance, the value functions V K(ξ1, qi1 , ξ2, qi2 , τ) with qi2 6= 3

or V 2(ξ1, 3, ξ2, 3, τ) are not contained in FK(M,A) and F2(M,A), respectively,
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and can, therefore, be ignored while solving the corresponding hybrid point-to-

point problem, Problem 5.1. Furthermore, notice the great analogy between the

general multiregional result, Theorem 5.1, and the preliminary bimodal approach,

Theorem 4.1, where in both cases the geometric structure restricts the infimiza-

tion. However, in the bimodal case, these constraints are directly included in the

recursion equation (4.7) by the introduced complementary indicator (·)c, whereas

in the above Theorem 5.1 the additional equations (5.26) and (5.27) are stated.

Remark 5.4. The regional dynamics system defined in Section 5.2 and Section 5.3

perfectly fits in the general framework presented in [11], where a unified mathe-

matical description of a controlled hybrid dynamical system is introduced. More

precisely, this work’s model presents a special case of the notions in [11] consider-

ing only the possibility of autonomous switchings. However, the idea of deriving

a Hybrid Bellman Equation based on global accessibility relations provided by an

automaton, which represents the structure of the partitioned state space X , can

be extended to more general models as, for example, those in [11]. Nevertheless,

these extensions and other possible generalizations, cf. Chapter 6, are left to a

future endeavor. 2

The subsequent section addresses the practical implementation of the theoret-

ical results, concluded by Theorem 5.1, and benefits in its approach highly from

the previous considerations on the numerical solution of the bimodal problem,

Section 4.5.

5.7 Implementation and Computational Issues

Again, the hierarchic organization of the problem, cf. Section 5.1, turns out to

be a helpful structure indicating, in this context, the numerical way of proceed-

ing, where the computational effort needed to accomplish the recursive algorithm,

(5.25), is, in particular, influenced by the geometric framework of the regional

dynamics system and the upper bound N on the total number of switches along

a hybrid trajectory.
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The following comments on the computational procedure solving the general

multiregional point-to-point problem are mainly drawn from the observations pre-

viously made in the bimodal case, Section 4.5, which definitely represents a more

concrete and easier to handle problem formulation. As already noticed there, the

hierarchical structure of the point-to-point problem not only divides the complex

question of finding the optimal hybrid trajectory into different levels of control but,

from a numerical point of view, also provides subproblems which can be solved

successively as illustrated in the following:

(i) First and additional to the computational steps shown in the bimodal case,

the global accessibility relations, namely the languages FK(M,A) for 0 <

K ≤ M and 0 < M ≤ N , are determined based on the transition automa-

ton A defined in (5.11). Hence, at the beginning of the numerical approach,

the subproblem corresponding to the highest level of abstraction is solved.

The effort associated with the calculation of these (N+1)N/2 languages de-

pends, obviously, on the upper bound N . However, even more important but

difficult to estimate is the influence of the state space’s geometric structure,

characterized by the number of constituent regions and their given compo-

sition. In fact, a precise analysis of the relation between the structure of the

automaton and the computational effort associated with providing the sets

FK(M,A) is an interesting field for future studies.

(ii) The second preliminary computation to be accomplished before performing

the actual Dynamic Programming recursion (5.25) lies in the lowest level

of abstraction and prepares, in analogy to the bimodal case in Section 4.5,

the functions c(ξ1, qi1 , ξ2, qi2 , τ) between all reachable pairs of boundary

points for all τ ∈ [0, T ]. Indeed, with the results of (i) the functions

c(ξ1, qi1 , ξ2, qi2 , τ) to be calculated can be explicitly stated: If there ex-

ists w = . . . eijejk · · · ∈ Lm(M,A), 0 < M ≤ N , where i, j, k ∈ I, then

c(ξ1, qi, ξ2, qk, τ) with ξ1 ∈ m(i,j) and ξ2 ∈ m(j,k) must be calculated for all

τ ∈ [0, T ]. As a consequence, in the numerical calculations, besides the time
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interval [0, T ], only boundaries m(i,j), i, j ∈ I must be discretized, if a word

w ∈ Lm(M,A), 0 < M ≤ N exists which contains an event e ∈ {eij, eii, ejj}.

The mentioned structural dependence inherent in this computational step

makes an exact estimation of the necessary effort impossible, especially, since

the surface area of the individual switching manifolds m(i,j), i, j ∈ I varies

and for each manifold can be discretized with a different step size. How-

ever, what can be stated as a result of the previous bimodal studies is that

the curse of dimensionality, describing the exponential growth of the com-

putational effort when increasing the dimensionality n of the state space X ,

is also inherent in the general multiregional calculations of the non-hybrid

state-constrained optimization problems c(ξ1, qi1 , ξ2, qi2 , τ).

(iii) Finally, the recursive equation (5.25) concludes all preliminary results and

provides the optimal hybrid trajectory in terms of the optimal discrete con-

trol sequence, S∗ (τ , w), and the optimal switching points and times,
(
ξk
s

)∗

and
(
tks

)∗
, respectively. Analyzing equation (5.25), the dependence on the ge-

ometric structure of the state space X is observed, appearing in the language

constraints, (5.26) and (5.27), and the additional infimization inf j∈I {·} in

(5.25). As mentioned before, also on this level of abstraction, the huge

variety of possible geometries and their different properties in view of the

considered recursion relation (5.25) turns the estimation of the computa-

tional effort into a challenging assignment. However, drawing the parallels

between the general relation (5.25) and the bimodal recursion (4.7), it can be

noticed that the curse of dimensionality also rules the multiregional Dynamic

Programming algorithm (5.25).

In brief, on all levels of control, the geometric framework of the considered

regional dynamics system, cf. Section 5.2 and Section 5.3, has a huge influence

on the complexity of the underlying computations. However, the precise depen-

dence of the numerical effort on the regional structure, featured by the number

of constituent domains Di, i ∈ {1, 2, . . . , q}, the feasible transitions eij given by
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(5.11), the regions of the initial and final state, Di0 and DiT , respectively, and

the upper bound N on the total number of switches along a hybrid trajectory,

is fairly complex and represents a fascinating topic for further studies. Never-

theless, important to note is that the idea of integrating the global accessibility

relations, provided by the automaton (5.11), into the Dynamic Programming re-

cursion definitely reduces the computational effort in the way that it constrains

the infimization in the proposed Hybrid Bellman equation (5.25) and, therefore,

also the number of costs c(·, ·, ·, ·, ·) to be calculated. Additionally, it can be

stated that, in line with the bimodal case, the curse of dimensionality is inherent

in both, the computation of the costs c(·, ·, ·, ·, ·) and the recursive scheme (5.25),

what may result in time-consuming calculations for high-dimensional systems as

observed in the multi-agent problem of Chapter 7. Furthermore, the previously,

in Section 4.5, highlighted numerical effects arising out of the (computationally

necessary) time and boundary discretization apply to the above proposed general

solution procedure, too.

Before continuing with a number of examples showing the dynamic behavior

of regional dynamics systems subjected to an optimal control policy, a few words

are said about the methods and assumptions which finally lead to the numerical

results presented in this work. In order to keep the numeric computation simple

and focused on the derived recursive relation, the Hybrid Bellman equation (5.25),

Assumption 4.2, stated in the bimodal case, is extended in order to fit into the

multiregional framework:

Assumption 5.1. Along a hybrid optimal trajectory x∗(·) associated with a par-

ticular multimodal point-to-point problem, Problem 5.1, the individual contributing

segments between two consecutive points
(
tk, xk

)
,
(
tk+1, xk+1

)
, 0 ≤ k ≤M ∗ of the

sequence

(
(0, ξ0), (t1s, ξ

1
s )

∗, (t2s, ξ
2
s )

∗, . . . , (tM
∗

s , ξM∗

s )∗, (T, ξT )
)

=
(
(t0, x0), (t1, x1), (t2, x2), . . . , (tM

∗

, xM∗

), (tM
∗+1, xM∗+1)

)
, (5.30)

75



where (tms , ξ
m
s )∗ ∈ (0, T )×m(i,j), m ∈ {1, 2, . . . , M ∗} , i, j ∈ I represents the time-

state pair of the mth switch along the optimal hybrid trajectory and M ∗ denotes the

optimal number of switches, coincide with the trajectories obtained by solving the

corresponding unconstrained optimal control problem between the respective states
(
tk, xk

)
and

(
tk+1, xk+1

)
:

P : inf
u∈U

∫ tk+1

tk
`(x(t), u(t)) dt (5.31)

subject to ẋ(t) = fi (x (t) , u (t)) with the initial condition x(tk) = xk and the final

condition x(tk+1) = xk+1, where i ∈ I represents the region associated with the

original segment of the hybrid optimal trajectory x∗(·). More precisely, with the

optimal discrete control input w∗ = ei1j1ei2j2 . . . eiM∗jM∗
, the governing dynamical

regime is given by i = ik+1. 2

Now, in analogy to the comments in Section 4.5, given a regional dynamics sys-

tem satisfying Assumption 5.1, the functions c(·, ·, ·, ·, ·) preparing the Dynamic

Programming algorithm can be considered in an ordinary unconstrained optimal

control framework. And, again, by restricting the examples to multimodal point-

to-point problems characterized by linear dynamics in each constituent region

Di, i ∈ I and a quadratic overall cost function J , equation (2.40) yield to the

desired costs c(·, ·, ·, ·, ·).

This chapter is concluded by presenting a few examples highlighting the oper-

ation of the derived Hybrid Bellman equation (5.25).

5.8 Examples

Carefully selected, the following examples allow to calculate the cost functions

c(·, ·, ·, ·, ·) by the simplifying equation (2.40) – that is, Assumption 5.1 holds

(cf. Section 5.7) – and illustrate, in particular, the additional features inherent in

the general multiregional approach but neglected in the previous binodal consider-

ations (Chapter 4); namely, the ambiguous behavior at a switching manifold and

the global accessibility conditions, provided by the transition automaton (5.11)

and integrated in the solution procedure, cf. (5.25).
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Figure 5.6: Transition Automaton Corresponding To Example 5.1

Consisting only of two regions, the regional dynamics system, considered at

first, differs, nevertheless, significantly from the bimodal examples (Section 4.6)

in that the dynamical behavior is described by the general definitions in Section 5.3

and, hence, makes a “bounce back” at a switching manifold possible.

Example 5.1. In this example, the planar state space X ⊂ R
2 is divided into the

two regions D1 = {x | (1 2) x > 4.5} and D2 = {x | (1 2) x < 4.5} . The sys-

tem is driven between the points x(0) = ξ0 = (−1 1)′ ∈ D2 and x(1.8) = ξT =

(0 3.5)′ ∈ D1 and, according to the definitions in Section 5.3 and Section 5.4,

the transition behavior of the regional dynamics system is determined by the au-

tomaton shown in Figure 5.6. Interesting here and, in fact, the main incentive for

considering a two-regional framework, again, is the comparison of the actual point-

to-point problem with the precedent bimodal problem formulations in Chapter 4,

which are, in general, represented by transition automata as the one displayed

in Figure 5.4. Comparing both automata, Figure 5.4 and Figure 5.6, the limited

dynamics in the preliminary approach of Chapter 4, not allowing a “bounce back”

at the boundary, become apparent on this level of abstraction by the omitted

self-loops e11 and e22.

The regional dynamics determining the hybrid behavior of the continuous state

x(t) =
(
x1(t) x2(t)

)′ ∈ X are given by

ẋ(t) =








0 0.25

−3 −0.5


 x(t) +



−10

100


 u(t), x(t) ∈ D1




0.5 0.1

−10 −0.5


 x(t) +




0

1


 u(t), x(t) ∈ D2.

(5.32)
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Moreover, the final time is T = 1.8, with the maximum number of switches be-

ing given by N = 3. The particular cost function (5.19) under consideration is

the control energy of the control signal, that is, `(x(t), u(t)) = u(t)2, where an

unconstrained input u(t) ∈ R is assumed.

The numerical solution is obtained by discretizing the time interval [0, T ]

into 18 equally spaced temporal steps and by discretizing the switching mani-

fold m(1,2) : (1 2) x = 4.5 into 40 equally spaced spatial steps over the interval

x1 ∈ [−2, 2]. In Figure 5.7, the intermediate results of the Hybrid Bellman calcu-

lations (5.25), i.e., the optimal solutions for a given fixed number of switches M ∈

{1, 2, 3}, are shown together with their corresponding costs V M(ξ0, q2, ξT , q1, T ).

The resulting optimal trajectories (x∗1(·), x∗2(·)) are depicted by solid, blue lines;

the dashed line represents the boundary m(1,2) and the circles depict the particular

switching points. The phenomenon of ”bouncing back” at the switching manifold

is observed in the casesM = 2 andM = 3, Figure 5.7(b) and Figure 5.7(c), respec-

tively. Finally, the optimal solution with its associated cost W 3(ξ0, q2, ξT , q1, T ) is

found from the above results by equation (4.9). In this case, the optimal solution

is obtained when only one crossing of the switching surface takes place, with the

corresponding optimal cost being

W 3(ξ0, q2, ξT , q1, T ) = V 1(ξ0, q2, ξT , q1, T ) ≈ 3.865 . (5.33)

However, of course, examples can be constructed for which the optimal solution

does, in fact, involve multiple switches as, for example, shown in [14]. 2

With the goal of finally presenting a multiregional situation, indeed, consisting

of more than two regions and, especially, illustrating the influence of the global

accessibility relations in the proposed solution algorithm, Theorem 5.1, a state

space X partitioned into three regions is considered, see Figure 5.3:

Example 5.2. In this example, the state space X is divided by two parallel lines,

m(1,2) : (−1 1) x = −0.5 and m(2,3) : (−1 1) x = −2, (5.34)
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(a) M = 1 , V 1(ξ0, q2, ξT , q1, T ) ≈ 3.865
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(b) M = 2 , V 2(ξ0, q2, ξT , q1, T ) ≈ 3.866
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(c) M = 3 , V 3(ξ0, q2, ξT , q1, T ) ≈ 3.867

Figure 5.7: Optimal Trajectories (x∗1(·), x∗2(·)) Corresponding To Example 5.1 –
Each For a Given Fixed Number of Switches M ∈ {1, 2, 3}
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yielding to a three-regional framework composed of the domains

D1 = {x | − 0.5 < (−1 1) x} , (5.35)

D2 = {x | − 2 < (−1 1) x < −0.5} , and (5.36)

D3 = {x | − 2 > (−1 1) x} . (5.37)

The system is driven between the points

ξ0 = (−0.5 0)′ ∈ D1 and ξT = (−1.1 − 4)′ ∈ D3 (5.38)

under the regional dynamics

ẋ(t) =








− 1 2

−5 1


 x(t) +




0

1


 u(t), x(t) ∈ D1




0.5 1

−0.05 −0.25


 x(t) +




0

1


 u(t), x(t) ∈ D2




0 0.25

−3 −0.1


 x(t) +




0

1


 u(t), x(t) ∈ D3

(5.39)

during a time interval T = [0, 6.7], where u(t) ∈ R. As regards the control

objective (5.19), the same function as in Example 5.1 is used. Given the upper

bound N = 2 on the maximum number of switches along a hybrid trajectory,

according to the transition automaton in Figure 5.3 representing the proposed

geometric structure (5.35)–(5.38), the relevant languages are given by Lm(0, A) =

∅, Lm(1, A) = ∅, and Lm(2, A) = {e12e23}. Consequently, the only feasible discrete

control input is w = e12e23 resulting in a significantly constrained infimization

(5.25).

The numerical solution is obtained by discretizing the time interval [0, T ] into

67 equally spaced temporal steps and the switching manifolds m(1,2) and m(2,3)

into 40 equally spaced spatial steps over the interval x1 ∈ [−1.5, 2.5]. The Hybrid

Bellman recursion, Theorem 5.1, yield to the optimal hybrid execution depicted

in Figure 5.8 (solid, blue line) with the associated cost

W 2(ξ0, q1, ξT , q3, T ) ≈ 0.039. (5.40)

80



−1 −0.5 0 0.5 1 1.5 2 2.5
−8

−6

−4

−2

0

2

x
1

x 2

D
1

D
2

D
3

ξ
0

ξ
T

Figure 5.8: Optimal Curve (x∗1(·), x∗2(·)) Corresponding To Example 5.2

The dashed and dotted lines in Figure 5.8 present the switching manifolds m(1,2)

and m(2,3), respectively, and the circles display the switching points. In addition,

in Figure 5.9, the optimal input u∗(·) and the optimal states x∗1(·), x∗2(·) are plot-

ted over the time interval T = [0, 6.7]. Here, the dashed gray line represents

the discrete state q∗(·), where the upper level corresponds to the value q3, the

intermediate stage to q2, and the lower level to q1. 2
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Figure 5.9: Optimal Trajectories Corresponding To Example 5.2
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CHAPTER VI

GENERALIZATIONS AND EXTENSIONS

After having shown the core result of this work, the Hybrid Bellman Equation

for multimodal systems, which solves, in particular, the point-to-point problem

associated with a regional dynamics system, this chapter places special emphasis

on the universal validity of the derived automaton-based Dynamic Programming

recursion, which applies, in fact, to a much huger class of hybrid optimal con-

trol problems characterized by more general dynamic regimes, differently defined

geometric structures, and special cost functions.

The previously presented Dynamic Programming approach, cf. Section 5.5

and Section 5.6, allows interesting generalizations and extensions in the formula-

tion of the hybrid optimal control problem. In the following, three different as-

pects, concerning the expansion of the precedent results, are highlighted: First, in

Section 6.1, contrary to the time-invariant approach in Chapter 4 and Chapter 5,

dynamic regimes fi(x, u, t), i ∈ I explicitly depending on the time t are taken into

account and their influence on the recursion equation (5.25) is studied. Central

to Section 6.2 are considerations on further possibilities of defining an appropriate

control objective, i.e., another cost function to be minimized. Finally, Section 6.3

shows that the assumptions on the geometric structure given in Section 5.2 can be

relaxed and even completely different geometries can be approached with a similar

Bellman recursion scheme.

Of course, the extensions mentioned in the following sections can be combined

at any time. Moreover, the subsequent listed generalizations do not claim to be

exhaustive at all; faced with any optimal control problem, it is always recommend-

able to check, if the idea of Dynamic Programming, illustrated in Section 2.2, leads

to a computable, efficient solution algorithm.
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6.1 The System Dynamics

This section focuses on the continuous state’s behavior within a region Di, i ∈ I,

which is determined by the vector field fi, and explains an obvious way of extending

the previous considerations of Chapter 4 and Chapter 5.

6.1.1 Time-Variant Regional Dynamics

An easy to accomplish generalization in the multimodal framework, introduced

in Section 5.2, is the treatment of time-variant dynamics, which yields solely to

time-dependent cost functions in the recursion relation (5.25).

At first, it is worth mentioning that, in fact, the bimodal and multimodal

(point-to-point) problem formulations, Problem 4.1 and Problem 5.1, respectively,

already model the dynamics associated with each individual region Di, i ∈ I

in a very general way. Compared to some former approaches solving these and

other hybrid optimal control problems only in the case of linear dynamical behav-

ior, see e.g. [10], in Chapter 4 and Chapter 5 nonlinear dynamic regimes ẋ(t) =

fi(x(t), u(t)) are assumed. However, the Dynamic Programming approach solving

the multimodal point-to-point problem even applies for the more general time-

variant nonlinear regional dynamics

ẋ(t) = fi(x(t), u(t), t) if x(t) ∈ Di, i ∈ I. (6.1)

In this case, the previously defined costs c(ξ1, qi1 , ξ2, qi2 , ∆), cf. Definition 4.1,

and V M(ξ1, qi1 , ξ2, qi2 , τ), cf. Definition 4.2, representing important concepts in

the derivation of the Hybrid Bellman Equation (5.25), are also time-dependent;

that is, they depend not only on the traveling interval ∆ or τ , but on the exact start

time t1, where x(t1) = ξ1, and the final time, where x(t2) = ξ2. Consequently, the

function c(ξ1, qi1 , t1, ξ2, qi2 , t2) is introduced as the infimum of the costs associated

with driving the system from x(t1) = ξ1 ∈ Di1 ∪ ∂Di1 to x(t2) = ξ2 ∈ Di1 ∪

∂Di1 , i1 ∈ I without leavingDi1∪∂Di1 and without a switching taking place. And

analogously, V M(ξ1, qi1 , t1, ξ2, qi2 , t2) denotes the infimum of the costs of going

from x(t1) = ξ1 ∈ X to x2(t2) = ξ2 ∈ X using exactly M switches and starting in
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region Di1 . With these “extended” definitions, the corresponding Hybrid Bellman

Equation solving the point-to-point problem in the time-variant regional dynamics

framework (6.1) is immediately given by (5.25)

V K(ξ1, qi1 , t1, ξ2, qi2 , t2)

= inf
t∈(t1,t2)

inf
ξ∈m(i1,j)

inf
j∈I

{
c(ξ1, qi1 , t1, ξ, qj , t) + V K−1(ξ, qj, t, ξ2, qi2 , t2)

}

(6.2)

with the additional global language constraints (5.26) and (5.27), cf. Theorem 5.1.

Moreover, because of the system’s time variance, the initial and final condition of

the corresponding point-to-point problem, cf. (5.23), are in general x(t0) = ξ0 and

x(tf ) = ξf , respectively. The above straight forward conclusion results in a huger

computational effort while preparing the costs c(ξ1, qi1 , t1, ξ2, qi2 , t2), which have

to be calculated for all (t1, t2) ∈ T × T with T = [t0, tf ]; nevertheless, the effort

associated with the recursion (6.2) itself is the same as in the time-invariant case.

The time variance can also be introduced in the cost function (5.19) or, more

precisely, in `(x(t), u(t)). This and other variations concerning the control objec-

tive of the hybrid point-to-point problem are mentioned in the subsequent section.

6.2 The Cost Function

The actual hybrid optimal solution x∗(·) is a direct consequence of the way the

control objective of the hybrid optimal control problem is defined; in the following,

four different modifications of the original cost function (5.19) are briefly presented.

6.2.1 Transition Costs

An additional feature, whose influence on the hybrid optimal solution represents

certainly an interesting issue to investigate, is the introduction of transition costs

ce(x, t), e ∈ E assigning a weight to each switching point
(
tks , ξ

k
s

)
along a hybrid
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trajectory. As a consequence, the control objective in the multimodal point-to-

point problem, Problem 5.1, is read as

PN : inf
u(·)∈U ,

S(τ ,w)

{∫ T

0

`(x(t), u(t)) dt+
M∑

k=0

ceikjk

(
ξk
s , t

k
s

)
}

(6.3)

and the Hybrid Bellman Equation (5.25) shows the following slight change:

V K(ξ1, qi1 , ξ2, qi2 , τ) = inf
t∈(0,τ)

inf
ξ∈m(i1,j)

{
inf
j∈I

{
c(ξ1, qi1 , ξ, qj, t) + cei1j

(ξ, t) + V K−1(ξ, qj, ξ2, qi2 , τ − t)
}}

, (6.4)

where again the global accessibility relations, (5.26) and (5.27), constrain the

infimization.

Remarkably, this notable conceptual change, allowing to give preference to

certain transitions and, in fact, gain influence on the number of switches along

the hybrid optimal trajectory, does not change the algorithmic and computational

procedure by any means.

6.2.2 Time Optimality

A standard optimal control objective is the time-optimal performance of a system’s

dynamic behavior. In the context of the considered multimodal point-to-point

problem, cf. Section 3.1, that means, finding the fastest way of going from a given

initial state ξ0 to a fixed final state ξf or, more precisely,

PN : inf inf
u(·)∈U ,

S(τ ,w)

∫ T

0

1 dt = inf
u(·)∈U ,

S(τ,w)

T (6.5)

subjected to equations (5.20)–(5.23) as given in Problem 5.1.

Important to emphasize is that, in contrast to the precedent bimodal and

multimodal problem formulations, Problem 4.1 and Problem 5.1, respectively, the

time horizon T ∈ [0,∞) is not specified in advance, but is, in fact, the result, i.e.

the value function, of the hybrid optimal control problem (6.5). Nevertheless, the

previous hierarchic approach provides an ideal basis for dealing with this time-

optimal point-to-point problem. An appropriate definition of the cost c(·, ·, ·, ·, ·)
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and the cost-to-go function V ·(·, ·, ·, ·, ·), cf. Section 4.4, which are, indeed, time

values in this special case, set the stage for the time-optimal Hybrid Bellman

Equation. Let c(ξ1, qi1 , ξ2, qi2) denote the infimum of the traveling times needed

to drive the system’s continuous state from ξ1 ∈ Di1 ∪ ∂Di1 to ξ2 ∈ Di1 ∪

∂Di1 , i1 ∈ I without leaving Di1 ∪∂Di1 and without a switching taking place and

V M(ξ1, qi1 , ξ2, qi2) the infimum of the traveling times needed to drive the system’s

continuous state from ξ1 ∈ X to ξ2 ∈ X using exactly M switches and starting in

region Di1 . Then, the time-optimal recursion relation follows immediately from

the Hybrid Bellman Equation in Section 5.6:

V K(ξ1, qi1 , ξ2, qi2)

= inf
ξ∈m(i1,j)

inf
j∈I

{
c(ξ1, qi1 , ξ, qj) + V K−1(ξ, qj, ξ2, qi2)

}
(6.6)

with the global constraints given by equations (5.26) and (5.27). In this case,

there is no need for an infimization over the time t ∈ (0, τ) as previously observed

in the original bimodal and multimodal results, Theorem 4.1 and Theorem 5.1,

respectively. However, apart from that, the parallel structure of both approaches

is evident.

6.2.3 Time-Variant Cost Function

The introduction of a time-variant cost function in the multimodal point-to-point

problem, Problem 5.1, yielding to the control objective

PN : inf
u(·)∈U ,

S(τ ,w)

∫ tf

t0

`(x(t), u(t), t) dt, (6.7)

where the time interval T = [t0, tf ] under consideration is specified a priori, re-

sults in exactly the same generalized recurrence relation (6.2) as the considera-

tions on time-variant dynamics in Section 6.1.1. Because of the problems’ inher-

ent time variance, in both cases, the cost functions c(ξ1, qi1 , t1, ξ2, qi2 , t2) and

V M(ξ1, qi1 , t1, ξ2, qi2 , t2), which are fundamental to the Dynamic Programming

approach, depend on the exact start and final time, t1 and t2, respectively. Be-

sides, all further conclusions stated in Section 6.1.1 apply in an identical way also
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to the above generalized assumption (6.7).

6.2.4 Individual Regional Costs

Besides Section 6.2.1, another exciting extension of the original approach, which

provides an additional opportunity of characterizing the hybrid point-to-point

problem and does not have any effect on the computational effort associated with

accomplishing the recursive algorithm, represents the assumption of individual

cost functions `i(x(t), u(t)), i ∈ I for each domain Di. As a result, the new per-

formance goal in the regional dynamics optimal control problem, cf. Problem 5.1,

is

PN : inf
u(·)∈U ,

S(τ ,w)

{
M∑

k=0

∫ tks

tk+1
s

`ik+1
(x(t), u(t)) dt

}
, (6.8)

while satisfying the constraints (5.20)–(5.23). In fact, recalling the hierarchic

structure of the multimodal point-to-point problem introduced in Section 5.1, this

new objective (6.8) influences only the lowest level of control, where in each case

the appropriate function `i1(x(t), u(t)) must be chosen in the calculation of the

costs c(ξ1, qi1 , ξ2, qi2 , ∆), cf. Definition 4.1. he higher levels of abstraction, how-

ever, remain completely unaffected.

This slight change in the definition of the control objective as given by (6.8)

leads to remarkable consequences regarding the definition of the system’s regional

dynamics or, more precisely, the dimension of the input u(·) and the associated set

of admissible values u(t) ∈, t ∈ [0, T ] as specified in Assumption 4.1. Already in

the original multimodal problem statement, Problem 5.1, different constraint sets

for each domain Di, i ∈ I can be considered by replacing the input constraint in

(5.19) with

u(t) ∈ Uik+1
, t ∈

[
tks , t

k+1
s

]
. (6.9)

However, under the assumption of individual cost functions `i(x(t), u(t)), i ∈ I

in each contributing domain Di, it is even possible to vary the dimension of the
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input u(t) ∈ Ui ⊆ R
ni , ni ∈ N depending on the region Di the continuous state

x(t) is evolving in.

6.3 The Geometric Structure

The state space X and its partitioning into various domains Di, which are associ-

ated with different dynamical systems ẋ = fi(x, u), together with the given start-

ing point ξ0 and the final state ξT set the geometric framework of the considered

multimodal point-to-point problem, Problem 5.1. A concise and neat model of this

complex structure is given by the transition automaton introduced in Section 5.4

highlighting, in particular, the connections between the individual regions.

Subsequently, based on the automaton representation, different ways of relax-

ing the above listed characteristics are indicated. Especially, the main assumption

and restriction in the definition of a regional dynamics system, the direct connec-

tion between the dynamic behavior ẋ = fi(x, u) and the corresponding region Di,

cf. (5.5), that is, the dependence of the discrete state q on the continuous state

x is abolished in the considerations of Section 6.3.3 and Section 6.3.4. Indeed,

the following sections only present a rough sketch of the ideas using the previous

hierarchic solution scheme to solve the generalized problem statements. Future

work will include more detailed definitions, an appropriate literature overview,

examples for applications, and numerical investigations and results.

6.3.1 Free Final State

As indicated in Figure 6.1, this section considers a regional dynamics optimal con-

trol problem without terminal constraints; that means, the end point x(T ) = ξT ∈

Di, i ∈ I is not specified in advance, but represents, in fact, an additional opti-

mization parameter. As a consequence, every region Di, i ∈ I must be regarded

as a possible final domain DiT : x(T ) ∈ DiT and an appropriate transition au-

tomaton A, cf. equation (5.11), redefines the set of marked states Dm, previously

given by Dm = {iT | ξT ∈ DiT }, as Dm = I. Figure 6.1 shows the automaton cor-

responding to the four-regional example in Figure 5.5 for an unconstrained final
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Figure 6.1: Transition Automaton Corresponding To A Regional Dynamics Op-
timal Control Problem With Free Final State

state ξT .

Again, the hierarchical structure proposed in Chapter 5 serves as a valuable

basis for a fundamental understanding and successful solution of the considered

hybrid optimal control problem, where, once more, on the highest level of control,

the global accessibility relations, provided by the automaton’s marked language,

specify possible and allowed, see Remark 5.2, transition sequences between the

individual regions. This global knowledge is still an essential feature in the solu-

tion procedure, even though the final state is free, what leads solely to a slightly

changed meaning of the underlying languages. In fact, in this case, the marked

language is simply given by Lm(A) = L(A). Finally, the Dynamic Programming

approach to the free-final-state problem can be formulated in terms of the previ-

ous multimodal point-to-point solution presented in Theorem 5.1. In accordance

with the new problem statement, the notation V M(ξ1, qi1 , τ) is used to denote the

appropriate cost-to-go function, which is defined in analogy to Definition 4.2 as

the infimum of the costs of originating at the point ξ1 ∈ X and evolving in a given

regional dynamics system during a time interval [0, τ ] using exactly M switches

and starting out in region Di1 . Using this definition, the modified Hybrid Bellman
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Equation is given by

V K(ξ1, qi1 , τ)

= inf
t∈(0,τ)

inf
ξ∈m(i1,j)

inf
j∈I

{
c(ξ1, qi1 , ξ, qj, t) + V K−1(ξ, qj, τ − t)

}
(6.10)

where the global constraints to be satisfied, (5.26) and (5.27), take the above

mentioned changes in the definition of the automaton into account. Furthermore,

the recursion’s initial condition, cf. (5.28), involves additional minimizations

V 0(ξ1, qi1 , τ) = min
i2∈I

inf
ξ2∈Di2

{
c(ξ1, qi1 , ξ2, qi2 , τ)

}
. (6.11)

Indeed, from a computational point of view, only the first step in the recursive

backwards procedure specified by (6.11) differs from the multimodal algorithm.

6.3.2 Segmentation of Switching Manifolds

An exciting generalization, especially with regard to the multi-agent example in

Chapter 7, is the interpretation of a switching manifold m(i,j), i, j ∈ I as a union

of constituent subcomponents m̃k
(i,j):

m(i,j) =

βij⋃

k=1

m̃k
(i,j), i, j ∈ I. (6.12)

Treating each subcomponent m̃k
(i,j), k ∈ {1, . . . , βij} individually in the hybrid

optimal control approach to the multimodal point-to-point problem, that is, intro-

ducing, in particular, separate transition labels for every contributing component

m̃k
(i,j), provides the opportunity to force the continuous state to pass through a

certain boundary segment and not to cross other parts of the switching manifold.

In fact, in view of a multi-agent problem, these considerations allow to charac-

terize sections along a boundary, which the agents are unable or not permitted

to pass. Of course, the multi-agent example is only one example out of a huge

number of interesting applications.

In order to define this idea more precisely, the following changes are proposed

in the definition of the transition automaton (5.11): In one-to-one correspondence
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Figure 6.2: Bimodal Example with Segmented Switching Manifolds
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Figure 6.3: Transition Automaton Corresponding to the Geometric Framework
in Figure 6.2

with the set of switching manifold subcomponents

M =
{
m̃

αij

(i,j)

∣∣∣ i, j ∈ I, αij ∈ {1, . . . , βij}
}
, (6.13)

the set of events E is extended to

E =
{
e

αij

(i,j)

∣∣∣ i, j ∈ I, αij ∈ {1, . . . , βij}
}
. (6.14)

Moreover, on this larger set of events E , the transition function g is defined as

g(i, e
αij

ij ) = j if the event e
αij

(i,j) ∈ E is allowed and m̃
αij

(i,j) 6= ∅. (6.15)

In all other cases, the function g is not defined.

Figure 6.2 shows a bimodal example, where the switching manifold m(1,2) is di-

vided into three subcomponents, m̃1
(1,2), m̃

2
(1,2), and m̃3

(1,2). Moreover, for the sake of
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simplicity and clearness, the illustration assumes m̃k
(1,2) = m̃k

(2,1) = m̃k
(1,1) = m̃k

(2,2)

for k = 1, 2, 3. The part m̃4
(i,i), i = 1, 2 is given by m̃4

(i,i) = m(i,i)\
{⋃3

k=1 m̃
k
(i,i)

}
.

The suggested automaton, illustrated in Figure 6.3, controls the continuous state’s

execution in the way that a transition between the regions is only allowed on the

segments m̃1
(1,2) = m̃1

(2,1) and m̃3
(1,2) = m̃3

(2,1). In Chapter 7, where a a multi-agent

problem is considered, part m̃2
(1,2) may represent a wall or another object, which

makes a crossing impossible for the considered group of agents. Note that the

“bounce back” behavior, depicted by self-loops in the automaton representation,

Figure 6.3, is possible at every point on m(1,2).

In fact, the presented extension to the original multimodal problem definition,

Problem 5.1, provides an additional feature supporting a more appropriate and

elaborated way of modeling real system as previously indicated by the consid-

eration of Figure 6.2 and Figure 6.3 as a geometric framework for a multi-agent

application. Moreover, this powerful modeling tool only causes very small modi-

fications in the formulation of the multimodal point-to-point problem (MPTPP),

Problem 5.1, and in the recursive solution procedure, Theorem 5.1. In the follow-

ing, based on the definitions (6.12)–(6.15), both, Problem 5.1 and Theorem 5.1,

are restated for the case of segmented boundaries:

Problem 6.1 (The MPTPP With Segmented Switching Manifolds).

PN : inf
u(·)∈U ,

S(τ ,w)

∫ T

0

`(x(t), u(t)) dt (6.16)

subject to, for 0 ≤M ≤ N ,

• the geometric structure

w = eα1
i1j1

eα2
i2j2

. . . eαM

iM jM
∈ Lm(M,A), (6.17)

• the discrete dynamics

qjk
= Γ

(
qik , e

αk

ikjk

)
(6.18)

at a switching time tks , where 1 ≤ k ≤ M , yielding to the discrete-state

dynamics q(t) = qik , t ∈
[
tk−1
s , tks

)
with 0 < k ≤M + 1 and iM+1 = jM ,
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• the continuous-state dynamics

ẋik(t) = fik(xik(t), u(t)), t ∈
[
tk−1
s , tks

)
, (6.19)

where 0 < k ≤M + 1 and iM+1 = jM ,

• and the corresponding initial and final conditions

x(0) = xi1(t
0
s) = ξ0 ∈ Di0 ,

xik+1
(tks) = lim

t→tks

xik(t) = ξk
s ∈ m̃αk

(ik,jk),

x(T ) = xiM+1
(tM+1

s ) = ξT ∈ DiT ,

(6.20)

if 0 < k ≤M .

2

With a generalized version of the function end : E ∗\ {ε} → I, cf. equation

(5.24), defined on the larger set of events E , given by (6.14), as

end(s) = end(eα1
i1j1

eα2
i2j2

. . . eαk

ikjk
) = jk, (6.21)

the Hybrid Bellman Equation for multimodal systems with segmented switching

manifolds follows immediately.

Theorem 6.1 (The Hybrid Bellman Approach To Problem 6.1). Assume

that all hypotheses for the existence and uniqueness of regional dynamics hybrid

systems hold and that all infima exist in the definition of the hybrid value functions

V ·(·, ·, ·, ·, ·), for all admissible argument values, whenever the expressions are fi-

nite. Then, with the transition automaton A, given by equation (5.11) with the

specifications (6.14) and (6.15), the recurrence relation corresponding to the mul-

timodal point-to-point problem with segmented switching manifolds, Problem 6.1,

is expressed by

V K(ξ1, qi1 , ξ2, qi2 , τ)

= inf
t∈ (0,τ)

inf
ξ ∈mα

(i1,j)

inf
j∈I

{
c(ξ1, qi1 , ξ, qj, t) + V K−1(ξ, qj, ξ2, qi2 , τ − t)

}

(6.22)
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such that

e = eα
i1j , w ∈ FK−1(M,A) , (6.23)

end(w) = i2 , ew ∈ FK(M,A) . (6.24)

This relation holds for 0 < K ≤M . The initial condition of the recursive scheme

is given by

V 0(ξ1, qi1 , ξ2, qi2 , τ) = c(ξ1, qi1 , ξ2, qi2 , τ). (6.25)

2

The computational procedure solving the modified point-to-point problem de-

fined by Problem 6.1 follows exactly the same steps as the original multimodal ap-

proach, see Section 5.7 for a detailed description. The segmentation may solely in-

crease the number of words contained in the language sets Lm(M,A) and FK(M,A).

However, generally speaking, compared to the previously considered multimodal

approach of Chapter 5, the effort needed to accomplish the recursive algorithm

(6.22) does not change significantly. In particular, it is important to highlight

that a segmentation of the boundaries does not affect the size of discrete set of

points resulting from the computationally necessary boundary discretization.

6.3.3 State-Independent Discrete Modes

This section goes beyond the actual subject of the presented work, indicated by the

thesis’ title “Optimal Control of Hybrid Systems with Regional Dynamics”, in that

the assumption of regional dynamics, that is, the strong connection between the

dynamic behavior ẋ = fi(x, u) and the corresponding region Di, cf. equation (5.5),

is abolished. However, a brief investigation of this generalized setup highlights,

once again, the general validity of the proposed hierarchic Dynamic Programming

approach.
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First and foremost, the question, which dynamic regime fk, k ∈ I defines

the continuous state’s execution at a time instant t, is no longer answered by the

region Dk the continuous state x(t) is currently evolving in, but, in fact, depends

solely on the discrete state value q(t) = qk; i.e., the notation xk(t), introduced in

Section 4.2, is used in the following way

ẋk(t) = fk(xk(t), u(t)) if q(t) = qk, k ∈ I, (6.26)

where I represent a given set of discrete modes. Obviously, the main difference

to the previous considerations in Chapter 4 and Chapter 5 is the spatial indepen-

dence of the discrete state q : q 6= q(x). Instead of defining regions and switching

boundaries, the (not necessarily connected) sets Mij, i, j ∈ I are introduced con-

taining the points of the state space X which allow a transition from mode i to

mode j. As illustrated in Figure 6.4, given a continuous starting state ξ0 and a

discrete initial mode i0, the continuous state’s evolution starts at ξ0 under the

dynamics fi0 and a mode transition to another dynamic regime fj, j ∈ I may

happen, if the state enters a set Mi0j, j ∈ I. After a fixed time T , the tra-

jectory is forced to reach the a priori specified final point ξT in mode iT . Even

though the transition behavior of the continuous state is not restricted by an un-

derlying regional framework, a transition automaton A is introduced as a discrete

representation of the possible mode transitions eij. A transition eij is defined if

Mij 6= ∅, i, j ∈ I. Moreover, on this highest level of abstraction additional,

restrictive switching rules, cf. Remark 5.2, are taken into account. Figure 6.5

shows one potential, highly limiting automaton representation corresponding to

the exemplary illustration in Figure 6.4.

In fact, some little changes in the definitions of Chapter 5 suffice to apply

the hierarchic hybrid Bellman approach, Theorem 5.1, equally to the point-to-

point problem associated with the above introduced hybrid system with state-

independent discrete modes:

• The fundamental concepts, the hybrid Dynamic Programming algorithm,

Theorem 5.1, is based on, the cost functions c(·, ·, ·, ·, ·) and V ·(·, ·, ·, ·, ·),
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Figure 6.5: Proposed Transition Automaton in the Example of Figure 6.2
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are redefined in a region-independent way. Here, the function c(ξ1, qi1 , ξ2, qi2

denotes the infimum of the costs associated with driving the system from ξ1 ∈

X under the dynamics ẋ = fi(x, u) to ξ2 ∈ X over a time horizon ∆ with-

out a switching taking place. The cost-to-go function V M(ξ1, qi1 , ξ2, qi2 , τ)

provides the infimum of the costs of going from ξ1 ∈ X to ξ2 ∈ X during

the time horizon τ using exactly M switches and starting in mode i1 with

dynamics ẋ = fi(x, u).

• The given initial and final point, ξ0 and ξT , respectively, are not restricted

to lie in a certain region as assumed in Problem 5.1 equation (5.23).

• In the automaton specifications (5.11), in the definition of the (controlled)

discrete dynamics, (5.8) and (5.9), and also in Problem 5.1 and Theorem 5.1,

the notation Mij replaces m(i,j).

Hence, the approach of Chapter 5 represents a valuable solution scheme even for

a completely different hybrid optimal control problem, which assumes the state

independence of the discrete modes i ∈ I. Finally, interesting to highlight is that

the above introduced hybrid system includes the case of a fully discretized state

space X , in which each discretization point can be assigned to several (or even to

all) sets Mij, i, j ∈ I. This hybrid framework represents a frequently considered

hybrid system model, see for example [63].

6.3.4 Controlled Switches

Continuing the previous considerations on hybrid systems with state-independent

discrete modes, this section proceeds on the assumption that the discrete control

sequence S (τ , w), cf. (5.10), with

w = ei1j1ei2j2 . . . eiM jM
and τ = (t1s, t

2
s, . . . , t

M
s ) (6.27)

is given in advance and, therefore, no longer an optimal control parameter in the

hybrid optimal control problem specified in Section 6.3.3. Consequently, an appro-

priate Hybrid Bellman Equation, cf. (5.25), which is based on the specifications
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of the precedent section, requires neither an infimization over the time t ∈ (0, τ),

nor an infimization over the set of discrete modes j ∈ I. With the redefined

costs c(·, ·, ·, ·, ·) and V ·(·, ·, ·, ·, ·), given in Section 6.3.3, the recursive relation

is simply stated as

V K(ξ1, qik , ξT , qiT , τ)

= inf
ξ∈m(ik,jk)

{
c
(
ξ1, qik , ξ, qjk

, τ−
(
T − tks

) )
+V K−1

(
ξ, qjk

, ξT , qiT , T−tks
)}

,

(6.28)

where τ > tks and 0 < K ≤ M . The final condition, x(T ) = ξT with q(T ) =

iT , as well as the given sequence of controlled switches with (6.27), isdirectly

incorporated in the Bellman equation (6.28), where the recursion starts with

V 0(ξ1, qiT , ξT , qiT , T − tMs ) = c(ξ1, qiT , ξT , qiT , T − tMs ). (6.29)

6.4 Conclusions

In brief, the hierarchic structure introduced in Chapter 5 to solve the multimodal

point-to-point problem establishes, in fact, an excellent basis for a successful ap-

proach to a huge variety of modified and generalized hybrid optimal control prob-

lems.

The three levels of abstraction, namely, the transition automaton offering

global accessibility relations on the highest level of control, the standard (non-

hybrid) state-constrained optimization problems c(·, ·, ·, ·, ·) solved on the lowest

level of control, and the recursive Dynamic Programming algorithm bringing both

results together and, finally, providing the hybrid optimal trajectory, lay the foun-

dation for all the different problem formulations in the previous sections. However,

what has to be adapted in some of the investigated generalizations, is the definition

of the conceptually important cost functions, c(·, ·, ·, ·, ·) and V ·(·, ·, ·, ·, ·), as

observed in Section 6.1.1, where time-variant system dynamics are introduced, in

Section 6.2.2, which deals with the time-optimal control objective, in Section 6.2.3,

which considers the time variance in the cost function, and in Section 6.3.3 and
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Section 6.3.4, where regional-independent discrete states are taken into account.

Moreover, other cases only require a redefinition of the transition automaton; see

for example the approach in Section 6.3.1 to the free-final-state problem and the

considerations on segmented boundaries in Section 6.3.2. Furthermore, the pre-

cise problem statements in Section 6.2.2 and Section 6.3.4 even allow a reduced

number of infimizations in the corresponding modified Hybrid Bellman Equation.

Finally, recalling the results of the previous sections, the most significant obser-

vation to be made is the general applicability of the proposed hierarchical Dynamic

Programming recursion, which, in fact, provides a characterization of global opti-

mality for a significantly larger class of hybrid optimal problems than the originally

considered multiregional point-to-point problems.

100



CHAPTER VII

LEADER-BASED MULTI-AGENT

COORDINATION

The powerful operation of the proposed hierarchic Dynamic Programming ap-

proach, established in Chapter 4 and Chapter 5, is proven by solving a hybrid

multi-agent problem, where the agents’ formation and, therefore, the overall sys-

tem dynamics switches depending on predefined regional decision criteria.

After the doubtlessly very abstract and theoretical considerations in the pre-

vious chapters, Chapter 3, 4, and 5, and an even further generalization of the

approach in Chapter 6, which represents, of course, a remarkably advantageous

characteristic of the derived solution scheme, this chapter aims at actually apply-

ing the presented algorithms to a real-world example. Considered in the following

is a heterogenous multi-agent system represented by a collection of leaders which

dictate the motion of the followers. The hybridity in this example results from a

regional-dependent change in the interconnections between the individual agents

and their assigned roles as leaders and followers. Focusing on both, the numerical

practicability of the recursive algorithm (5.25) and the behavioral characteristics of

different multi-agent formations subjected to an optimal control policy, numerous

demonstrative figures are shown illustrating the optimal point-to-point movement

of each individual agent.

Starting, in Section 7.1, with a brief introduction to multi-agent systems,

Section 7.2 continues with describing the networked system considered in this

chapter and gives an application-driven motivation for the subsequently addressed

hybrid optimal control problem. In Section 7.3, against the background of a graph-

based representation of the multi-agent system, the governing equations of the

agents’ dynamic behavior are stated. Finally, Section 7.4 presents the numerical
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results for various different multi-agent configurations and in Section 7.5 this chap-

ter is concluded by commenting on some interesting properties of the considered

multi-agent dynamics.

7.1 A Brief Introduction to Multi-Agent Sys-

tems

This section gives a brief overview of multi-agent systems, related work and ap-

plications.

Defining an agent as an autonomous entity equipped with a certain degree of

sensing, processing, communication, and maneuvering capabilities, a multi-agent

system is simply a collection of such agents, which have the ability to interact with

their environment and also with other agents in the system. As a consequence,

the dynamical behavior of such a multi-agent system depends not only on the

dynamics of each individual agent, but also on the nature of their connection. A

single link or connection between two elements may represent an information flow

or a certain local interaction. What makes the multi-agent problem challenging is

that the agents are subjected to limitations on the available information; that is,

not every agent is directly connected to every other agent in the network.

In order to encode these limitations, graphs have been proved to be useful

tools modeling the underlying communication topology. Among several important

properties of such graph models, the graph Laplacian stands out, cf. [31,50], which

is used in Section 7.3 to define the dynamics of the considered multi-agent system.

The numerous studies on networked systems [2,8,24,25,33–35,41,45–49,56,57,

65,67] are driven by a wide range of different applications including microsatellite

clusters, autonomous underwater vehicles (AUVs), automated highway systems

(AHSs), cooperative robot reconnaissance and manipulation, collaborative sensor

arrays, distributed sensor networks (DSNs), terrestrial planet finder missions, for-

mation flight control and the control of groups of unmanned vehicles. References

on the mentioned topics are found in [25,66].
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(a) The Leaderless Approach (b) The Leader-Follower Approach

Figure 7.1: Examples for Networked Systems

7.2 Problem Statement, Motivation, and Appli-

cations

The optimal control problem under consideration, which is motivated by various

practical applications, e.g., in the field of mobile robot navigation and distributed

sensor networks, can be characterized as a hybrid point-to-point transfer problem,

cf. Section 3.1; that is, the ultimate goal is to move a group of interconnected

agents with regional changing formation optimally from a given start configuration

to a fixed final destination.

Generally speaking, two distinctively different approaches have emerged in the

rapidly expanding field of multi-agent systems and control. One field of investiga-

tion are homogeneous networks composed of numerous identical agents as shown

in Figure 7.1(a). However, if any distinct agents are equipped with superior capa-

bilities and allowed to take on a “leader” role, depicted by a star in Figure 7.1(b),

the situation is called a heterogeneous formation. The latter case is considered in

this chapter, where a collection of leaders dictate the motion of the followers. In

particular, the followers’ dynamics are governed by consensus-like local interaction

rules, while the leaders are unconstrained in their movements. In fact, the leaders’

trajectories are taken as the control input of the system.

Loosely speaking, one can think of the problem under investigation as the

autonomous sheep-herding problem; in other words, the goal is to answer the
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(1)

(2)

(3)

Figure 7.2: The Hybrid Point-To-Point Problem in the Case of a Multi-Agent
System

question, “How should the herding dogs move in order to maneuver the herd in an

desired optimal way to a given final destination?” This problem was previously

considered in [35] and [8]. However, the novelty of the subsequent approach lies in

the fact, that the agents’ formation, i.e., the connections between the individual

agents and also their assigned roles as leaders and followers, changes depending

on the location of the agents. This switching behavior is shown in Figure 7.2,

where a group of agents is moved from the start configuration (1) to the final

arrangement (3) and a change in the formation of the network takes place as the

first leader arrives at the switching boundary, situation (2). The time horizon

for the entire motion from (1) to (3) is specified a priori and also an optimal

control objective is given in advance. In fact, as can be seen in Section 7.3, where,

finally, the equations governing the agents’ dynamic behavior are presented, the

illustrated multi-agent optimal control problem is simply a special case of the

hybrid point-to-point problem previously considered in Chapter 5.

Nevertheless, notable applications are associated with the proposed multi-agent

problem. As pointed out by [20], in the field of robotics, one can think of situations,
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where robots should spread out first when navigating and exploring (unknown)

free-space, while a more tight formation is to prefer when negotiating cluttered

environments. This behavior is indicated in Figure 7.2, where a line formation

is chosen as a reaction on the narrow path in the second region (on the right

side of the switching line). From another point of view, sensor coverage problems

may force the robots in some regions to stay closer together, where otherwise a

wide-spread formation is more effective for attaining the goal. This idea of using

different regional-dependent robot formations to get a better overall performance

has lately received considerable attention, especially, in the investigations on using

groups of mobile robots to tackle more advanced problems such as search-and-

rescue and search-and-destroy tasks.

7.3 The Agents’ Dynamic Behavior

A linear dynamic system models the proposed leader-follower behavior, where the

leaders’ positions are taken to be the system inputs and the followers’ dynamics

are given by decentralized averaging rules, i.e., their dynamics depend only on the

relative displacements between the interacting agents.

Consider a group of NA robots, whose positions xi = (xi,1 xi,2 . . . xi,n)′ , i ∈

{1, 2, . . . , NA} take on values in R
n. Note that the definition of the variable xk

differs here from the one in Chapter 4 and Chapter 5. Moreover, it is assumed

that the agent’s dynamics in the different dimensions are decoupled. Hence,

each dimension can be considered independently, and it is sufficient to analyze

the performance along a single dimension. In other words, let xi,k ∈ R, i ∈

{1, 2, . . . , NA}, be the position of the ith agent in dimension k, and let ξk =

(x1,k x2,k . . . xNA,k)
′ ∈ R

NA be the aggregated state vector of the group of agents

in direction k ∈ {1, 2, . . . , n}. For such a system, a widely adopted distributed

control strategy is the so-called consensus equation, cf. [8],

ẋi,k =
∑

j∈N (i)

(xj,k − xi,k) (7.1)
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with i ∈ {1, 2, . . . , NA} and k ∈ {1, 2, . . . , n}. The set N (i) denotes the neigh-

borhood of agent i and j ∈ N (i) encodes the fact that the information is allowed

to flow from agent j to agent i; that is, there is a connection or communica-

tion link between agent j and agent i. Consequently, equation (7.1) represents

a linear, time-invariant, decentralized control law, which explicitly represents the

underlying network topology and the limited information of an individual agent.

This nearest-neighbor rule (7.1) arises, especially, when dealing with agreement

or rendezvous problems, which are concerned with finding decentralized strategies

that achieve convergence to a common value. In fact, the followers’ dynamics

in the considered heterogeneous network is simply given by the above averaging

rule (7.1), whereas the leader positions are taken as system inputs. However, the

complete leader-follower dynamics are presented later in this section.

Throughout this chapter, the network topology is assumed to be static in each

region Di, i ∈ I of the state space X , i.e., staying in one region, N (i) does not

vary over time. In fact, the consensus equation (7.1) has been thoroughly studied

for static as well as dynamic,i.e., time varying networks. A representative sample

of some of the highlights in this area of research can be found in [19,25,33,40,41,

45,46,56,65].

Graph theory can provide a variety of tools for analyzing such control strategies

[29]. In the following, the communication topology is modeled as a graph G =

(V,E), where the set of nodes V = {v1, . . . , vNA
} correspond to the different

agents and the set of edges E ⊂ V × V to available inter-agent communication

links. Note that (vi, vj) = (vj, vi) ∈ E, if and only if a communication link exists

between agents i and j. Associated with the graph G are two distinctive matrix

representations: the adjacency matrix A(G) defined as

A(G) = [aij] =





1 if (vi, vj) ∈ E(G),

0 otherwise
(7.2)
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Figure 7.3: Illustration of the Vertex Degrees di for a Given Graph G

and the degree matrix D(G) given by

D(G) = [dij] =





di if i = j,

0 otherwise,
(7.3)

where di denotes the degree of a graph vertex vi ∈ V , i.e., the number of graph

edges which touch vi. Figure 7.3 illustrates the vertex degrees di corresponding to

the vertices vi ∈ V of the graph G = (V,E).

Now, in order to relate the graph representation G of the underlying network

topology with the consensus equation (7.1), the preliminary definitions, (7.2) and

(7.3), are used to introduce a well-known and well-studied graph-theoretic concept,

the graph Laplacian L(G), as

L(G) = D(G) − A(G). (7.4)

A number of interesting and outstanding properties are related with the matrix

L(G), which are discussed in greater detail in [25,29,36] and the references herein.

Finally, using the definition of the graph Laplacian L(G), equation (7.4), and the

precise description of the neighborhood set

N (i) = {j | (vi, vj) ∈ E(G)} , (7.5)

the decentralized control law in (7.1) can be written as

ξ̇k = −L(G) ξk, (7.6)
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Table 7.1: Three Different Network Topologies and Their Corresponding Graph
Laplacians

1 2 3 4 L| =




1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1




1

2

3

4

L4 =




2 −1 −1 0
−1 3 −1 −1
−1 −1 2 0
0 −1 0 1




1

2

3

4

Lλ =




1 0 −1 0
0 1 −1 0
−1 −1 3 −1
0 0 −1 1




where k ∈ {1, 2, . . . , n}. Note that, under the dynamics (7.6) and with the

assumption of a connected graph G, all agents approach asymptotically the same

point independent of the given initial positions. For a detailed proof refer to [34]

or [41]. In Table 7.1, three different graphs, namely, a line, triangle, and star

formation, are depicted and their corresponding graph Laplacians, L|, L4, and

Lλ, are given. These network structures are chosen later, in the examples of

Section 7.4, as underlying communication topologies of the considered multi-agent

systems.

As indicated at the beginning of this section, the dynamics of the considered

heterogeneous multi-agent system are composed of two distinctive behaviors: The

follower agents move autonomously based on local, consensus-like interaction rules

and their governing equations are precisely given by (7.6), i.e., for a follower agent

f ∈ {1, 2, . . . , NA} the dynamics depend only on the positions of the other agents
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in the system

ẋf,k =
∑

j∈N (f)

(xj,k − xf,k), k ∈ {1, 2, . . . , n} . (7.7)

In contrast to the followers’ dynamics, the leaders’ velocities are assumed to be

directly controllable, i.e., the dynamics of a leader agent l ∈ {1, 2, . . . , NA} have

the form

ẋl,k = ulk, ulk ∈ R, k ∈ {1, 2, . . . , n} . (7.8)

Important to note is that the equations (7.7) and (7.8) contain the complete infor-

mation on the dynamic behavior of the considered multi-agent system. However,

in order to solve, in Section 7.4, the associated hybrid point-to-point problem, a

more compact notation is preferable. In fact, after the definition of several new

variables, the overall multi-agent dynamics can be written in the standard form

ξ̇ = Aξ +Bu.

First of all, a leader vector κ = (κ1, κ2, . . . , κNA
)′ ∈ R

NA is introduced as a

formal way of specifying which agent i is assigned with a leader role, i.e.,

κi =





1 if the ith agent is a leader,

0 if the ith agent is a follower,
(7.9)

where i ∈ {1, 2, . . . , NA}. The total number of leaders is denoted by |κ|. More-

over, based on equation (7.9) and the graph Laplacian L(G) = [lij] ∈ R
NA×NA , the

matrix Lκ(G) ∈ R
NA×NA is defined as

Lκ(G) = [`ij] =





lij if the κi = 1,

0 otherwise.
(7.10)

Finally, with the definition of the non-square matrix Bκ ∈ R
NA×|κ| as

Bκ = [bij] =





1 if the jth non-zero entry in κ is κi,

0 otherwise,
(7.11)

the linear dynamic behavior of the overall system is given by

ξ̇j =
(
− L (G) + Lκ (G)

)
ξj +Bκ uj (7.12)

= Aκ(G) ξj +Bκ uj, (7.13)
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where Aκ(G) ∈ R
NA×NA and uk ∈ R

|κ|. Note that equation (7.13) holds for

each direction j separately, pointing out, again, that the individual directions

j ∈ {1, 2, . . . , n} are completely decoupled. Nevertheless, in order to compute, in

Section 7.13, the solution to the ybrid point-to-pont transfer problem, a compact

mathematical representation of the overall multi-agent dynamics with the state

vector ξ = (ξ1 ξ2 . . . ξn)′ ∈ R
n·NA and the input u = (u1 u2 . . . un)′ ∈ R

n·|κ| is

preferred, which is uniquely given by equation (7.13) and can be written in the

standard form for linear dynamic systems

ξ̇ = A(G) ξ +B u, (7.14)

where A(G) = diag(Aκ(G)) ∈ R
(n·NA) and B = diag(Bκ) ∈ R

(n·NA)×(n·|κ|) are block

diagonal matrices.

With relation to the following section, where the hybrid point-to-point prob-

lem is solved for the presented multi-agent systems with dynamics (7.14), two

remarkable comments are made: First, the dimension of the input u depends on

the number of leaders in the network. Consequently, in a multiregional frame-

work, cf. Section 5.2, either the number of leaders must be the same in each

region or the cost function (5.19) must satisfy some additional constraints. A

different number of leaders in the different regions Di, i ∈ I is, for example,

possible, in the case of an input-independent cost `(x(t), u(t)) = `(x(t)) or in

the case of assigning individual cost functions `i(x(t), u(t)), i ∈ I to each region

Di as highlighted in Section 6.2.4. In addition, because of the linearity of over-

all multi-agent dynamics (7.14), the computational procedure, solving the hybrid

multi-agent point-to-point problem numerically, is exactly the same as in the pre-

vious examples of Section 2.3.2, Section 4.6, and Section 5.8. In particular, all

subsequent multi-agent examples are chosen in a way satisfying Assumption 5.1.
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7.4 An Optimal Control Approach

This section definitely represents one of the highlights in this work, in that it

presents numerical and graphical results, based on the hierarchical Dynamic Pro-

gramming approach presented in Section 5, for the application-driven multi-agent

hybrid point-to-point problem.

In the following, the dynamic behavior of a group of four agents, interacting

through different network topologies, is studied, where the individual robots “live”

in the two-dimensional space, i.e., xi ∈ R
2, i ∈ {1, 2, , 3, 4}. Furthermore, basi-

cally two different regional frameworks are taken into account: Section 7.4.1 starts

with solving the point-to-point problem in one region. This is done, especially, in

order to illustrate the influence of different network structures on the multi-agent

dynamic behavior subjected to an optimal control policy. Later, in Section 7.4.2,

these results are compared to the agents’ optimal trajectories in a bimodal ge-

ometric framework. In both sections, a time horizon T = 6 is assumed for the

transition between the initial and final configuration, ξ0 and ξT , respectively. The

cost function under consideration is given in the form

`(x(t), u(t)) = x′(t)Qx(t) + u′(t)Ru(t), (7.15)

where R = 2 I(2·|κ|)×(2·|κ|) in all examples and Q = I8×8 except for Example 7.2

and Example 7.6, where Q = 0 · I8×8. Note that the dynamics of a multi-agent

system is uniquely specified by the leader vector κ and the graph Laplacian L(G),

where the following examples study, in particular, the network structures depicted

in Table 7.1.

7.4.1 The Point-To-Point Problem in One Region

The main focus of this section is to illustrate, by solving the (non-hybrid) multi-

agent point-to-point problem in one region, how the variation of the boundary

conditions and the communication topology influences the dynamic behavior of the

multi-agent system under an optimal control policy. In particular, the topologies

presented in Table 7.1 are considered. As a result of the linear model for the
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agents’ dynamic behavior, the approach of Section 2.3.2 applies similarly to the

actual multi-agent problem and the computational procedure stays exactly the

same. In addition, especially noteworthy is that the following non-hybrid optimal

trajectories serve later, in Section 7.4.2, where the optimal multi-agent trajectories

are calculated in a bimodal framework, as interesting results to compare with.

Example 7.1. In this example, the multi-agent system (7.14) is driven from the

start configuration

ξ0 =
(
− 1 0 − 1.5 0.5 − 1.5 − 0.5 − 2 0.5

)′

(7.16)

and the final positions

ξT =
(
6 1 5 1 4 1 3 1

)′

. (7.17)

The leader role is assigned to agent 1 and 4, i.e.,

κ =
(
1 0 0 1

)′

. (7.18)

The agents’ optimal behavior is considered for two different network topologies,

the line formation with L| and the triangle formation with L4, cf. Table 7.1.

The comparison of both results, depicted for the line formation in Figure 7.4 and

Figure 7.5 and for the triangle formation in Figure 7.6 and Figure 7.7, shows the

influence of the network structure on the optimal trajectories and allows interesting

conclusions on the characteristics of the different formations. The distinguished

role of the leaders is expressed in Figure 7.4 and Figure 7.6 by a star marker,

whereas the followers are displayed by circles. The cost associated with the optimal

trajectories takes, in the case of the line formation, the value J ∗
| ≈ 226.01 and the

value J∗
4 ≈ 594.95 in the case of the triangle formation. 2

Similar to Example 7.1, the following example illustrates the group’s behavior in

a line formation, L(G) = L|, in comparison to the dynamics in a star formation,

L(G) = Lλ, cf. Table 7.1.
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Figure 7.4: Optimal Group Behavior Corresponding To Example 7.1; Line For-
mation L(G) = L|
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Figure 7.6: Optimal Group Behavior Corresponding To Example 7.1; Triangle
Formation L(G) = L4
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Example 7.2. Another set of boundary conditions,

ξ0 =
(
0.1 − 0.1 − 1 − 0.5 − 1 0 − 1.5 0.5

)′

(7.19)

and

ξT =
(
6 0 5.5 0 5 0 4.5 0

)′

, (7.20)

is considered in this example and, again, the multi-agent behavior for two different

communication topologies are compared, where three leaders

κ =
(
1 1 0 1

)′

(7.21)

are assumed. The optimal trajectories associated with the line formation, L(G) =

L|, are presented in Figure 7.8 and Figure 7.9, whereas the agents organized in a

star formation, L(G) = Lλ, show an optimal behavior as depicted in Figure 7.10

and Figure 7.11. The optimal cost for the considered situations is given by J ∗
| ≈

43.06 in the case of the line structure and J ∗
λ ≈ 37.86 in the case of the star network.

Consequently, for the previously specified cost function and the given initial and

final states, (7.19) and (7.20), the star formation is to prefer. Furthermore, an

interesting comparison can be made between the point-to-point solution for the line

network in Example 7.1, where the boundary conditions are given by (7.16) and

(7.17), and the optimal solution for the line formation presented in this example.

2

The above examples, representing the solution to the non-hybrid point-to-point

problem, are now compared with the optimal solution in a bimodal framework.

In particular, in the subsequent examples, Example 7.5 and Example 7.6, exactly

the same boundary conditions, ξ0 and ξT , are assumed as in Example 7.5 and

Example 7.6, respectively; however, the network topology changes depending on a

given switching rule and, of course, influences the optimal paths of the individual

agents.
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Figure 7.8: Optimal Group Behavior Corresponding To Example 7.2; Line For-
mation L(G) = L|
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119



−2 0 2 4 6
−1

−0.5

0

0.5

1

x
1

x 2

t = 0

−2 0 2 4 6
−1

−0.5

0

0.5

1

x
1

x 2

t = 1

−2 0 2 4 6
−1

−0.5

0

0.5

1

x
1

x 2

t = 2

−2 0 2 4 6
−1

−0.5

0

0.5

1

x
1

x 2

t = 3

−2 0 2 4 6
−1

−0.5

0

0.5

1

x
1

x 2

t = 4

−2 0 2 4 6
−1

−0.5

0

0.5

1

x
1

x 2

t = 5

−2 0 2 4 6
−1

−0.5

0

0.5

1

x
1

x 2

t = 5.5

−2 0 2 4 6
−1

−0.5

0

0.5

1

x
1

x 2

t = 6

Figure 7.10: Optimal Group Behavior Corresponding To Example 7.2; Star
Formation L(G) = Lλ
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7.4.2 The Bimodal Point-To-Point Problem

After the insightful examples in Section 7.4.1, illustrating the optimally controlled

behavior of the proposed leader-follower dynamics (7.14) under varying boundary

conditions and network topologies, this section, finally, investigates the influence of

a regional-dependent switch in the agents’ formation, caused either by a changed

role assignment or by a different interconnection structure. Compelling results

are obtained for both cases. Because of the linear multi-agent model (7.14), the

approach proposed in Section 4.5 and Section 4.6 solves also the following multi-

agent problems, where the examples are chosen in a way that Assumption 5.1 is

satisfied.

First, some common properties, which hold for all subsequent examples, are

briefly stated. Considered is a state space X , where X ⊆ R
8 in the case of four

agents xk ∈ R
2, k ∈ {1, 2, 3, 4}, which is divided into the two regions

D1 =
{
ξ |

(
1 0 0 0 0 0 0 0

)
ξ < 1

}
and (7.22)

D2 =
{
ξ |

(
1 0 0 0 0 0 0 0

)
ξ > 1

}
. (7.23)

Since a switching manifold of the form c′ ξ = d is a linear combination of all

states xk,i, i ∈ {1, 2} of every agents k ∈ {1, 2, 3, 4}, the interpretation and

illustration can be very difficult. Nevertheless, in the above case, a switch takes

simply place when the x1-component of agent 1 reaches the value 1. The transition

behavior of the regional dynamics system is determined by the automaton shown

in Figure 5.6. However, in all subsequent examples, the upper bound on the total

number of switches along a hybrid trajectory is given by N = 1. Furthermore,

the starting configuration lies always in region D1, i.e. ξ0 ∈ D1, and the final

destination satisfies ξT ∈ D2. The numerical solution is obtained by discretizing

the time interval [0, 6] into 6 equally spaced temporal steps and by discretizing

the switching manifold

m(1,2) :
(
1 0 0 0 0 0 0 0

)
ξ = 1 (7.24)
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into 2 equally spaced spatial steps over the interval [−0.5, 0.5] for each dimension

xk,i, i ∈ {1, 2} and k ∈ {1, 2, 3, 4}, except for x1,1, which is specified as x1,1 = 1 by

(7.24). In the following, the system specifications, that is, the topologies L1 and L2

associated with the regions D1 and D2, the corresponding leader vectors κ1 and κ2,

and the initial and final constraint, ξ(0) = ξ0 and ξ(T ) = ξT , are briefly mentioned

at the beginning of each example. In addition, the optimal costW 1(ξ0, q1, ξT , q1, T )

is given. Special emphasis is, however, place on an interpretation and evaluation

of the results.

The first example illustrates the case, where a formation switch simply means

a change of the leader and follower roles. The interconnections do not change

during the whole maneuver.

Example 7.3. For the agents’ initial and final position,

ξ0 =
(
− 1 0 − 1.5 0 − 2 0 − 2.5 0

)′

(7.25)

and

ξT =
(
3 1 4 0.5 4 − 0.5 3 − 1

)′

, (7.26)

the leader vectors,

κ1 =
(
0 1 1 0

)′

(7.27)

and

κ2 =
(
1 0 0 1

)′

, (7.28)

and the formations L1 = L2 = L|, the resulting hybrid optimal trajectories are

depicted in Figure 7.12, Figure 7.13, and Figure 7.14 and the associated value

function is given by W 1(ξ0, q1, ξT , q1, T ) ≈ 259.18. The circles in Figure 7.13

display the individual states of the agents at the switching time t = 3. The

dashed line in Figure 7.14 represents the optimal discrete state q∗(·), where the

lower level corresponds to q(t) = q1 and the higher level to q(t) = q2.

Interesting in Figure 7.13, is the horizontal movement of all agents in region

D1 (left )which is certainly influenced by the chosen line formation. 2
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Figure 7.12: Optimal Group Behavior Corresponding To Example 7.3
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Figure 7.13: Optimal States (x∗k,1(·), x∗k,2(·)) Corresponding To Example 7.3 de-
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Figure 7.14: Optimal Input u∗(·) Corresponding To Example 7.3
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In contrast to the previous example, in the subsequent problem statement the

leader stay the same when crossing the switching manifold; however, the network

structure changes what allows interesting conclusions on the characteristics of

different topologies.

Example 7.4. The specifications on the boundary conditions,

ξ0 =
(
− 1 0 − 1.5 0 − 2 0 − 2.5 0

)′

(7.29)

and

ξT =
(
6 1.5 5.5 1.25 5 1 4.5 0.75

)′

, (7.30)

the leader vectors,

κ1 = κ2 =
(
1 0 0 1

)′

, (7.31)

and the formations, L1 = L4 and L2 = L|, result in the hybrid optimal trajectories

displayed in Figure 7.15, Figure 7.16, and Figure 7.17 and the associated cost takes

the value W 1(ξ0, q1, ξT , q1, T ) ≈ 291.48.

Figure 7.15 is a perfect starting point to discuss the influence of the formation,

but also of the optimal control objective, on the agents’ group behavior. In region

D1 (left side), the strong connection between the agents, combined with the previ-

ously specified matrix Q = I8×8 in the cost function (7.15), yield to a “shrinking”

behavior, i.e., the agents move together and reach almost one point. After the

switch at time t = 2, the line structure allows a re-opening of the formation. 2

Finally, the following two examples, Example 7.5 and Example 7.6, show ex-

actly the same boundary conditions and leader vectors κ1 = κ2 = κ as the non-

hybrid examples, Example 7.1 and Example 7.2, respectively. However, they com-

bine the formations, separately considered in Section 7.4.1, to a bimodal frame-

work. Hence, a comparison of the optimal trajectories and the value functions

in Example 7.1 and Example 7.2 with the ones in Example 7.5 and Example 7.6,

respectively, is particularly interesting.
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Figure 7.15: Optimal Group Behavior Corresponding To Example 7.4
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Figure 7.16: Optimal States (x∗k,1(·), x∗k,2(·)) Corresponding To Example 7.4 de-
picted separately for each agent k, k ∈ {1, 2, 3, 4}
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Example 7.5. Here, the triangle formation L4 is associated with region D1, i.e.

L1 = L4, and a line network L| is chosen in region D2, i.e., L2 = L|. For this

geometric framework, the optimal cost is given by W 1(ξ0, q1, ξT , q1, T ) ≈ 225.84.

Compared with the costs in Example 7.1, it follows that, interestingly, the bimodal

geometric structure yields to the lowest cost. 2

Example 7.6. This example assumes L1 = Lλ and L2 = L|, which results in the

value function W 1(ξ0, q1, ξT , q1, T ) ≈ 43.46. In fact, compared with J ∗
| and J∗

4 of

Example 7.2, the one-regional case with triangle formation is the most efficient. 2

7.5 Conclusions

With the aim of completing and concluding the general investigations on regional

dynamics systems with a compelling application-driven example, this chapter in-

troduces a heterogeneous multi-agent system, where a directly controlled group of

leader agents dictates the followers’ motion, which is given by local, consensus-like

interaction rules. Based on a graph representation of the interconnections between

the individual agents, the overall group dynamics reveals themselves as being a

simple standard linear dynamic system. By solving the hybrid point-to-point

problem for these kind of systems, not only the computability and applicability

of our hierarchic approach is proven, but also the behavioral characteristics of the

proposed agents’ interaction dynamics are highlighted.

Compared to the examples previously addressed in Section 2.3.2, Section 4.6,

and Section 5.8, the dimensionality of the multi-agent problem is significantly

larger and increases, of course, with a growing number of agents. Computationally,

this means an exponential increase in complexity known as the “curse of dimen-

sionality” and previously explained in Section 2.2.3, Section 4.5 and Section 5.7.

However, if the agent dynamics in each direction k, k ∈ {1, 2, . . . , n}, where

xi,k ∈ R and i ∈ {1, 2, . . . , NA}, are independent and also a decoupled cost
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Figure 7.18: Optimal Group Behavior Corresponding To Example 7.5
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function of the form

` (x(t), u(t)) =
n∑

k=1

`k (x1,k;x2,k; . . . ;xNA,k) (7.32)

is assumed, it is possible to solve the hybrid optimal control problem separately

for each direction k reducing the dimensionality of each subproblem by a factor of

n. In the examples of Section 7.4.2, where diagonal matrices Q and R are chosen

in (7.15), a division into n = 2 subproblems of dimension k = 4 is possible.

Nevertheless, besides the restated powerful operation of the proposed hierarchic

Dynamic Programming approach, the solution of the hybrid point-to-point prob-

lem for this class of systems allows drawing conclusions on the dynamic properties

of the assumed leader-follower configuration. For instance, a “tighter” connection

between the agents combined with a non-zero Q matrix in (7.15) let the agents

move together, as observed in Figure 7.18 in region D1 (on the left side), where

the agents are arranged in a triangle formation. In contrast, in Example 7.6, the

agents start in the less connected star formation and, moreover, the agents’ states

do not appear in the control objective, which is to be minimized. Figure 7.20

and Figure 7.21 show the resulting wide-spread, more “individual” motion of the

agents. In fact, the interplay between

(i) the optimal control parameters, that is, the cost function ` (x(t), u(t)), the

upper bound N on the number of switches, the time horizon T , and the

initial and final constraints on the state values ξ(0) = ξ0 and ξ(T ) = ξT ,

(ii) the regional-dependent multi-agent dynamics, unambiguously specified by

the graph Laplacian L representing the agents’ network topology and the

vector κ dividing the group of agents into leaders and followers,

(iii) and the geometric framework, basically given by the switching manifold,

is an interesting field for further studies. Especially noteworthy is that the de-

rived recursive algorithms, cf. Theorem 4.1 and Theorem 5.1, which are used in

Section 7.4.2 to analyze the dynamic behavior of multi-agent systems under an op-

timal control policy, serves also as a design tool answering question like, “Which
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agents should be assigned with a leader role in order to achieve the best perfor-

mance?” or “What is the best way to specify the switching manifolds to obtain

the desired group behavior?”. In the examples of Section 7.4.2, for instance, the

switching behavior depends only on the x1,1-state of the first agent. However, a

suitable choice may also be the center of a formation.

Finally, it is of particular important to highlight, that the Dynamic Program-

ming approach presented in this work does not require a linear multi-agent dy-

namic, but is able to deal with more general nonlinear dynamics just as well. This

is especially interesting, since the use of such dynamic network models becomes

more and more popular not only because they offer a metaphor for represent-

ing the reality around us as a world inhabited by autonomous, active, possibly

intelligent elements, but also because they provide a methodology enabling the

modeling, design, and implementation of large systems in a very modular way.

Here, the potential areas of application range from robotics and sensor networks

to computer science and artificial intelligence.
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CHAPTER VIII

CONCLUSIONS AND OUTLOOK

This chapter concludes the previous investigations on regional dynamics systems

by recapitulating the key ideas of the precedent considerations, stating the core

results, and highlighting the work’s main contributions. This is followed by a

brief discussion on possible further extensions and applications of the presented

approach.

8.1 Conclusions

This work considers hybrid systems with regional dynamics, i.e. systems, where

transitions between different dynamical regimes occur as the system’s continuous

state reaches given switching surfaces. In other words, the governing dynamics

vary depending on the region, the continuous state is evolving in. In particular, the

attention is focused on the optimal control problem associated with such systems.

More precisely, given a specific cost function, the goal is to determine the optimal

path of going from a given starting point to a fixed final state during an a priori

specified time horizon. A helpful graphical illustration of the problem statement

is shown in Figure 3.1.

The key idea and main characteristic of the presented approach is a hierarchical

decomposition of the hybrid optimal control problem, which does not only provide

a better understanding of the problem’s inherent complexity and deliver a deeper

insight into the structural composition of the problem, but represents, in fact, the

underlying framework of the proposed solution scheme. Moreover, the hierarchical

structure, composed of different levels of abstraction, makes it possible to apply an

adequate Dynamic Programming algorithm and obtain, finally, a characterization

of global optimality, given an upper bound on the number of discrete transition
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along a hybrid trajectory. The way this is actually done is by approaching and

solving the introduced multimodal point-to-point problem on three different levels

of control: On the highest level, the geometric framework is taken into account. A

discrete representation, the so-called transition automaton, is introduced, which

specifies the connections between the different regions and the associated language

provides all sequences of transitions, which are possible in the given partitioned

state space. At a level below, the main theorem of this work, the Hybrid Bellman

Equation for systems with regional dynamics, is stated. This recursive algorithm

is based on both, the global accessibility conditions provided by the automaton on

the highest level of control and the costs computed on the lowest level of control,

which, in fact, represent the solution to standard (non-hybrid) state-constrained

optimal control problems calculated, in each case, between two points on the

switching manifolds. Not surprisingly, the optimal solution is hybrid in nature in

that it depends on not only the continuous control signals, but also on discrete

decisions as to what domains the system should go through in the first place.

The main benefit with the proposed approach lies in the fact that a hierarchical

Dynamic Programming algorithm can be used to representing both a mathemati-

cal formulation and theoretical characterization of the hybrid solution’s structural

composition and, from a more application-driven point of view, an implementable,

numerically computable calculation rule. On the one hand, based on the hierar-

chical structuring, the derived Hybrid Bellman Equation captures the problem’s

complexity and provides doubtlessly a beneficial tool in understanding, analyzing,

and designing regional dynamics systems. For example, the reachability issue in

the multimodal point-to-point problem can be investigated on the high-level lan-

guages generated by the transition automaton. Furthermore, from a design per-

spective, on this level of abstraction, a desired switching behavior can be enforced

by incorporating the appropriate switching rules in the transition automaton. On

the other hand, in a computational context, the hierarchic organization of the
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problem turns out to be again a helpful structure indicating, this time, the nu-

merical way of proceeding. The computability and practicability of the recursive

algorithm is proven by a number of examples. Especially, the numerical solution of

a multi-agent problem highlights the powerful operation of the proposed approach

and results in some insightful simulations of the agents’ interaction behavior.

Finally, special emphasis should be placed on the universal validity of the

hierarchic Dynamic Programming approach, which can be applied to a significantly

larger class of hybrid optimal control problems, cf. Chapter 6.

In brief, the novelty of the solution herein lies in the treatment of global op-

timality conditions for the general class of regional dynamics systems through a

Dynamic Programming approach, where the control variable consists not only of

the continuous control signal, but also of a discrete decision variable dictating

what regions the system should switch between. A number of examples illustrate

the use of the proposed method.

8.2 Outlook

Recommendations for future research include both,

(i) theoretical extensions and mathematical generalizations of the hierarchic

Dynamic Programming approach

(ii) and more application-oriented improvements of the algorithm’s computa-

tional implementation.

In the latter category fall further efforts on producing an usable, helpful, and

more general software tool allowing an easy input of the model specifications and

a sufficiently fast solution of the hybrid point-to-point problem. This means, in

particular, that, in the case of application-driven examples, Assumption 5.1 is not

necessarily satisfied and the simplified calculation of the cost functions c(·, ·, ·, ·, ·)

may not be possible anymore. Thus, an important step to a user-friendly applica-

tion tool is the implementation of a (non-hybrid) state-constrained optimization
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algorithm for the calculation of c(·, ·, ·, ·, ·), cf. [7,17,21,22,26,30,53]. The compu-

tational complexity of this optimization algorithm has, of course, a direct impact

on the effort associated with the overall hybrid optimal control solver. Thus, the

decision on which calculation rule shows the best performance in the considered

multiregional context is to be made very carefully. Furthermore, not implemented

so far, is an algorithm which allows to enter the transition automaton or even the

geometric framework itself and generates the corresponding languages. Further-

more, as indicated in Section 5.7, the precise dependence of the numerical effort

on the regional geometric structure is fairly complex and represents a fascinating

topic for further studies.

As regards the theoretical extensions of the HOCP formulation, a huge number

of ideas and the adequate changes to be made in the previous hierarchic Dynamic

Programming approach are listed in Chapter 6. However, concerning the pre-

sented generalizations, the preliminary investigations in Chapter 6 should be ex-

tended by more detailed definitions, an appropriate literature overview, examples

for applications, and numerical simulations.

In the end, the discussions in this section reflect the remarkable characteristic

of the derived hierarchic Dynamic Programming approach in that it represents

both a result of theoretical and computational relevance.
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Control and Estimation: An Optimisation Approach (Communications and

Control Engineering). Springer-Verlag, 2004.

[31] Heagy, J. F., Carroll, T. L., and Pecora, L. M., “Synchronous chaos

in coupled oscillator systems,” Physical Review E, vol. 50, no. 3, pp. 1874–

1885, 1994.

[32] Hedlund, S. and Rantzer, A., “Optimal control of hybrid systems,” in

Proceedings of the 38th IEEE Conference on Decision and Control, vol. 4,

pp. 3972–3977, 1999.

[33] Jadbabaie, A., Lin, J., and Morse, A. S., “Coordination of groups of

mobile autonomous agents using nearest neighbor rules,” IEEE Transactions

on Automatic Control, vol. 48, pp. 988–1001, June 2003.

[34] Ji, M. and Egerstedt, M., “Distributed coordination control of multi-

agent systems while preserving connectedness,” IEEE Transactions on

Robotics, 2007. To appear.

143



[35] Ji, M., Muhammad, A., and Egerstedt, M., “Leader-based multi-agent

coordination: Controllability and optimal control,” in American Control Con-

ference, pp. 1358–1363, 2006.

[36] Ji, M., Graph-Based Control of Networked Systems. PhD thesis, School of

Electrical andComputer Engineering, Georgia Institute of Technology, At-

lanta, 2007.

[37] Kirk, D. E., Optimal Control Theory: An Introduction. Dover Publications,

2004.

[38] Knowles, G., An Introduction to Applied Optimal Control (Mathematics in

Science and Engineering), vol. 159. Academic Press, 1982.

[39] Lee, E. B. and Markus, L., Foundations of Optimal Control Theory.

Krieger Pub Co, 1986.

[40] Lin, J., Morse, A., and Anderson, B., “The multi-agent rendezvous prob-

lem,” in Proceedings of the 42nd IEEE Conference on Decision and Control,

pp. 1508–1513, 2003.

[41] Lin, Z., Broucke, M., and Francis, B., “Local control strategies for

groups of mobile autonomous agents,” IEEE Transactions on Automatic Con-

trol, vol. 49, no. 4, pp. 622–629, 2004.

[42] Locatelli, A., Optimal Control: An Introduction. Birkhäuser Basel, 2001.
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