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Abstract—In this paper, an optimization-based iterative learning

control approach is presented. Given a desired trajectory to be followed,

the proposed learning algorithm improves the system performance

from trial to trial by exploiting the experience gained from previous

repetitions. Taking advantage of the a-priori knowledge about the sys-

tems dominating dynamics, a data-based update rule is derived which

adapts the feedforward input signal after each trial. By combining

traditional model-based optimal filtering methods with state-of-the-art

optimization techniques such as convex programming, an effective and

computationally highly efficient learning strategy is obtained. Moreover,

the derived formalism allows for the direct treatment of input and

state constraints. Different (nonlinear) performance objectives can be

specified defining the overall learning behavior. Finally, the proposed

algorithm is successfully applied to the benchmark problem of swinging

up a pendulum using open-loop control only.

Index Terms—Iterative learning control, state and input constraints,

Kalman filtering, convex programming, inverted pendulum, swing-up.

I. INTRODUCTION

Controlled and automated systems have an unbelievably wide

use in many different areas of application ranging from manufac-

turing systems, transportation, and space engineering to biological

engineering and robotics. The operation of increasingly complex

systems requires sophisticated and intelligent control methods guar-

anteeing high performance even under the presence of model un-

certainties, disturbances, and measurement noise. These challenges

are met by control strategies which adapt to unknown or changing

environments and use previous experiences to learn and improve

performance. Moreover, repetition is an inherent feature of almost

every automated process. The learning algorithm proposed herein

takes advantage of this repetitive operating scheme. The goal is

to precisely follow a desired trajectory. Data from previous trials

is exploited and the gained experience is used to improve the

performance of the following execution by updating the feedforward

input signal. With this, the algorithm compensates for unmodeled

system dynamics, repetitive noise, or parametric uncertainties.

The presented approach can be characterized as an iterative

learning control (ILC) technique. ILC became a popular research

topic beginning with [1], and since then has proven to be a very

powerful method for high performance reference tracking. A recent

overview of ILC with an extensive bibliography is available in

[2] and [3]. Yet methods from optimal control theory have only

recently been applied to the design of ILC laws. Based on a

so-called ‘lifted’ domain representation, see [4]–[6], LQG-type

solutions were proposed [3], [7]–[10] estimating the tracking error

and minimizing a quadratic cost function. The approach presented

in this paper clearly divides both steps, estimation and control,

illustrated in Figure 1. In the first step, a time-varying Kalman filter

is designed, which estimates the model error along the trajectory.

The estimated error not only serves as the input to the following

control step, but also provides additional insight into the real

dynamics along the trajectory and allows a later interpretation in

terms of the real system’s behavior. In the second step, the control
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Fig. 1: The general ILC framework considered in this paper: A

complete trial uj(t), t ∈ [t0, tf ] is performed. Based on the output
error ỹj(t), a new input uj+1(t) is calculated and applied during
the next trial.

objective is formulated as a convex optimization problem [11].

Here, in contrast to least-squares approaches or LQG design [3],

[7]–[10], input and state constraints can be explicitly incorporated.

The algorithm proceeds as follows: A simple, possibly nonlinear,

dynamic model is derived, which captures the essential dynamics

of the real system. Based on this model, a nominal input trajectory

is calculated, which yields the desired reference trajectory. By

linearizing the system about the nominal trajectory, a time-varying

linear state space model is obtained which approximates the system

dynamics along the reference trajectory, cf. [7]. With a time-

discretized version of this model, cf. [2], [3], [12], the system’s

lifted domain representation is derived, which characterizes the ac-

tual system dynamics by a static map whereas the learning dynamics

are described by a difference equation. Based on this notation,

the estimation and control steps are defined. When performing the

first trial, the experimental results are stored and compared to the

desired trajectory. The resulting error vector is fed into the Kalman

filter providing a new estimate of the modeling error. With this

information, the following control step determines a more adequate

input trajectory by solving a constrained optimization problem.

When starting the next trial, the updated input is applied.

The novelty of the presented approach lies in the combination

of optimal filtering methods with convex optimization techniques.

Different performance objectives can be defined for the learning

process by choosing appropriate vector norms and adequate scaling

in the control step. Moreover, the estimation equations explicitly

take noise characteristics into account. Input and state constraints

are directly incorporated in the calculation of the input update.

Finally, the effectiveness of our approach is shown by successfully

learning the swing-up of an inverted pendulum in a very small

number of trials while only applying feedforward control.

II. DYNAMICS AND SYSTEM REPRESENTATION

The starting point of our approach is a time-varying nonlinear

model of the form

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t),
(1)
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which captures the key dynamics of a real physical system with

control input u(t) ∈ R
nu , state x(t) ∈ R

nx , and output y(t) ∈
R

ny . The vector fields f and g are assumed to be continuously

differentiable in x and u. Constraints on the input u(t) and the
state x(t) are defined componentwise,

umin ≤ u(t) ≤ umax

xmin ≤ x(t) ≤ xmax , ∀ t ≥ 0 ,
(2)

where umin, max ∈ R
nu and xmin, max ∈ R

nx represent the lower

and upper bounds on u(t) and x(t).

The goal of the presented learning algorithm is to track an a

priori determined output trajectory y∗(t) over a finite time interval
t ∈ T = [t0, tf ] , tf < ∞ . The desired trajectory y∗(t), t ∈ T is

assumed to be feasible with respect to the nominal model (1), (2).

That is, there exists a triple

(u∗(t), x∗(t), y∗(t)) , t ∈ T , (3)

satisfying Equations (1) and (2). For some applications, the desired

output trajectory y∗(t) may be known ahead of time. However, it
may also be the result of an optimal control problem solved based

on the simplified system dynamics (1).

We assume that the motion of the system stays close to the

generated reference trajectory (3) during the learning process. Only

considering small deviations (ũ(t), x̃(t), ỹ(t)) from the desired

trajectory (3),

ũ(t)=u(t)−u∗(t), x̃(t)=x(t)−x∗(t), ỹ(t)=y(t)−y∗(t), (4)

the system’s behavior (1) can be approximated by a first-order

Taylor series expansion about the reference trajectory (3) resulting

in the following linear, time-varying system

˙̃x(t) = A(t)x̃(t) + B(t)ũ(t)

ỹ(t) = C(t)x̃(t) + D(t)ũ(t) , t ∈ T ,
(5)

where the time-dependent matrices A(t), B(t), C(t), D(t) are the
corresponding Jacobian matrices of the nonlinear functions f and g

with respect to x and u.

The developed learning algorithm subsequently makes use of data

collected during previous iterations. With the goal of improving

the performance of the system during the next iteration, a model-

based update rule is used to calculate a new, more adequate input

trajectory, cf. Figure 1. Since measurements of previous trials are

only available at fixed time intervals, a discrete-time representation

of the plant dynamics (5) is introduced, see [2], [3], [12], and

references therein. Converting (5) to a discrete-time system results

in the following linear, time-varying difference equations,

x̃(k + 1) = AD(k)x̃(k) + BD(k)ũ(k)

ỹ(k) = CD(k)x̃(k) + DD(k)ũ(k) ,
(6)

where k ∈ K = {0, 1, . . . , N} , N < ∞ represents the discrete-

time index. To simplify notation, we use x̃(k) to denote x̃(kΔt),
where Δt is the sampling time. The desired trajectory (3) is
represented by a (N + 1)-sample sequence

(u∗(k), x∗(k), y∗(k)), k ∈ K . (7)

Other associated signals, see e.g. (4), are discretized analogously.

The input and state constraints (2) read now as

umin(k) ≤ ũ(k) ≤ umax(k)

xmin(k) ≤ x̃(k) ≤ xmax(k) ,
(8)

where umin, max(k) ∈ R
nu and xmin, max(k) ∈ R

nx . The values

of these vectors depend on the discretization method and are, for

example, given by an equation of the form

umin(k) = umin − min
t ∈

[k∆t, (k+1)∆t]

u∗(t) , (9)

when using a zero-order hold with sample time Δt.

Performing a new trial, the deviations (ũ(k), x̃(k), ỹ(k)), k ∈
K, with respect to the desired trajectory (7) are given by the
following lifted vector representation, cf. [13]:

u = [ ũ(0), ũ(1), . . . , ũ(N) ]T ∈ R
(N+1)nu

x = [ x̃(0), x̃(1), . . . , x̃(N) ]T ∈ R
(N+1)nx

y = [ ỹ(0), ỹ(1), . . . , ỹ(N) ]T ∈ R
(N+1)ny .

(10)

This notation allows us to capture the dynamic relation (6) between

input, state, and output trajectories (10) by a simple static mapping

x = Fu + d0

y = Gx + Hu ,
(11)

Here, the lifted matrix F ∈ R
(N+1)nx×(N+1)nu is composed of the

matrices F(l,m) ∈ R
nx×nu , 0 ≤ l, m ≤ N ,

F =

⎡

⎢⎣

F(0,0) · · · F(0,N)

...
. . .

...

F(N,0) · · · F(N,N)

⎤

⎥⎦ , (12)

where

F(l,m) =

⎧
⎨

⎩

AD(l−1) . . . AD(m+1)BD(m) if m < l − 1
BD(m) if m = l − 1

0 if m > l − 1 .

Matrices G and H are block-diagonal and analogously defined by

G(l,m) =

{
CD(l) if l = m

0 otherwise

and

H(l,m) =

{
DD(l) if l = m

0 otherwise ,

respectively, where, for 0 ≤ l, m ≤ N , G(l,m) ∈ R
ny×nx and

H(l,m) ∈ R
ny×nu . Vector d0 contains the free response of the

system (6) to the initial deviation x̃(0) = x̃0 ∈ R
nx ,

d0 =

[
x̃0, AD(0)x̃0, AD(1)AD(0)x̃0, . . . ,

N−1∏

q=0

AD(q) x̃0

]T

.

The introduced lifting technique is extremely well suited for

the analysis and synthesis of iterative learning control schemes,

where the system is assumed to operate in a repetitive mode, cf.

[4]–[6], [9]. The static linear system (11) captures the complete

time-domain dynamics of a single trial by mapping the finite input

time series ũ(k), k ∈ K into the corresponding output time series

ỹ(k), k ∈ K. At the end of each execution, the state is reset to a
specified repetition-independent initial condition and a new trial is

started with an updated control. The goal of ILC is to update the

feedforward signal u, see Equation (10), based on the data gathered
during the previous executions aiming at improving the system’s

performance over iteration time. The dynamics of the learning,

i.e., the dynamic behavior of a sequence of consecutive trials, can

be characterized in the lifted domain by introducing a subscript j
indicating the jth execution of the desired task, j ∈ {1, 2, . . . }.
Using this notation, the dynamics associated with the learning

algorithm are described by difference equations in the iteration-

time domain j.

The remainder of this section is devoted to an adequate incorpora-
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tion of noise in the system description (11) and to an explanation of

how the system evolves over several iterations. In order to explicitly

take different noise sources into account, the equations in (11) are

kept separate and disturbances are included as follows

xj = Fuj + dj + Nξ ξj

yj = Gxj + Huj + Nυ υj .
(13)

Here, j denotes the jth trial, ξj ∈ R
nξ can be interpreted as process

disturbance, and υj ∈ R
nυ is considered as measurement or sensor

noise. Moreover, the random variable ξj also captures the zero-mean

noise component of the initial condition. Both random variables, ξj

and υj , are assumed to be trial-uncorrelated sequences of zero-mean

Gaussian white noise with covariance Ξj and Υj , respectively; that

is, ξj ∼ N (0, Ξj) and υj ∼ N (0, Υj). The disturbance joint
covariance is given by

E

[[
ξj

υj

] [
ξT

j υT
j

]]
=

[
Ξj Δj

ΔT
j Υj

]
with Δj = E

[
ξjυ

T
j

]
.

(14)

E [·] denotes the expected value, and Δj is zero, if ξj and υj

are uncorrelated. The properties of the introduced disturbances

ξj , υj , which play a major role in the estimation step presented

in Section III, may be obtained by carrying through given noise

characteristics of sensors and known process disturbances of the

real system from the original model description (1) to the lifted

domain representation (13). The vector dj represents the model

error along the reference trajectory which shows only slight changes

from iteration to iteration. Repeating disturbances [14] as well

as repeated nonzero initial conditions [15], which are previously

modeled by d0, Equation (11), are captured in dj . The iteration-

domain dynamics of dj is described by the subsequent difference

equation

dj = dj−1 + ωj−1 , (15)

with ωj being another trial-uncorrelated sequence of zero-mean

Gaussian white noise characterized by ωj ∼ N (0, Ωj).

Subsequently, some significant characteristics of the iteration-

domain systems dynamics (13), (15) are summarized which are

indispensable for understanding the overall operation of the pro-

posed learning algorithm developed in Sections III and IV. The state

deviation xj along the reference trajectory x∗, which is analogously

defined by

x∗ = [ x∗(0), x∗(1), . . . , x∗(N) ]
T

∈ R
(N+1)nx , (16)

is affected by two different noise sources, a trial-uncorrelated zero-

mean component ξj and a ‘random walk’ component dj . This

versatile noise model includes the stochasticity of the process noise

ξj and the repetitive nature of the modeling errors dj , which

can vary between trials trough the influence of ωj , see also [7],

[10], [16]. In particular, the modeling error dj captures all non

zero-mean noise effects along the desired trajectory x∗. Since

the above derivations are based on a fairly simple model of the

real system, Equation (1), not taking complex and possibly high-

frequency dynamics into account, the disturbance dj may also be

interpreted as a vector representation of all unmodeled dynamics

along the desired trajectory x∗. As a result, dj might depend on

the applied input u(t) = u∗(t)+ ũ(t), t ∈ T . The ultimate goal of
the subsequent derivations is to estimate and optimally compensate

for the errors dj by updating the input trajectory appropriately.

Assuming a convergent input (u∗ + uj) for an increasing number
j of trials, the sequence dj convergences, too. Hence, one possible

definition of the covariance Ωj reflecting previous considerations is

Ωj = ǫjI , with ǫj < ǫj−1 , (17)

where I ∈ R
(N+1)nx×(N+1)nx denotes the identity matrix and

ǫj > 0 ∀j ∈ N\ {0}. Characterizing the noise ωj by a time-varying

covariance Ωj , as for example defined by (17), supports a fast

convergence of the proposed learning algorithm.

To complete the lifted representation (13), (15), the

constraints (8) are transformed appropriately. Stacking the

bounds u(min, max)(k) and x(min, max)(k) in vectors as

umin = [umin(0), umin(1), · · · , umin(N)]T ∈ R
(N+1)nu ,

constraints (8) read as

umin ≤ u ≤ umax

xmin ≤ x ≤ xmax .
(18)

To conclude, it is particularly important to highlight the flexibil-

ity and universality of the lifted representation, summarized by

Equations (13), (15), and (18) which, subsequently, allows for the

derivation and the execution of operations in the trial-time domain.

III. ESTIMATION

The proposed learning algorithm is considered as a two-step

update law, see Figure 1. In a first step, the modeling error dj along

the desired trajectory is estimated using optimal filtering techniques

[17]. The subsequent control step, then, provides a new control input

uj+1 ∈ R
(N+1)nu optimally compensating for the estimated vector

d̂j | j .

An iteration-domain Kalman filter is proposed retaining all

available information from previous trials, namely the output signals

y0, y1, . . . , yj , in order to estimate the current error dj . Combining

Equations (13) and (15), and recalling corresponding noise charac-

teristics, a discrete-time system is obtained fitting into the standard

Kalman filter approach, cf. [18]:

dj = dj−1 + ωj−1

yj = G dj + (GF + H) uj + μj ,
(19)

where

μj =
[
GNξ Nυ

] [
ξj

υj

]
. (20)

With the previous noise definitions, cf. Equation (14), the stochastic

variable μj , j ∈ {1, 2, . . . }, is characterized by μj ∼ N (0, Mj),
where

Mj =
[
GNξ Nυ

] [
Ξj Δj

ΔT
j Υj

] [
(GNξ)

T

NT
υ

]
. (21)

Recall the noise characteristics of ωj are given by ωj ∼ N (0, Ωj).
Both stochastic inputs, ωj and μj , are trial-uncorrelated and as-

sumed to be independent; that is, for i, j ∈ {0, 1, 2, . . . },

E
[
ωiω

T
j

]
= E

[
μiμ

T
j

]
= 0 if i �= j (22)

and

E
[
ωiμ

T
j

]
= 0 ∀ i, j . (23)

Given the above framework, Equations (19)-(23), a standard

Kalman filter process provides for each time step j an estimation
d̂j | j of the modeling error dj minimizing the error variance

Pj | j = E[(dj − d̂j | j) (dj − d̂j | j)
T ] . (24)

Here, d̂j | i denotes the estimate of the modeling error dj at iteration

j taking measurements y0, y1, . . . , yi up to and including iteration

i, i ≤ j into account. The matrix Pj | i ∈ R
(N+1)nx×(N+1)nx
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represents the error variance at iteration j given observations up to
and including time i, i ≤ j.

For our specific problem, the Kalman filter equations read as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P0 | 0 = P0

Pj | j−1 = Pj−1 | j−1 + Ωj−1

Θj = G Pj | j−1 GT + Mj

Kj = Pj | j−1 GT Θ−1
j

Pj | j = (I − KjG) Pj | j−1 ,

(25)

where I ∈ R
(N+1)nx×(N+1)nx represents the identity matrix.

Finally, with the optimal Kalman gain Kj , the modeling error

estimate d̂j | j is calculated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d̂0 | 0 = d̂0

d̂j | j = d̂j−1 | j−1 +

Kj

(
yj − Gd̂j−1 | j−1 − (GF + H) uj

)
.

(26)

Note that, given the Kalman gain Kj , the estimate of the model

error at time j, d̂j | j , is obtained by updating the previous estimate

d̂j−1 | j−1, taking the actual measurement yj into account. More-

over, especially noteworthy is that besides the previously introduced

noise characteristics, μj ∼ N (0, Mj) and ωj ∼ N (0, Ωj), two
additional design parameter are inherent in the Kalman filter pro-

cess, Equations (25) and (26). First, an initial value d̂0 | 0 has to be

defined. Most of the time, d̂0 | 0 = d̂0 = 0 is a reasonable first guess.

Second, with the starting value P0 | 0 = E[(d0 − d̂0) (d0 − d̂0)
T ],

the initial error variance is specified. Choosing P0 to be a diagonal

matrix with large positive elements on the diagonal, results in larger

changes of d̂j | j at the beginning of the learning.

The obtained error estimate d̂j | j enables us to improve the

system’s performance by designing an appropriate controller com-

pensating for this error.

IV. CONTROL

The proposed learning algorithm is completed by the subsequent

control step. Making use of the information provided by the

estimator, see Section III, a nonlinear model-based update rule is

derived. A new input series uj+1 ∈ R
(N+1)nu is calculated in

response to the estimated modeling error d̂j | j .

The objective of the control step is to find an input uj+1, which

optimally compensates for the modeling error d̂j | j . In the context

of the dynamics (13), that means, minimizing

xj+1 ≈ Fuj+1 + d̂j | j , (27)

over all feasible uj+1, umin−u∗ ≤ uj+1 ≤ umax−u∗, cf. (18). In

Equation (27), the disturbance ξj+1, see Equation (13), is neglected

due to the fact that the stochastic variable ξj+1 is not known a priori

and has zero mean. Moreover, in Equation (27), the modeling error

dj+1 is approximated by d̂j | j . Recalling previous comments on the

evolution and convergence of dj , j = 1, 2, . . . , see Section II, this
approximation is a reasonable assumption. Taking the constraints

on the system’s state xj and input uj (18) explicitly into account,

the update rule can be expressed by the following optimization

problem:

min
uj+1

∥∥∥ Fuj+1 + d̂j | j

∥∥∥
�

(28)

subject to
umin ≤ uj+1 ≤ umax

xmin ≤ xj+1 ≤ xmax ,
(29)

where the future state xj+1 is approximated by (27).

The vector norm ℓ, ℓ ∈ {1, 2, ∞}, of the minimization (28)
affects the result and convergence of the learning algorithm and

should be chosen in accordance with the performance objectives.

For a vector p =
[
p(1), p(2), . . . , p(np)

]T

∈ R
np the one norm,

ℓ = 1, the Euclidean norm, ℓ = 2, and the maximum norm, ℓ = ∞,
are defined as

‖p‖1 =

np∑

i=1

|p(i)|, ‖p‖2 =
√

pT p, ‖p‖∞ =max
i ∈

{1, 2, ..., np}

|p(i)|. (30)

The update law defined in (28) and (29) can be expressed as a

standard convex optimization problem of the following form, cf.

[11]:

min
z

(
1

2
zT V z + vT z

)
(31)

subject to

Wz ≤ w and η1 ≤ z ≤ η2 , (32)

where z ∈ R
nz represents the vector of decision variables. Vectors

v, w and matrices V, W have appropriate dimensions.

In case of norms ‖·‖
�
, ℓ ∈ {1, ∞}, which are inherently

nonlinear, non-quadratic functions, Equation (28) is re-formulated

by extending the original vector of decision variables uj+1 and

adding additional inequality constraints. Thus, in case of the one

norm, Equation (28) is replaced by

min
uj+1, e

I
T e subject to − e ≤ Fuj+1 + d̂j | j ≤ e , (33)

where e ∈ R
(N+1)nx and I represent a vector of ones, I =

[1, 1, 1, . . . ]T ∈ R
(N+1)nx . Similarly, for the maximum norm, the

extended equation reads as

min
uj+1, e

e subject to − e I ≤ Fuj+1 + d̂j | j ≤ e I (34)

with e ∈ R. In both cases, the constraints (29) still have to be

satisfied. The Euclidean norm is minimized with the following

equation

min
uj+1

(
Fuj+1 + d̂j | j

)T (
Fuj+1 + d̂j | j

)
. (35)

Convex optimization problems of the form (31), (32) can be

solved very efficiently and have the nice property that if the

optimization problem is feasible, i.e., if there exist points uj+1 ∈
R

(N+1)nu satisfying the constraints (32), then there exists a local

minimum, which is also globally optimal. In this paper, the com-

mercial software CPLEX [19] is used which provides fast solutions

for most large problems. Furthermore, formulating the update law

as a convex optimization problem allows an explicit incorporation

of input and state constraints. Such constraints are present in any

existing real system and have a notable influence on the dynamic

behavior of the system. The experimental setup chosen in Section V

shows the particular importance of taking input and state constraints

directly into account.

In view of the optimization (28), a scaling of the original signals

u(t), x(t), y(t) in Equation (1) is indispensable to guarantee rea-
sonable results. Aiming at equalizing the magnitude of the different

physical quantities in the lifted domain, the scaling, exemplarily

shown on the system’s state x(t), reads as

x = Sxxs , Sx ∈ R
(N+1)nx×(N+1)nx (36)
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(a) Schematic drawing. (b) Experimental setup.

Fig. 2: The cart-pendulum system.

with xs representing the scaled version of a lifted state vector x
and Sx being the corresponding scaling matrix, usually represented

by a diagonal matrix. In line with the previous notes in Section II,

the introduced lifted domain representation allows us to modify the

scaling along the trajectory. This can be effectively used in order

to weight some parts of trajectory more than the other.

Besides choosing an appropriate norm for the minimization

(28), a specific learning behavior can be particularly enforced by

introducing an additional weighting of the entries in xj+1, Equation

(27). If, for example, a point-to-point motion is to be performed and

the goal is to achieve the final point with high precision, the final

part of the state vector xj+1 might be given significantly more

weight. This is done in the experimental setup presented in Section

V, where the objective of the learning algorithm is to swing-up the

pendulum and reach the upright position.

V. EXPERIMENT: SWINGING UP A PENDULUM

The performance of the proposed technique is evaluated using the

often cited problem of swinging up a pendulum which represents

a benchmark problem involving the maintenance of balance, such

as moving a robot’s finger tip, stabilizing a walking robot, or

controlling a rocket thruster. The huge number of publication on

the inverted pendulum [20]–[24] show the importance and wide

interest in this highly nonlinear, underactuated system. Applying a

purely open-loop input, our proposed algorithm successfully learns

the desired swing-up motion within only a few trials.

A. System, Model, and Constraints

A cart-pendulum system as schematically depicted in Figure

2(a) is chosen to prove the effectiveness of the proposed learning

algorithm. In this system, the cart is moving along a rail of total

length one meter driven by a DC motor through a belt which applies

a force F (t) in the x-direction. A pendulum is attached to the

side of the cart by means of a pivot that allows the pendulum to

freely swing in the (xy)-plane. The equations of motion of cart and
pendulum are given in the following without a detailed derivation,

cf. [25]:

ẍ =

F
mp

− g sin ϕ cos ϕ + lp ϕ̇2 sin ϕ

mc

mp
+ sin2 ϕ

ϕ̈ =
− cos ϕ F

mp
+

(
mc+mp

mp
g − lp ϕ̇2 cos ϕ

)
sin ϕ

lp
(

mc

mp
+ sin2 ϕ

) ,

(37)

where x is the position of the cart, ϕ is the pendulum angle,

measured from the upright position, and F is the force applied to

the cart. The definitions of the parameters and their values are given

TABLE I: Parameter values of the experimental setup.

Description Value

mp mass of the pendulum 175 g

mc mass of the cart 1.5 kg

lp distance from pivot to pendulum’s center of mass 28 cm

α1 motor constant 1 (voltage-to-force) 159 N

α2 motor constant 2 (electrical resistance-to-force) -22.5 Ns/m

g gravitational constant 9.81 m/s2

in Table I. In our experimental system, the force F is produced by

the DC motor belt drive and can be modeled by

F = α1u + α2ẋ, (38)

where u represents the input signal which is proportional to the
voltage supplied to the motor. The values of the constants α1 and

α2 of the motor used in our experimental apparatus are also given in

Table I. Equations (37) and (38) can be reformulated as a system

of first-order differential equations of the form (1) with x(t) =
[x(t) ẋ(t) ϕ(t) ϕ̇(t)]T . In our experimental setup, the position and
angle are directly measured, whereas the velocities are obtained

by numerical differentiation. In the context of Equation (1), that

means y(t) = x(t). The system represents a perfect test-bed for

our proposed algorithm, since the input and the state are strongly

limited due to the rail length and the physical limitations of the cart

actuator:

|x| ≤ 0.5 m, |ẋ| ≤ 5 m/s, |u| ≤ 0.45 . (39)

Moreover, the above system description certainly represents only a

simplified model of the real experimental setup, see Figure 2(b),

where friction between the cart and the track highly influences the

dynamic behavior. In particular the belt drive results in a position-

dependent disturbance, which is very difficult to deal with when

only performing open-loop control. Based on the cart-pendulum

model given by (37), (38), and (39) a reference input trajectory

is calculated swinging up the pendulum in the nominal case. In

order to give the learning algorithm some space for improvement,

the nominal input is obtained under the constraint |u| ≤ 0.2. This
input, depicted by a solid black line in Figure 3, is sent to the

experiment during the first trial. Note that, in order to protect the

motor from high voltage changes, the input signal is filtered by a

first-order Butterworth lowpass filter before being sent to the motor.

Again, this is not modeled within the above’s system description

but learned by the real system while performing several iterations.

A sampling time of 0.1 s is chosen. Performing the feedforward

input over a time horizon of 1.86 s results in a lifted-domain

representation of the state x(t) of dimension 4 ∗ 186 = 744.

B. Learning Parameters and Experimental Results

The swing-up motion is very sensitive to modeling errors and

other noise and disturbance influences. By simply applying the

nominal input to the system, the pendulum hangs down at the end

of the first trial, see Figure 4. The proposed learning algorithm is

applied using the following parameters: The system’s states x(t) are
scaled in order to all lie in an interval between -1 and 1, cf. Equation

(36). A weighting of the states is introduced. Only deviations in

the position and angle are penalized in the control step, Section IV.

Moreover, during the last second of the trial, the states’ weights

are multiplied by 100 emphasizing the performance objective of

reaching the upright position. The matrix P0 is assumed to be a

diagonal matrix having values 2 on the diagonal and d̂0 is assumed
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Fig. 4: The pendulum’s angle over several trials. The solid line

depicts the desired trajectory.

to be zero. In Equation (17), the value ǫj is set to ǫj = 0.3, ∀j and
the covariance matrixMj are diagonal with entries 0.1. Termination

conditions are, in spite of the nonlinearity of the system, not defined.

In this setup, the swing-up is successfully performed in the fourth

run. The fast convergence of the proposed learning algorithm, which

is illustrated for the pendulum angle in Figure 4 and is also observed

for other learning parameter sets. When using CPLEX, cf. [19],

on a standard desktop computer (2GB RAM, 2.5GHz) through an

interface in MATLAB, the calculation of an updated input trajectory

takes less than 0.5 s.

VI. CONCLUSIONS AND OUTLOOK

In this paper, an optimization-based ILC approach was presented.

Optimality is achieved in both the estimation of the modeling error

and the following control step, which optimally compensates for

the error by an updated input trajectory. While the first method

is borrowed from classical control theory, the latter originates

from mathematical optimization theory and uses a computationally

efficient state-of-the art convex optimization solver. Input and

state constraints are are explicitly taken into account incorporated.

Depending on the problem under consideration, the overall learning

behavior can be controlled by changing the optimization objective

or by assigning different weights on different states and different

parts of the trajectory. The applicability and reliability is proven

by successfully mastering the sensitive problem of swinging up an

underactuated pendulum using open-loop control only.

Convergence and robustness properties of the current algorithm

are currently being investigated. In addition, an extending horizon

approach was tested with encouraging results.

REFERENCES

[1] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of
robots by learning,” Journal of Robotic Systems, vol. 1, no. 2, pp.
123–140, 1984.

[2] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp.
96–114, 2006.

[3] H.-S. Ahn, K. L. Moore, and Y. Chen, Iterative Learning Control:
Robustness and Monotonic Convergence for Interval Systems (Com-
munications and Control Engineering), 1st ed. Springer, 2007.

[4] M. Q. Phan and R. W. Longman, “A mathematical theory of learning
control for linear discrete multivariable systems,” in Proceedings of
the AIAA/AAS Astrodynamics Conference, 1988, pp. 740–746.

[5] K. L. Moore, “Multi-loop control approach to designing iterative
learning controllers,” in Proceedings of the 37th IEEE Conference on
Decision and Control, vol. 1, 1998, pp. 666–671.

[6] N. Amann, D. H. Owens, and E. Rogers, “Iterative learning control us-
ing optimal feedback and feedforward actions,” International Journal
of Control, vol. 65, no. 2, pp. 277–293, 1996.

[7] K. s. S. Lee, J. Lee, I. Chin, J. Choi, and J. H. Lee, “Control of
wafer temperature uniformity in rapid thermal processing using an op-
timal iterative learning control technique,” Industrial and Engineering
Chemistry Research, vol. 40, no. 7, pp. 1661–1672, 2001.

[8] M. Cho, Y. Lee, S. Joo, and K. S. Lee, “Semi-empirical model-
based multivariable iterative learning control of an RTP system,” IEEE
Transactions on Semiconductor Manufacturing, vol. 18, no. 3, pp. 430–
439, 2005.

[9] R. Tousain, E. van der Meche, and O. Bosgra, “Design strategy for
iterative learning control based on optimal control,” in Proceedings of
the 40th IEEE Conference on Decision and Control, vol. 5, 2001, pp.
4463–4468.

[10] J. K. Rice and M. Verhaegen, “Lifted repetitive learning control for
stochastic ltv systems: A structured matrix approach,” Automatica,
2007, submitted.

[11] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[12] Y. Chen and C. Wen, Iterative Learning Control: Convergence, Ro-
bustness and Applications (Lecture Notes in Control and Information
Sciences), 1st ed. Springer, 1999.

[13] B. Bamieh, J. B. Pearson, B. A. Francis, and A. Tannenbaum, “A
lifting technique for linear periodic systems with applications to
sampled-data control,” Systems & Control Letters, vol. 17, no. 2, pp.
79–88, 1991.
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