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Abstract— In this paper, we study hybrid systems with
regional dynamics, i.e., systems where transitions between
different dynamical regimes occur as the continuous state of
the system reaches given switching surfaces. In particular, we
focus our attention on the optimal control problem associated
with such systems, and we present a Hybrid Bellman Equation
for such systems that provide a characterization of global
optimality, given an upper bound on the number of switches.
Not surprisingly, the solution will be hyrbid in nature in that it
will depend on not only the continuous control signals, but also
on discrete decisions as to what domains the system should go
through in the first place. A number of examples are presented
to highlight the operation of the proposed approach.

Index Terms— Hybrid systems, optimal control, Bellman
equation, dynamic programming, finite automata

I. INTRODUCTION

During the last decade, a vast body of research on hybrid

control systems has been produced, drawing its relevance

from the fact that hybrid models are becoming more and

more common. This trend is driven by the fact that many

modern application domains involve complex systems, in

which sub-system interconnections, mode-transitions, and

heterogeneous computational devices are present. Optimal

control of hybrid systems is certainly not a new topic.

For example, the hybrid maximum principle has been well-

studied, and the community now has a clear grasp of what

constitutes necessary optimality conditions for very general

classes of hybrid systems [1]–[5]. Moreover, a number of

results of a more computational flavor have complemented

the work on the maximum principle, in which specialized

classes of systems are considered. See for example [6]–

[10]. These computational contributions typically fall in one

of two camps, namely the camp in which the switching

times are available to the controller as a design parameter

[8], [10], or, the camp in which a more restrictive class of

model dynamics (e.g. piecewise linear or affine discrete-time

models) is considered, for which mixed-integer programming

techniques can be used [6], [7].

In this paper, we continue the development begun in

[11], where only bimodal systems were considered, and
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take the point of view that the hybrid nature of the system

is inherent in that transitions between different dynamical

regimes are triggered as the state intersects certain surfaces

in the state space. As such, the novelty lies in a treatment of

global optimality conditions for hybrid systems with regional

dynamics, through a Hybrid Bellman Equation.

II. THE MULTIMODAL SYSTEM

In this section, we introduce a general description of the

regional dynamics system considered in our work.

A. Regions, Dynamics and Executions

1) Regions and Dynamics: The starting point of our

approach is a given compact state space X which is di-

vided into q open, connected, and simply connected regions

Di, i ∈ I = {1, 2, . . . , q}, such that X =
⋃q

i=1(Di ∪∂Di),
where Di ∩ Dj = ∅, ∀i, j ∈ I, i �= j. The boundaries

∂Di are assumed to be finite unions of closed, smooth

codimension one submanifolds sk
i of X

∂Di =

ni
⋃

k=1

sk
i , i ∈ I, ni ∈ N,

where each boundary ∂Di is composed of the ni submani-

folds sk
i , 1 ≤ k ≤ ni. We next define a switching manifold

m(i,j) by

m(i,j) = ∂Di ∩ ∂Dj, i, j ∈ I . (1)

With each region Di a time-invariant vector field fi(x, u)
is associated which uniquely describes the continuous dy-

namics in the corresponding partition:

ẋ(t) = fi(x(t), u(t)) if x(t) ∈ Di.

The function u(·) ∈ U is the continuous-time control input

of the hybrid system, where U = U (U, L∞ ([0, T ])) denotes

the set of all bounded measurable functions on the interval

[0, T ] , T < ∞, taking values in the set U .

The discrete state space Q = {qi | i ∈ I} of the system

is in one-to-one correspondence with the set of regions

Di, i ∈ I. When the continuous (valued) state x(t) lies

in the interior of some Di the corresponding discrete state is

q(t) = qi; when x(t) lies in a boundary segment m(i,j) the

interpretation of the possible discrete state values q(t−) = qi

or q(t−) = qj is that the continuous state has arrived at

x(t) along a trajectory which most recently lay in D i, or

respectively, Dj , and a discrete event switch of the discrete

state to, say, q(t) = qi, indicates that the system trajectory

will evolve on a time interval with initial instant t in Di

under the ith vector field.
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X

D : ẋ = f (x, u)

D : ẋ = f (x, u)
D : ẋ = f (x, u)

D4 : ẋ = f4(x, u)
x(0) = ξ

x(T ) = ξT

(ts, ξs)
∗

(ts, ξs)
∗

(ts, ξs)
∗

m(1,2) = m(2,1)

m(2,3) = m(3,2)

m(1,4) = m(4,1)

m(3,4) = m(4,3)

m(1,3) = m(3,1)

0

11

11
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22 33

33

Fig. 1. Example of a System with Regional Dynamics

In the following, the (controlled) discrete dynamics of the

system are specified in a formal way. Later, in Section II-B,

we will introduce an untimed automaton which represents

the discrete transitions defined below. A controlled discrete

transition is defined at the continuous state x and is denoted

by

DSC : qj = Γ(qi, eij), (2)

where i, j ∈ I, in case (i) x ∈ m(i,j), (ii) there exists

a continuous control u ∈ U such that the oriented vector

at x given by the vector field fj(x, u) meets the open set

Dj within all neighborhoods of x, and (iii) the controlled

input event e ∈ E takes the value eij . Thereby, E denotes

the finite set of transition labels containing the labels of all

transitions which are possible in the given partitioned state

space X . It is assumed that if at any x ∈ m(i,j), i, j ∈ I
the condition above is satisfied; then, the condition holds

for all other continuous states in m(i,j). Hence, the discrete

transition events e ∈ E are well defined.

Assumption 1: In order to assure existence and uniqueness

of the executions in each constituent region D i, i ∈ I
the vector fields fi(x, u) are assumed to be continuously

differentiable in x (for all u) on the closure of D i (and hence

uniformly continuous and uniformly Lipschitz in x on the

closure of Di). Furthermore, we assume that the vector field

fi(x, u), i ∈ I, satisfies the “transversality” condition in the

sense that

(i) fi(x, u) is non-tangential to the boundary ∂D i at any

point x ∈ ∂Di for all choices of u and

(ii) at points x ∈ sk
i ∩ sl

j �= ∅, i, j ∈ I, k ∈
{1, . . . , ni} , l ∈ {1, . . . , nj} the vector field fi(x, u)
is non-tangential to each of the tangent spaces of the

intersecting components sk
i and sl

j at the point x, for

all choices of u.

The solutions are interpreted in the Carathéodory sense, and

the initial condition ξ0 of an admissible execution satisfies

ξ0 ∈ Di, i ∈ I.

2) Executions: In order to precisely describe the transi-

tion behavior, that is to say the possible executions, and,

in particular, to specify the dynamics of the multimodal

system on the boundaries ∂Di, i ∈ I, we use the notation

xk, where ẋk(t) = fk(xk(t), u(t)), k ∈ I, to emphasize

which dynamical regime fk determines the execution of the

trajectory at a given point xk(t) ∈ X .

Now, given a continuous starting state ξ0 ∈ Di, i ∈ I
and a discrete start state qi ∈ Q the continuous-time control

input u(·) ∈ U gives rise to a trajectory evolving according

to ẋi = fi(xi, u). If there is a finite time ts such that the

state enters a switching manifold

m(i,j) = ∂Di ∩ ∂Dj , j ∈ I ;

then, it is the case that ξs = limt→ts
xi(t) ∈ m(i,j)

and there are two different possibilities of further execution

corresponding to the joint hybrid dynamics specified earlier.

(i) One possible action is that the trajectory passes through

the switching manifold and henceforth evolves in region

j as ẋj = fj(xj , u), with the initial condition xj(ts) =
ξs until a further possible intersection with a switching

surface m(j,k), k ∈ I. In this case, the switching at

m(i,j) corresponds to a transition from domain i to j.

(ii) However, we also count it as a switch if the trajectory

after arriving at m(i,j) under the dynamics fi(xi, u)
bounces back into region i where the dynamical regime

is again ẋi = fi(xi, u), with initial condition xi(ts) =
ξs (until a further possible intersection).

The decision about which way will be taken when arriving

at a switching manifold m(i,j) can be seen as a discrete

control input e ∈ E, where E is again the finite set of

transition labels. A transition label e ∈ E specifies the

region of the further execution of a trajectory arrived at

a switching manifold m(i,j), i, j ∈ I. Clearly, the set of

possible transitions at a given switching point ξs ∈ m(i,j)

depends on the location of ξs in the state space X and also

on the family of vector fields defined at ξs.

Hence, a hybrid execution is uniquely determined by a

given initial condition ξ0 ∈ Di, i ∈ I, a discrete start state

qi ∈ Q the continuous-time control input u(·) ∈ U , and a

compatible discrete control sequence

S (τ, w) =
((

t1s, e1

)

,
(

t2s, e2

)

, . . . ,
(

tMs , eM

))

, (3)

where τ = (t1s, t2s, . . . , tMs ), 0 < t1s < t2s < · · · < tMs <
T is the strictly increasing (finite or infinite) sequence of

switching times and w = e1e2 . . . eM is the corresponding

string of appropriate discrete control inputs e i ∈ E, i ∈
{1, 2, . . . , M}. M denotes the number of switches.

The hybrid execution description above has continuous

and discrete values states, where the latter have right con-
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tinuous trajectories in N which are piece-wise constant. In

Section II-B, an automaton representing the connected re-

gions will be used to determine possible switching sequences

w of a given partitioned state space X . In conclusion,

the admissible control actions available are the continuous

control u(·) ∈ U and the discrete control input sequence

S (τ , w). Both control inputs are part of our optimization

problem which is explicitly defined in Section III.

The resulting controlled dynamics of a multimodal hybrid

system evolving in a partitioned state space X can be

pictured as in Figure 1.

Remark 1: Some former approaches, e.g. [12] and [13],

define the transition behavior in a different way. Their models

do not include the case of “bouncing back” at a switching

manifold. However, in our model, cf. Section IV, these (and

other) kinds of switches can be inhibited on a higher level

of control.

B. The Transition Automaton

In this part, we present an important step in solving

the optimal control problem associated with the multimodal

hybrid system introduced in Section II-A. Roughly speaking,

the optimal control problem under consideration is stated

as follows: Given a specific cost function, our goal is to

determine the optimal path of going from a given initial

state ξ0 = xi0(0) ∈ Di0 to a fixed final state ξT ∈ DiT

during a time horizon T , where T is also specified a priori.

In order to solve this optimization problem and even in order

to formulate this problem in a precise manner, a discrete

representation of the geometric structure is needed which

explicitly specifies the connections between the constituent

regions Di, i ∈ I. A deterministic automaton is introduced

which contains information about the regional composition

in the way that a transition between the discrete states i
and j, i.e., between region Di and Dj , is only possible if

the switching surface m(i,j) �= ∅. Furthermore, information

about the initial region Di0 , ξ0 ∈ Di0 and the final region

DiT
, ξT ∈ DiT

is incorporated in the automaton. Conse-

quently, the automaton answers the question: Which ways,

i.e., which sequences of transitions, are possible in order to

get from ξ0 to ξT ?

The formal definition of the automaton, following the

notation of [14], is given by the six-tupel

A = (D, E, g, h, d0, Dm), (4)

where

• the set of discrete states is D = I,

• the set of events is given by E = {eij | i, j ∈ I},

• the transition function is defined as g(i, eij) = j if

m(i,j) �= ∅ and is not defined for all other cases,

• the initial state d0 = i0, where ξ0 ∈ Di0 , and

• the set of marked states is given by Dm =
{iT | ξT ∈ DiT

}.

The function h is defined by the specifications above.

In this formalism, the states D = I represent the discrete

state space Q = {qi | i ∈ I}, i.e., the different regions

Di, i ∈ I. An event eij characterizes the transition, i.e., the

e32 e23

e21 e12

e33

e11

e22

X

D

D

D

ξ

ξT

0

1 1

2 2

3
3

Fig. 2. Example for the Transition from a Given Geometric Structure to
the Corresponding Automaton

switch, from region Di to region Dj . The set of events E
corresponds to the previous defined set of transition labels

(Section II-A) and the transition function g shows which

transitions eij ∈ E are possible for a given state i.

Note that the geometric shape of a region D i, i ∈ I is

reduced to a discrete state i and the switching manifold

m(i,j), i, j ∈ I to a single event eij . Furthermore, it

is important to observe that the automaton does contain

information about the initial state ξ0 ∈ Di0 and the final state

ξT ∈ DiT
, but does not contain any time-valued information.

A simple example for the transition from a given geometric

structure to the corresponding automaton is depicted in

Figure 2.

Our further approach will be based on the language

generated by the introduced automaton A, equation (4). In

particular, the marked language Lm(A) will be used in

order to formulate and solve the optimization problem. The

marked language Lm(A), cf. [14], contains all strings, i.e.,

all sequences of transitions, leading from state i0, where

ξ0 ∈ Di0 , to state iT , where ξT ∈ DiT
. In order to restrict

the strings w ∈ Lm(A) to a certain length M , i.e., to find

all ways from ξ0 to ξT using exactly M switches, we define

an additional language

LM =
{

e ∈ E∗
∣

∣

∣
|e| = M

}

,

where E∗ represents the set of all finite strings of elements

of E and | · | denotes the length of a string, i.e., the number

of events contained in the string. The length of the empty

string ǫ is |ǫ| = 0. The intersection

L(M, A) = Lm(A) ∩ LM (5)

gives us the desired set of strings leading from state i0 to

iT and consisting of exactly M events. In addition, let us

introduce a further language which will be useful in deriving

the Hybrid Bellman Equation.

FM,A (K) = LK ∩ suff (L (M, A)) (6)

is the set of all suffices of L(M, A) consisting of K events.

The set suff(L) = {s ∈ E∗ | ∃ v ∈ E∗ with v · s ∈ L} de-

notes the suffix closure of the language L, where the notation

v · s symbolizes the concatenation of string v and s. Note

that FM,A(0) = {ǫ} only consists of the empty string ǫ.
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III. THE OPTIMIZATION PROBLEM

Given an upper bound N ∈ N0 on the total number of

switches the hybrid optimization problem is the following:

PN : inf
u(·)∈U ,

S(τ,w)

∫ T

0

ℓ(x(t), u(t))dt (7)

subject to, for 0 ≤ M ≤ N ,

• the geometric structure

w = ei1j1ei2j2 . . . eiM jM
∈ L(M, A),

• the discrete dynamics

qjk
= Γ (qik

, eikjk
)

at a switching time tk
s , where 1 ≤ k ≤ M , yielding to

the discrete-state dynamics q(t) = qik
, t ∈

[

tk−1
s , tks

)

with 0 < k ≤ M + 1 and iM+1 = jM ,

• the continuous-state dynamics

ẋik
(t) = fik

(xik
(t), u(t)), t ∈

[

tk−1
s , tks

)

,

where 0 < k ≤ M + 1 and iM+1 = jM ,

• and the corresponding initial and final conditions

x(0) = xi1(t
0
s) = ξ0 ∈ Di0 ,

xik+1
(tks) = lim

t→tk
s

xik
(t) = ξk

s ∈ m(ik,jk),

x(T ) = xiM+1(t
M+1
s ) = ξT ∈ DiT

,

if 0 < k ≤ M .

Note that ξ0, ξT /∈ ∂Di, i ∈ I (Section II-B).

IV. THE HYBRID BELLMAN EQUATION

In order to solve the optimization problem (7) a main step

of our approach is the creation of a hierarchical structure,

i.e., the creation of different levels of abstraction. Using

this structure the optimal control problem can be solved

partially on each level of control. On the highest level,

the given geometric framework is taken into account. The

presented deterministic automaton (Section II-B) provides us

a language which specifies all switching sequences possible

in the given composition of regions. Furthermore, we will

show that on this level of control arbitrary switching rules

can be incorporated in the automaton. On a lower level,

based on the language generated by the automaton a Hybrid

Bellman Equation is derived. This equation provides us

the optimal switching points (ti
s, ξ

i
s), i ∈ {1, 2, . . . , M}

together with the corresponding discrete control sequence

S (τ , w) for a given number M of switchings. In addition, we

obtain the associated cost V M (ξ0, qi0 , ξT , qiT
, T ). In order

to solve the original problem (7) a minimization over all

V M (ξ0, qi0 , ξT , qiT
, T ), 0 ≤ M ≤ N is necessary leading

to an optimal number of switches M ∗ associated with the

optimal sequence of switching points and discrete control

inputs. With this result, the optimal path connecting the

calculated switching points and the initial and end point,

ξ0 ∈ Di0 and ξT ∈ DiT
, respectively, is obtained by solving

– on the lowest level of control – a standard (non-hybrid)

4

e22

e21

e41 e14

e43

e34

e32 e23

X
D

DD4

ξ

ξT

D
e12

e11

e44 e33

0

1
12 2

3
3

Fig. 3. Example for Incorporating Additional Switching Rules

state-constrained optimal control problem separately for each

two consecutive pairs:
(

(0, ξ0), (t1s, ξ
1
s)∗, (t2s, ξ

2
s)∗, . . . , (tM

∗

s , ξM∗

s )∗, (T, ξT )
)

.

In the following, the different levels of abstraction and the

inherent procedures are described in greater detail.

At the highest level of abstraction, the structure of the

partitioned state space X is considered. The deterministic

automaton introduced in Section II-B contains information

about the connections between the regions and about possible

ways to get from ξ0 ∈ Di0 to ξT ∈ DiT
, i0, iT ∈

I. However, it is important to emphasize that it is also

possible to incorporate arbitrary switching rules on this level

of abstraction. One example is given in Figure 3. In this

case, the transitions between region 1 and 3, and 2 and

4, respectively, are obviated by the constructed automaton.

Moreover, supervisory control [14] and similar operations

can be applied to disable, for example, such transitions.

The language L(M, A), equation (5), associated with the

automaton provides sequences of switchings leading from

qi0 (indicating the continuous state lies in Di0) to qiT

(corresponding to DiT
containing the terminal state). These

give the accessibility relations (i.e. words) with a prescribed

number of events (letters) which correspond to potential

accessibility relations between specified discrete states along

trajectories with a prescribed number of switchings.

At the base (continuous) system level, these global acces-

sibility relations will be used to constrain the infimization in

the Hybrid Bellman Equation in the characterization of the

optimal switching states ξi
s, i ∈ {1, 2, . . . , M} , discrete

control sequences, S (τ , w) , and optimal continuous control

functions. The approach is based upon the fundamental

(Dynamic Programming) Principle of Optimality which in-

formally states that along an optimal hybrid trajectory the

execution of the continuous state x between two consecutive

switching points (tj
s, ξ

j
s), (tj+1

s , ξj+1
s ) is optimal. In order to

produce a Hybrid Bellman Equation describing the cost-to-

go dynamics let end : E∗\ {ǫ} → I denote the mapping

end(s) = end(ei1j1ei2j2 . . . eikjk
) = jk ,

which will be used to specify the region Djk
associated with

the last index of the last transition label eikjk
of the string s.

Additionally, we define c(ξ1, qi1 , ξ2, qi2 , ∆), ξ1, ξ2 ∈ X, as

the infimum of the costs associated with driving the system

from ξ1 ∈ Di1 ∪ ∂Di1 to ξ2 ∈ Di1 ∪ ∂Di1 , i1 ∈ I over a

time interval ∆ without leaving Di1 ∪ ∂Di1 and without a
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switching taking place. Here, qi1 , qi2 ∈ Q are the discrete

states associated with ξ1 and ξ2, respectively. Clearly, the

cost c(ξ1, qi1 , ξ2, qi2 , ∆) is infinite if ξ2 is inaccessible from

ξ1 by trajectories remaining in Di1 ∪ ∂Di1 and along which

no switch occurs. The Hybrid Bellman Equation can be for-

mulated using the notation V M (ξ1, qi1 , ξ2, qi2 , T ) to describe

the infimum of the costs of going from ξ1 ∈ X to ξ2 ∈ X
in time T using exactly M switches determined by e ∈ LM

starting in region Di1 , where the feasible input words e are

determined from the untimed system automaton with state

set Q, event set E and transition function g.
The main theorem of the paper is established using the

Principle of Optimality and is expressed using the notations

above as follows:

Theorem 1: Assume that all hypotheses for the existence

and uniqueness of regional dynamics hybrid systems hold

and that all infima exist in the definition of the hybrid value

functions V ·(·, ·, ·, ·, ·), for all admissible argument values,

whenever the expressions are finite. Then

V K(ξ1, qi1 , ξ2, qi2 , T ) = inf
t∈(0,T )

inf
ξ∈m(i1,j)

{

inf
j∈I

{

c(ξ1, qi1 , ξ, qj , t) + V K−1(ξ, qj , ξ2, qi2 , T − t)
}

}

such that

e = ei1j , s ∈ FM,A(K − 1) ,

end(s) = i2 , e · s ∈ FM,A(K) .

This relation holds for 0 < K ≤ M . When K = 0, the

initial condition of the recursive scheme is given by

V 0(ξ1, qi1 , ξ2, qi2 , T ) = c(ξ1, qi1 , ξ2, qi2 , T ).

Since we do not insist on an a priori given number

of switches M, 0 ≤ M ≤ N , we need to relate

V K(ξ1, qi1 , ξ2, qi2 , T ) to the original problem. Recalling that

ξ0 ∈ Di0 and ξT ∈ DiT
, i0, iT ∈ I, the optimal cost

associated with the original problem W N (ξ0, qi0 , ξT , qiT
, T )

is given by

WN (ξ0, qi0 , ξT , qiT
, T ) = min

0≤k≤N
V K(ξ0, qi0 , ξT , qiT

, T ) .

For a more detailed treatment of the presented approach

including the computational procedure associated with the

derived recursive equation, cf. Theorem 1, the reader is

referred to [15]. Moreover, note that stochastic approaches

to similar problems were proposed in [16], [17].

V. EXAMPLES

Finally, two examples illustrate the theoretical results of

the previous sections. First, a bimodal system is chosen

showing the phenomenon of “bouncing back” at a switching

manifold. Second, an example of a state space partitioned

into three regions is considered

Example 1: The planar state space X ⊂ R
2 is divided

into two regions D1 = {x | (1 2) x > 4.5} and D2 =

e22

e21

e12

e11

1 2

Fig. 4. Transition Automaton Considered in Example 1

{x | (1 2) x < 4.5} . The system is driven between the

points ξ0 = (−1 1)T ∈ D2 and ξT = (0 3.5)T ∈ D1

with an unconstrained input u(t) ∈ R, where the transition

behavior is determined by the automaton in Figure 4 and the

system dynamics are given by

ẋ =















(

0 0.25
−3 −0.5

)

x +

(

−10
100

)

u, x ∈ D1

(

0.5 0.1
−10 −0.5

)

x +

(

0
1

)

u, x ∈ D2.

The final time is T = 1.8 , with the maximum number

of switches being given by N = 3. The particular cost

function (7) under consideration is the control energy of

the control signal ℓ(x(t), u(t)) = u(t)2. The numerical

solution is obtained by discretizing the time interval [0, T ]
into 18 equally spaced temporal steps and by discretizing the

switching manifold m(1,2) : (1 2) x = 4.5 into 40 equally

spaced spatial steps over the interval x1 ∈ [−2, 2].

Figure 5 shows the intermediate results, i.e., the optimal

solutions for a given fixed number of switches M ∈ {1, 2, 3},

with their corresponding costs V M (ξ0, q2, ξT , q1, T ). The

phenomenon of “bouncing back” at the switching manifold

can be observed in the cases M = 2 and M = 3,

Figure 5.2 and Figure 5.3, respectively. Using (IV), these

results lead to the final optimal solution with the associated

cost W 3(ξ0, q2, ξT , q1, T ). The optimal solution is obtained

when M = 1 with the corresponding optimal cost be-

ing W 3(ξ0, q2, ξT , q1, T ) = V 1(ξ0, q2, ξT , q1, T ) ≈ 3.865 .
However, it is straightforward to construct examples for

which the optimal solution does in fact involve multiple

switches, as shown in [11].

Example 2: As depicted in Figure 2, the state space X ⊂
R

2 is divided by two parallel lines m(1,2) : (−1 1) x =
−0.5 and m(2,3) : (−1 1) x = −2 resulting

in the three regions D1 = {x | − 0.5 < (−1 1) x},

D2 = {x | − 2 < (−1 1) x < −0.5}, and D3 =
{x | (−1 1) x < −2}. The system is driven between the

points ξ0 = (−0.5 0)T ∈ D1 and ξT = (−1.1 −4)T ∈ D3

with an unconstrained input u(t) ∈ R under the system

dynamics

ẋ =



































(

−1 2
−5 1

)

x +

(

0
1

)

u, x ∈ D1

(

0.5 1
−0.05 −0.25

)

x +

(

0
1

)

u, x ∈ D2

(

0 0.25
−3 −0.1

)

x +

(

0
1

)

u, x ∈ D3.

With T = 6.7 and N = 2, according to the automaton

in Figure 2, the only possible string of discrete control

inputs is w = e12e23. Using the same cost function as in
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5.1: M = 1 , V 1(ξ0, q2, ξT , q1, T ) ≈ 3.865
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5.2: M = 2 , V 2(ξ0, q2, ξT , q1, T ) ≈ 3.866
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x
2 D1
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ξT

−1 −0.5 0

1

1.5

2

2.5

3

3.5

5.3: M = 3 , V 3(ξ0, q2, ξT , q1, T ) ≈ 3.867

Fig. 5. Optimal Trajectories of Example 1 for a Given Fixed Number of Switches M ∈ {1, 2, 3} – The solid line shows the optimal trajectory, the
dashed line presents the switching manifold, and the circles depict the switching points.

x1

x
2

D1

D2
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ξ0

ξT

−1

0

0 1

2

2

−6

−4

−2

Fig. 6. Optimal Trajectory of Example 2 – The solid line shows the optimal
trajectory, the dashed and dotted lines present the switching manifolds
m(1,2) and m(2,3) , respectively, and the circles depict the switching points.

Example 1, the numerical solution is obtained by discretizing

the time interval [0, T ] into 67 equally spaced temporal

steps and by discretizing the switching manifold m(1,2) and

m(2,3) into 40 equally spaced spatial steps over the interval

x1 ∈ [−1.5, 2.5]. The resulting optimal solution is given in

Figure 6 and W 2(ξ0, q1, ξT , q3, T ) ≈ 0.039 .

VI. CONCLUSIONS

This paper presented a Hybrid Bellman Equation for

hybrid systems with regional dynamics. This equation thus

provided a characterization of global optimality in a hybrid

setting, in which the control variable consisted not only of

the continuous control signal, but also of a decision variable

dictating what regions the system should switch between. A

number of examples were also presented that illustrate the

use of the proposed method.
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