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LIMITED BENEFIT OF JOINT ESTIMATION IN MULTI-AGENT

ITERATIVE LEARNING

Angela P. Schoellig, Javier Alonso-Mora, and Raffaello D’Andrea

ABSTRACT

This paper studies iterative learning in a multi-agent framework, wherein
a group of agents simultaneously and repeatedly perform the same task.
Assuming similarity between the agents, we investigate whether exchanging
information between the agents improves an individual’s learning performance.
That is, does an individual agent benefit from the experience of the other
agents? We consider the multi-agent iterative learning problem as a two-
step process of: first, estimating the repetitive disturbance of each agent; and
second, correcting for it. We present a comparison of an agent’s disturbance
estimate in the case of (I) independent estimation, where each agent has access
only to its own measurement, and (II) joint estimation, where information of
all agents is globally accessible. When the agents are identical and noise comes
from measurement only, joint estimation yields a noticeable improvement in
performance. However, when process noise is encountered or when the agents
have an individual disturbance component, the benefit of joint estimation is
negligible.

Key Words: Multi-agent learning, iterative learning control, information
exchange, estimation, Kalman filter.

I. INTRODUCTION

Exploiting previous experience when repeatedly
executing the same task is a logical way to improve
future performance in the presence of repetitive, unmod-
eled disturbances. Iterative learning control (ILC), as
first proposed in [1], achieves precise tracking behavior
by effectively incorporating past control information
(such as applied input signals and measured outputs)
when calculating the feedforward control action used
in the next iteration [2, 3]. One way of viewing ILC is
as a two-step process of estimation and control: first
identifying the unknown repetitive disturbance and later
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compensating for it [4–9]. LQG-type solutions have
been proposed in [10–13], which estimate the tracking
error and, based on this result, calculate a new input
trajectory by minimizing a quadratic cost function.

While ILC has proven to be successful in a
variety of industrial applications (including chemical
process control, rotary systems and robotics), we
have yet to identify if – and how – ILC schemes can
be generalized when facing homogeneous groups of
agents or assemblies of similar units (for example,
robot arms in an industrial environment, or a fleet of
mobile robots in a warehouse [14, 15]). In other words,
how can we cope with uncertainties in a multi-agent
framework? Is there a benefit of exchanging informa-
tion between the agents? What kind of information
sharing makes sense? Cooperative iterative learning
schemes were previously proposed in [16]. Recently,
ILC was applied to multi-agent systems, cf. [17],
with the goal of achieving formation control. While it
has been established that the joint performance of all
agents is fundamental to the formation problem, this
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paper focuses on the potential for individual agents
to improve their performance when conducting a task
alongside a group of similar agents conducting the
same task. Preliminary results were first published in
[18]. Analogous questions were previously studied in
the context of reinforcement learning (see [19]).

The results of our research show that the passing
of information between agents has limited benefit for a
large class of problems. This conclusion is based upon a
comparison of independent learning with a cooperative
scheme, where information about all agents is globally
accessible to every other agent. Similarity between
the agents is assured by assuming that they have the
same nominal dynamics and share a common iteration-
independent disturbance; however, they differ in an
additional individual disturbance component that is
also constant across iterations. We introduce iteration-
dependent noise terms that account for measurement
and process noise, and obtain results for two limit
cases: (i) pure process noise, and (ii) pure measurement
noise. The benefits of information sharing are negli-
gible in (i). For (ii),we observe a greater improvement in
performance when a high similarity between the agents
is guaranteed. From this point, we are able to deduce
the properties of the general mixed-noise case. In short,
individual agents in an ILC framework do not, in most
cases, benefit significantly from information sharing
when simultaneously learning the same task.

The paper is organized as follows: Section II
formalizes the multi-agent iterative learning problem
and reduces it to a comparison of independent versus
joint estimation. Section III compares both scenarios
and presents the core result of the paper in terms of
an upper bound on the performance improvement due
to joint estimation. Several numerical examples are
presented in Section IV visualizing the derived analyt-
ical results. The work is summarized in Section V,
whereas proofs are partly presented in the Appendix.

II. PROBLEM STATEMENT

2.1 Motivation

We begin by considering a group of N agents that
simultaneously and repeatedly perform the same task. A
common way of describing an agent’s dynamics during
a single run is the so-called lifted system representation
[20–22]. For each agent i ∈I={1,2, . . .,N}, the input-
state relationship is modeled by a static matrix equation,

xi = Fiui +di , (1)

whichmaps a given discrete-time input signal ui=[ui (0),
ui (1), . . .,ui (T )]T∈R(T+1)nu to the corresponding

lifted states xi ∈R(T+1)nx . In this context, (T +1)
samples represent a single iteration and nu and nx
denote the dimension of the input and state, respec-
tively. The vectors xi and ui are defined as the
deviation from the desired task trajectory and the
corresponding nominal input (see for example [9]).
The vector di represents an exogenous disturbance
constant across iterations, which captures model errors
along the trajectory as well as repeating disturbances
and nonzero initial conditions [3, 23, 24]. We include a
non-repetitive noise signal �ij in model (1) to account
for process noise, which varies from trial to trial.
Introducing the iteration index j ∈{1,2, . . .}, the state
in the j th trial is given by

xij = Fiuij +di +�ij , (2)

where �ij is assumed to be zero-mean Gaussian white

noise. The vector di is viewed as an agent-dependent,
normally-distributed random signal.

The agents’ output yij is corrupted bymeasurement
noise and similarly represented in the lifted domain,

yij =Gixij +�ij , (3)

where �ij is zero-mean Gaussian white noise. Similar to

xij and uij , the output yij is interpreted as the deviation
from the nominal output trajectory.

Note that (2) and (3) might be the result of
linearizing the agent dynamics about a desired task
trajectory. Refer to [9, 25] for a more detailed deriva-
tion.

In the above context, the goal of the iterative
learning algorithm is to make the state xij (that is, the
deviation from the desired task trajectory) small or,
more precisely, to reduce xij with an increasing number
of iterations j . The performance of each individual
agent is gradually improved by taking into account all
information on previous iterations when estimating the
disturbance vector di . As the accuracy of the distur-
bance estimate increases, a more appropriate open-loop
input is determined, thereby compensating for the
deficiencies in the modeled dynamics represented by
the matrix Fi . From xij , conclusions can be drawn as
to the performance of execution j .

We now consider a homogeneous fleet of agents
with the same nominal dynamics:

Fi = F

Gi = I ∀ i ∈I,
(4)

where I denotes the identity matrix. That is, the state is
assumed to be measured directly. Differences between
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the agents are captured in the disturbance vector di ,
which is composed of a common part d0 that is identical
for all agents, and an individual part di,ind ,

di =d0+di,ind ∀ i ∈I . (5)

In this context, the question arises: Does an individual
agent benefit from sharing information with its compan-
ions? To what degree can the disturbance estimate di

be improved by taking into account the measurements
of the other agents?

2.2 Simplified model

Our main objective and central problem is to iden-
tify the disturbance di for each agent i in the presence
of both process and measurement noise. Based on the
disturbance estimate, it is possible to find the correcting
input uij that best compensates for the repetitive distur-
bance using a problem-specific optimization criterion
(see for example [9]). Importantly, the correcting input
uij applied in each iteration is known. Focusing on the
estimation problem, we consider a condensed form of
the above multi-agent system representation (2)-(3),

xij = di +�ij (6)

yij = xij +�ij , (7)

which features the key noise and disturbance charac-
teristics, but omits the known part Fuij without loss of
generality. Equations (6) and (7) are summarized by

yij =di +�ij , (8)

where �ij =�ij +�ij captures both process and measure-
ment noise.

Moreover, assuming independence of the single
entries in the vectors di and �ij and identical noise char-
acteristics, the problem reduces to the scalar case,

yij =d0+di,ind +�ij , (9)

where all variables are scalar valued. The probability
distributions are given by

d0 ∼ N(0,�)

di,ind ∼ N(0,�)

�ij ∼ N(0, 1), �,�≥0,

(10)

where all quantities, �ij , i∈I, j∈{1,2, . . .}, di,ind , i∈I,

and d0, are assumed to be mutually independent. The
notation N(0, �) represents a normal distribution with
mean 0 and variance �. Note that in (10), the variance
of the individual disturbance di,ind is assumed to be

identical for all agents i ∈I. Without loss of generality,
the variances are normalized such that the variance of �ij
is 1. For the variances of the process and measurement
noise, this results in

�ij ∼ N(0,�)

�ij ∼ N(0,1−�), 0≤�≤1,
(11)

assuming independence between �ij and �ij . A value
�=1 represents the case of encountering only process
noise, whereas �=0 reflects the case where the noise is
due to measurement only.

2.3 Independent vs. joint estimation

As the number of trials and measurements
increases, more information about the system is
collected, allowing an increasingly accurate estimate
of the agents’ constant noise terms di , i ∈I. Two
limiting approaches might be taken when solving the
estimation problem: (I) independent estimation, and
(II) joint estimation.

In the case of independent estimation (I), each
agent i individually estimates its disturbance di taking
only its own measurements yij , j ∈{1, 2, . . .}, into
account. That is, information on the individually
obtained measurements is not exchanged between the
agents.

In the joint case (II), the acquired measurement
data of each agent is made available to all other
agents; that is, every agent receives the information
about all other agents’ measurements. Based on this
global knowledge, we can design a joint estimation
scheme that exploits the measurements of all agents
and provides estimates di for every agent i ∈I. A
vector D, reflecting the estimation objective in this
case, is defined as: D=[d0,d1, . . .,dN ]T∈R(N+1). The
measurements of all agents in the j th trial are combined
in Y j =[y1j , y2j , . . ., yNj ]T and, analogously, the noise

vector Vj =[�1j ,�2j , . . .,�Nj ]T is introduced. Based on
this representation, the joint estimation problem can be
formulated as a Kalman filter problem, cf. [26, 27]:

Dj = Dj−1 ∀ j≥1

Y j = HDj +Vj ,
(12)

where H =[0, I ] is a matrix with zeros in the first
column concatenated with an identity matrix of appro-
priate dimensions. The Kalman filter returns an unbi-
ased state estimate D̂ j for j ≥1 that minimizes the trace
of the error covariance matrix

Pj = E
[
(Dj − D̂ j )(Dj − D̂ j )

T
]
, (13)
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of trial j , taking measurements Ym , 1≤m≤ j , into
account. E[·] denotes the expected value. The initial
values are obtained from (10); in particular,

D̂0=[0,0, . . .,0]T (14)

and the initial covariance matrix P0=[p(k,l)
0 ], k, l ∈

K={0,1, . . .,N}, is
P0= E

[
D0D

T
0

]
(15)

with

p(k,l)
0 = E

[
dkdl

]
= E

[
(d0+dk,ind)(d0+dl,ind )

]
,

where d0,ind =0. Recalling the mutual independence
of d0 and di,ind for all i ∈I, the initial covariance is
given by

p(k,l)
0 =

{
�+� for k= l≥1

� otherwise.
(16)

The variances � and �, which reflect the original noise
characteristics (10), serve as initial values. Note that
the above derivations do not place further assumptions
or restrictions on how information is shared between
agents; the information yij of each agent is available to
every other agent. In other words, we are investigating
the ideal case of centralized, joint estimation within an
optimal filtering context.

Equally important is that the independent estima-
tion problem (I) is just a special case of the cooperative
framework (II) with N =1.

In both cases, (I) and (II), the variance of an indi-
vidual’s disturbance estimate at iteration j is given by

E
[
(di − d̂ i

j )
2
]
= p(i,i)

j = p(1,1)
j , ∀ i ∈I, (17)

where D̂ j =[d̂ i
j ], i ∈I, and Pj =[p(k,l)

j ],k, l ∈K. The
variance is identical for all agents, since for each agent
the same assumptions on the dynamics (9) and the
initial noise characteristics (10) are made. The vari-
ance of an individual’s disturbance (17) indicates the
quality of the disturbance estimate. In the general case,
(2)-(3), this value influences the effectiveness of the
disturbance compensation, since the input update rule
of the ILC algorithm is based on the current estimate
d̂ i
j ; for example, by a relation as follows (see [9]):

uij+1=argmin
u

∣∣∣∣∣∣Fiu+ d̂ i
j

∣∣∣∣∣∣ . (18)

Below, we distinguish between the individual distur-
bance variance p(1,1)

j in the case of joint and indepen-

dent estimation, where the latter is given when evalu-
ating p(1,1)

j for N =1, i.e.

p(1,1)
j

∣∣∣
N=1

. (19)

Thus, the initial question can be reformulated: To
what degree does joint estimation benefit the individual
learning of an agent?

III. RESULT

We compared the learning performance based on
(I) independent and (II) joint estimation, via the vari-
ance of the state xij given all past measurements. This
value indicates the accuracy of the tracking behavior in
each iteration j . We investigated the benefits of infor-
mation sharing and used, as our basis for the investi-
gation, two limiting cases of (8): (i) encountering pure
process noise, and (ii) dealing with measurement noise
only. From these benchmark examples, we were able to
deduce properties for the general mixed-noise case in
Section IV and draw conclusions about the advantages
of passing information in an ILC framework.

In order to compare the independent estimation
result (I) with the joint estimation result (II), we derived
an analytical expression for p(1,1)

j .

Proposition 1. The error variance of an agent’s distur-
bance p(1,1)

j can be expressed in terms of the initial
variances � and �, the number of agents N, and the
iteration j ,

p(1,1)
j = �+�+ j�2+ j N��

(1+ j�)(1+ j�+ j N�)
. (20)

The result is obtained by solving the Kalman filter equa-
tions for (12) with initial conditions (14) and (16).

A detailed proof is found in the Appendix.
Next, we use the relation (20) to derive an upper

bound on the performance improvement due to joint
estimation. Two limiting cases are considered: (i) pure
process noise and (ii) pure measurement noise.

3.1 Pure process noise

We assumed perfect measurements, i.e. �ij =0 in

(7) and �=1 in (11). The noise �ij is interpreted as pure

process noise, �ij =�ij . The performance of independent
(I) vs. joint (II) estimation is analyzed through the vari-
ance of the state estimate. As mentioned in Section 2.1,
the goal of ILC is to reduce the value xij . This is achieved
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best if the variance in the estimate of xij is small. That
is, the variance of the state estimate can be used as a
measure of learning performance. Given (6) and (10),
the best estimate of the state x̂ i

j at iteration j is equal

to the current disturbance estimate d̂ i
j ,

x̂ i
j = d̂ i

j , (21)

since the noise �ij has zero mean. Recalling the noise
characteristics (10) and the previous assumption of
mutual independence between di and �ij , we obtain the
variance of state estimate from the sum of the variance
of the estimate d̂ i

j and the variance of �ij . That is, with
(17) and (11),

E
[
(xij − x̂ i

j )
2
]

= E
[
(di +�ij − d̂ i

j )
2
]

= p(1,1)
j +�,

(22)

where �=1 in the pure process noise case. We introduce
the performance index (for the pure process noise case)
as the ratio of the state variance in the independent case
vs. the joint case,

Rproc=
p(1,1)
j

∣∣∣
N=1

+1

p(1,1)
j +1

, (23)

using the notation of (19).
The following theorem can be stated:

Theorem 1. The bounds on the performance improve-
ment due to joint estimation (vs. independent estima-
tion) are given by

1≤ Rproc≤ 1+ j

j
∀�,�,N, j, (24)

where the best performance improvement occurs when
N →∞, �→∞, and �=0. In this case, Rproc =
(1+ j)/j .

Interpretation of the result:

◦ The performance improvement due to joint esti-
mation has an upper bound which is valid for all
possible combinations of �,�,N , and j .

◦ Joint estimation is most beneficial if the agents’
common disturbance component dominates and
the individual noise component is negligible
compared to the process noise; this corresponds
to a large common noise variance � and a small
individual component �
1.

◦ The largest possible improvement in performance
is a factor of 2, which is obtained only in the first
iteration. With more iterations, the performance

index rapidly decays to 1. In other words, the more
often the agents perform a task, the less beneficial
the exchange of information is.

◦ Intuitively, the result shows that if the agents are
different, the measurements of the other agents
do not provide significant information for an indi-
vidual’s performance improvement. If the agents
are almost identical, however, ‘averaging’ the
measurements of the agents via a joint estimation
still has no ‘visible’ effect, since the process noise
directly corrupts the value of interest, xij ; see (6).

Moreover, independent estimation and learning (I) is
robust to uncertainties in the initial noise assumptions
(10). Note that the variance of an individual’s distur-
bance in the independent case depends solely on the
sum (�+�), cf. (20) with N =1. In other words, the
assumption on how the disturbance di is decomposed in
d0 and di,ind , does not enter the result. It does, however,
affect the joint estimation.

To conclude, there is little benefit of sharing infor-
mation in the case of pure process noise.

Proof. Based on the closed-form representation in (20),
Theorem 1 is proven by introducing Rproc as a function
of j , �, �, and N ,

Rproc
j (�,�,N)= p(1,1)

j (�,�,1)+1

p(1,1)
j (�,�,N)+1

. (25)

Recalling the properties

�,�≥0 and j,N ∈{1,2, . . .}, (26)

we note that p(1,1)
j (�,�,N)≥0 for all possible argu-

ments. By taking partial derivatives of Rproc
j (�,�,N), it

can be shown that

�Rproc
j (�,�,N)

�N
≥0 (27)

and Rproc
j (�,�,N) is bounded by

Rproc
j (�,�,∞) := lim

N→∞Rproc
j (�,�,N) (28)

with

Rproc
j (�,�,∞)

=
(
1+ �+�

1+ j (�+�)

)(
1+ �

1+ j�

)−1

.

Secondly, it is shown that

�Rproc
j (�,�,∞)

��
≥0 (29)
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with

Rproc
j (∞,�,∞) := lim

�→∞ Rproc
j (�,�,∞)

=
(
1+ 1

j

)(
1+ �

1+ j�

)−1

,

that is Rproc
j (�,�,N)≤ Rproc

j (∞,�,∞). Finally, with

�Rproc
j (∞,�,∞)

��
≥0, (30)

and

Rproc
j (∞,0,∞)=1+ 1

j
,

statement (24) is proven,

Rproc
j (�,�,N)≤ Rproc

j (∞,0,∞)

for all �, �, N , and j . The lower bound is obtained
for N =1, cf. (27). Matlab and Mathematica files
for reproducing the results below are available at
www.idsc.ethz.ch/Downloads/multiagentILC. �

3.2 Pure measurement noise

We studied the system properties under the
assumption of zero process noise, i.e. �ij =0 in (6) and

�=0 in (11), and interpreted �ij as pure measurement

noise, �ij =�ij . Following the derivation (22), the ratio
of the state variances (for the pure measurement noise
case) is given by

Rmeas=
p(1,1)
j

∣∣∣
N=1

p(1,1)
j

. (31)

The following theorem can be stated:

Theorem 2. The bounds on the performance improve-
ment due to joint estimation (vs. independent estima-
tion) are given by

1≤ Rmeas≤N ∀�,�,N, j, (32)

where the best performance improvement occurs when
�→∞ and �=0, for all N , and j . In this case,
Rmeas=N .

Interpretation of the result:

◦ Again, an upper bound of the performance index is
found which is valid for all possible combinations
of �, �, N , and j . However, the upper bound does
not depend on the number of iterations.

◦ Joint estimation is most beneficial if the agents’
common disturbance component dominates and
the individual noise component is negligible
compared to the measurement noise; this corre-
sponds to a large common noise variance � and
a negligible individual component �
1. The
largest possible improvement in performance is a
factor of N .

◦ Intuitively, the result shows that if the agents
are very similar (�
1), joint estimation has a
‘visible’ effect. The measurement noise is ‘aver-
aged out’ and, moreover, does not corrupt the
performance result, xij , directly; see (7). A signifi-
cant improvement in the individual’s performance
can be achieved.

Joint estimation is beneficial when considering a large
group of almost identical agents, where the indi-
vidual disturbance is small compared to the measure-
ment noise.

Proof. The proof of Theorem 2 proceeds similarly to
the proof in Section 3.1. With (20), the performance
index Rmeas is given as a function of j , �, �, and N ,

Rmeas
j (�,�,N)= p(1,1)

j (�,�,1)

p(1,1)
j (�,�,N)

. (33)

Partial derivatives are directly computed, where

�Rmeas

��
≤0,

�Rmeas

��
≥0,

�Rmeas

�N
≥0, (34)

with (26). In addition, the limiting property for �=0 is

Rmeas
j (�,0,N)= 1+� j N

1+� j

and

lim
�→∞ Rmeas

j (�,0,N)=N ∀ j,N.

The lowerbound isobtained forN=1, cf. (34).Matlaband
Mathematica files for reproducing the results are avail-
able at www.idsc.ethz.ch/Downloads/multiagentILC. �

IV. NUMERICAL EXAMPLES

Characteristic features of the performance indices,
Rproc and Rmeas, are highlighted by showing selected
numerical examples. In the subsequent considerations,
the general mixed-noise case is included and put in
context with the results for (i) pure process and (ii) pure
measurement noise.
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The performance index for the mixed-noise case
with 0≤�≤1, cf. (11), is derived analogously to (22)
and (23):

Rmix=
p(1,1)
j

∣∣∣
N=1

+�

p(1,1)
j +�

. (35)

A comparison of the three performance indices, Rproc,
Rmix, and Rmeas, shows that

Rproc≤ Rmix≤ Rmeas ∀�,�,N, j, (36)

since �∈[0,1] and, from (20),

p(1,1)
j ≤ p(1,1)

j

∣∣∣
N=1

∀�,�,N, j. (37)

An intuitive explanation for (36) is that the process noise
�ij directly corrupts the value of interest, state x

i
j , which

represents the deviation from the desired trajectory and
is aimed to be small. The measurement noise �ij acts on

the output yij . In this case, multiple agents are beneficial
in order to average out the measurement noise.

In Figs 1 to 3, the evolution of the performance
indices, Rproc, Rmix, and Rmeas, is shown for different
pairs of � and �. A group of N =10 agents is consid-
ered and �=0.1 is chosen for the mixed-noise case.
Even for this small value of �, we observe a noticeable
degradation of the performance index Rmix (compared
with Rmeas). Note that the scaling of the vertical axis
changes in the plots presented. The figures highlight the
relationship (36). For the limiting case j →∞, �>0,
we observe

lim
j→∞Rmix=1. (38)

Note that the mixed-noise case includes the special
cases of pure process and pure measurement noise. In
fact, if the number of iterations increases, the benefits
of joint estimation become negligible. This result can
be derived analytically from (20) and (35). As stated in
Theorem 2, for the limiting case �=0,

lim
j→∞Rmeas=N. (39)

Thus, we observe that joint estimation yields a signif-
icant improvement in performance only if the agents
are identical, �=0, and the system dynamics are not
corrupted by process noise, see Fig. 1(a). Moreover,
Fig. 1 shows how the behavior of Rproc, Rmix, and
Rmeas change, if the individual disturbance component
� is gradually increased from zero for a given common
disturbance �. The relation

�Rmeas

� j
>0 ⇔ �(�+�N)<

1

j2
, (40)

Iteration

Pe
rf

or
m

an
ce

in
de

x

1 10 20 30 40 50 60

2

(b)

(a)

(c)

4

6

8

10

Iteration

Pe
rf

or
m

an
ce

in
de

x

1 10 20 30 40 50 60

2

4

6

8

10

Iteration

Pe
rf

or
m

an
ce

in
de

x

1 10 20 30 40 50 60
1

1.1

1.2

1.3

Fig. 1. Evolution of the performance indices for N =10
agents: pure measurement noise Rmeas (solid line),
mixed noise case Rmix with �=0.1 (dashed-dotted
line), and pure process noise Rproc (dashed line):
(a) �=1, �=0; (b) �=1, �=0.01; and (c) �=1,
�=1.

derived from (20) and (31), provides insight in the
evolution of the performance index Rmeas. Figure 1
shows that the performance indices, which represent
the performance improvement due to joint estimation,
decrease with larger values �. The relation,

�Rmix

��
≤1, (41)

is derived from (20) and (35), where the mixed-noise
case includes the special cases of pure process and pure
measurement noise. The variances of the common and
individual disturbance component, � and �, must be
interpreted in relation to the variance of the noise �ij
which is normalized to 1; see (10). Figure 1(c) shows the
evolution of the performance indices if the disturbance
variances have the same value as the noise variance. If
both disturbance variances, � and �, are smaller than
the noise variance, a behavior as shown in Fig. 2(a) is
obtained. Figure 2(b) shows both disturbance variances
being larger than the noise variance.
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Fig. 2. Evolution of the performance indices for N =10
agents: pure measurement noise Rmeas (solid line),
mixed noise case Rmix with �=0.1 (dashed-dotted
line), and pure process noise Rproc (dashed line):
(a) �=0.1, �=0.1 and (b) �=10, �=10.

In Fig. 3, the two cases, �
1, ��1 and �
1,
��1, are depicted. Figure 3(a) underlines the fact that,
in the general case,

lim
�→0

Rmix=1, lim
�→∞

Rmix=1. (42)

In contrast, information exchange and joint estimation is
most beneficial when �→∞ and �=0; see Theorems 1
and 2. Fig. 3(b) shows a corresponding setting.

V. CONCLUSION

In this paper we considered a group of agents
which share the same dynamics and a common iteration-
independent disturbance, but differ in an additional
individual error component. In the context of having
these agents learn to perform an identical task, we
asked: How beneficial is it to exchange experience in
order to improve an individual agent’s learning perfor-
mance? We considered two cases: (I) independent
learning without information exchange and (II) learning
based on full information exchange between agents. In
the proposed framework, the question can be reduced
to the comparison of the disturbance estimate in the
case of independent estimation (I) and when solving
a global estimation problem for (II). An upper bound
for the performance improvement due to information
exchange is derived analytically and reflects the limited
benefit of sharing information in the given setup. In
the best case – where the noise is due to measurement
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Fig. 3. Evolution of the performance indices for N =10
agents: pure measurement noise Rmeas (solid line),
mixed noise case Rmix with �=0.1 (dashed-dotted
line), and pure process noise Rproc (dashed line):
(a) �=0.01, �=10 and (b) �=10, �=0.01.

noise only, the agent’s common disturbance dominates,
and the individual disturbance component is small
compared to the noise – joint estimation improves the
performance by a factor equal to the number of agents.
That is, instead of one agent performing a task N times,
N agents performing the task once results in the same
accuracy for the disturbance estimate. For the general
case and, in particular, in the presence of process
noise or a large individual disturbance component, the
benefits are shown to be limited.

APPENDIX A

We derive an explicit representation of the vari-
ance p(1,1)

j that depends only on �, �, j, and N as
presented in Proposition 1. Matlab and Mathematica
files for reproducing the results below are available at
www.idsc.ethz.ch/Downloads/multiagentILC.

Proof. A closed form of the covariance matrix Pj is
derived, cf. (16) and (17). Since noise is assumed to have
the same characteristics for each agent, by symmetry,

p(k,l)
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p(0,0)
j if k= l=0

p(0,1)
j if kl=0 and k = l

p(1,1)
j if k= l =0

p(1,2)
j otherwise.

(A1)
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We obtain the previous values by solving the filter
equations, cf. [26, 27],

Q j = H Pj−1H
T + I

K j = Pj−1H
T Q−1

j

Pj = (I−K j H)Pj−1,

(A2)

where Q j =[q(k,l)
j ], k, l ∈I and K j =[k(k,l)

j ], k∈K,
l ∈I. With (A1) and (A2), the matrix Q j and its inverse

Q−1
j =[m(k,l)

j ] are directly computed,

q(k,l)
j =

⎧⎨⎩1+ p(1,1)
j−1 if k= l

p(1,2)
j−1 otherwise

m(k,l)
j =

⎧⎨⎩m(1,1)
j if k= l

m(1,2)
j otherwise,

(A3)

where

m(1,1)
j = 1+ p(1,1)

j−1 +(N−2)p(1,2)
j−1

n1n2

m(1,2)
j = −p(1,2)

j−1

n1n2

(A4)

with

n1 =
(
1+ p(1,1)

j−1 − p(1,2)
j−1

)
n2 =

(
1+ p(1,1)

j−1 +(N−1)p(1,2)
j−1

)
.

(A5)

With this, the filtering matrix K j is given by

k(k,l)
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k(0,1)
j if k=0

k(1,1)
j if k= l

k(1,2)
j otherwise,

(A6)

where

k(0,1)
j = p(0,1)

j−1

(
m(1,1)

j +(N−1)m(1,2)
j

)
k(1,1)
j = p(1,1)

j−1 m
(1,1)
j +(N−1)p(1,2)

j−1 m
(1,2)
j

k(1,2)
j = p(1,1)

j−1 m
(1,2)
j + p(1,2)

j−1 m
(1,1)
j

+(N−2)p(1,2)
j−1 m

(1,2)
j .

(A7)

From (A2), the following values for Pj are found,

p(k,l)
j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p(0,0)
j if k= l=0

p(0,1)
j if kl=0 and l =k

p(1,1)
j if k= l =0

p(1,2)
j otherwise

(A8)

with

p(0,0)
j = p(0,0)

j−1 −Np(0,1)
j−1 k

(0,1)
j

p(0,1)
j = p(0,1)

j−1 + p(1,1)
j−1 k

(0,1)
j

−(N−1) p(1,2)
j−1 k

(0,1)
j

p(1,1)
j = (1−k(1,1)

j

)
p(1,1)
j−1

−(N−1) p(1,2)
j−1 k

(1,2)
j

p(1,2)
j = (1−k(1,1)

j

)
p(1,2)
j−1 −k(1,2)

j p(1,1)
j−1

−(
N−2)p(1,2)

j−1 k
(1,2)
j .

(A9)

We prove the desired symmetry and obtain the following
values for (A1) by induction, using (A8) with starting
condition (16):

p(0,0)
j = (1+ j�)�

1+ j�+ j N�

p(0,1)
j = �

1+ j�+ j N�

p(1,1)
j = �+�+ j�2+ j N��

(1+ j�)(1+ j�+ j N�)

p(1,2)
j = �

(1+ j�)(1+ j�+ j N�)
.

(A10)

The only value of interest is p(1,1)
j . �
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