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Min-Max Vertex Cycle Covers With Connectivity
Constraints for Multi-Robot Patrolling

Jürgen Scherer , Angela P. Schoellig , Member, IEEE, and Bernhard Rinner , Senior Member, IEEE

Abstract—We consider a multi-robot patrolling scenario with
intermittent connectivity constraints, ensuring that robots’ data
finally arrive at a base station. In particular, each robot traverses a
closed tour periodically and meets with the robots on neighboring
tours to exchange data. We model the problem as a variant of
the min-max vertex cycle cover problem (MMCCP), which is the
problem of covering all vertices with a given number of disjoint
tours such that the longest tour length is minimal. In this work, we
introduce the minimum idleness connectivity-constrained multi-
robot patrolling problem, show that it is NP-hard, and model it
as a mixed-integer linear program (MILP). The computational
complexity of exactly solving this problem restrains practical appli-
cations, and therefore we develop approximate algorithms taking a
solution for MMCCP as input. Our simulation experiments on 10
vertices and up to 3 robots compare the results of different solution
approaches (including solving the MILP formulation) and show
that our greedy algorithm can obtain an objective value close to the
one of the MILP formulations but requires much less computation
time. Experiments on instances with up to 100 vertices and 10 robots
indicate that the greedy approximation algorithm tries to keep the
length of the longest tour small by extending smaller tours for data
exchange.

Index Terms—Multi-robot systems, path planning for multiple
mobile robots or agents, surveillance robotic systems.

I. INTRODUCTION

MANY multi-robot patrolling applications (e.g., search
and rescue, surveillance) require a set of robots to travel

around in the environment and visit points of interest (sensing
locations [SL]) periodically. The idleness of an SL at a certain
time instant is defined as the time that passed since the last visit
of the SL by a robot. The goal is to minimize the worst idleness
defined as the maximum idleness over all SLs over an infinite
time horizon.

In some surveillance applications, it is not only important that
SLs get visited periodically but also that the data captured by the
robots arrives at a base station (BS) in due time, e.g., in disaster
response scenarios [1]–[3]. If the communication range of the
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Fig. 1. Legend:� Start position of a robot, • sensing location (SL), ◦ vertex,
� base station (BS), −−− tour edge, −−− connectivity edge. (a) Solution for
MIMP with 5 robots. The center tour is patrolled by 2 robots. The upper right
tour consists of 2 SLs, and the robot travels back and forth along the edge. The
lower left SL is a tour on its own where the robot does not move. (b) Solution for
MICP with 5 robots. Additional vertices are added to the tours such that robots
can communicate with other robots. The selected vertices, which are not SLs,
and connectivity edges ensure that data from each robot reaches the BS. Note
that the connectivity edges form a tree of tours (denoted as tour tree) including
the BS.

wireless transceivers is smaller than the surveillance area or is
limited by obstacles, robots need to coordinate when and where
to meet for data exchange.

In this work we consider two problems: minimum idle-
ness mixed strategy multi-robot patrolling (MIMP) and min-
imum idleness connectivity-constrained multi-robot patrolling
(MICP). MIMP describes the problem of partitioning a graph
and finding tours on the partitions such that the worst idleness
is minimized. The term mixed describes that the solution also
defines how many robots should patrol a tour, which can result
in a solution using two different strategies: a single robot on a
tour or multiple robots on a tour traveling in the same direction.1

MICP describes the problem of partitioning a graph and finding
tours on partitions such that robots can also communicate and
the data arrives at a BS. This might require introducing ver-
tices, which are not SLs, to tours such that robots are within
communication range. In contrast to MIMP, only one robot is
assigned to a tour. Fig. 1 depicts the MIMP and MICP problems.
Although we define and describe both problems formally, this
work focuses on complexity, algorithm design, and simulation
experiments for MICP only.

The problems considered in this work are variants of the root-
less (without a common start/end depot for all robots) min-max
vertex cycle cover problem (MMCCP) [4]. The objective is to
find closed vertex disjoint paths of minimum maximal length
covering all the vertices of a graph with a given upper bound on
the number of paths. This problem is NP-hard [5].

1Special cases that can arise are robots that are assigned to a single vertex and
do not move or robots moving back and forth between vertices
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Fig. 2. Legend: � Robot, � BS, −−− connectivity, © tour. Example of a
multi-robot patrolling scenario with data forwarding towards the BS at three
time instances from left to right. The robots move along tours and exchange
data with robots on neighboring tours. Positions and directions of a robot on its
tour is indicated by the tip of the triangle.

MICP requires scheduling of the robots on the tours such that
they meet at particular locations and can exchange information.
To ensure that data from each robot eventually arrives at the BS,
the data from each robot must travel on a store-and-forward path
toward the BS. For this purpose, a tour tree has to be selected,
which uniquely defines which robots should meet where. In
Fig. 1 a the tours are linked with connectivity edges such that a
tour tree emerges. In such a tour tree, each robot has a unique
robot closer to the BS to which it sends its data. Fig. 2 illustrates
the scheduling of the robots on the tours.

Data latency is defined as the time between capturing data
at an SL and its arrival at the BS and is another optimization
criterion for MICP. The problem of tour finding and scheduling
robots on their tours such that the latency is minimized can be
decoupled to reduce complexity. MICP addresses the problem
of finding tours that ensure that the data arrives at the BS, the
minimization of the latency by determining the direction each
robot should traverse its tour is described in [6].

The contributions of this work are as follows: (i) We formally
define the problems MIMP and MICP as mixed-integer linear
programs (MILP). To the best of our knowledge, this has not
been done for rootless vertex cycle covers (Section III). (ii)
We show that MICP and the related problem of extending a
solution for MMCCP, such that it forms a valid solution for
MICP, is NP-hard (Section IV). (iii) We formulate an approx-
imation algorithm for MICP based on extending a solution for
MMCCP (Section V). In addition, we assess the performance of
different algorithms, including solving the MILP formulation,
in simulation experiments (Section VI).

II. RELATED WORK

Different strategies for multi-robot patrolling on predefined
tours have been investigated in the literature: (i) A single path
through all SLs is partitioned into segments, and each segment is
traversed by a robot moving back and forth along its segment [7].
(ii) Robots travel equally spaced along a single closed tour
through all SLs in the same direction [8], [9]. (iii) The SLs are
partitioned into disjoint subsets, one for each robot, and each
robot travels along a closed tour through a subset of SLs [8], [9].
Our MIMP approach is able to combine all strategies in a single
formulation. Chevaleyre [8] shows that using a single closed
tour is not suitable for graphs with long edges and a partitioning
of the graph in vertex disjoint subgraphs, one for each robot, is
preferable. Our e-MICP heuristic follows this approach and can
avoid traveling along long edges if the data gathered can be sent
to other robots over a wireless link.

Acevedo et al. [10] consider the problem of information
propagation in a multi-UAV persistent surveillance scenario.
Each UAV follows a closed path in a subarea of a grid-partitioned
area, and UAVs exchange information when they are at the
borders of their subareas. The graph resulting from the partition
of the area is bipartite, which guarantees that the UAVs can
be synchronized for data exchange. In [6], we developed a
scheduling algorithm for minimum latency data forwarding for
robots moving on predefined tours. In this work, we complement
our previous work by planning the patrolling tours such that
the data can be forwarded to a BS. Other works that consider
recurrent connectivity for data propagation have been developed
for task visitation [11] and distributed state estimation [12].
However, in these works the subgroups of robots that have to
meet are predefined. The MILP for task allocation in [13] also
implements data routing policies and transmission schedules for
throughput maximization to a BS. In contrast to our work, the
problem is solved only for a limited mission horizon and cannot
model patrolling tasks with unspecified duration. Single-hop
forwarding of data (each UAV sends its data directly to a BS from
a site in communication range to the BS) with the aim of latency
minimization for patrolling has been considered in [14], [15].
The effectiveness of this approach depends to a large extent on
the distance between the BS and the SLs and works best when
the communication sites are not too far from the SLs (see [6]
for a discussion and experiments on store-and-forward versus
single-hop data transport).

MMCCP is NP-hard and several approximation algorithms
have been developed. Farbstein and Levin [16] developed a (4 +
ε)-approximation, Xu et al. [5] a (16/3 + ε)-approximation, and
Yu and Liu [4] a (15/3 + ε)-approximation. A rooted version
of the problem has been used for multi-robot path planning for
bridge inspection [17].

III. PROBLEM FORMULATION

A set R := {1, . . . , r} of robots is available for patrolling
an environment by moving between predefined locations. The
environment is modeled as a graph with vertex set V defining
possible locations of robots and two different sets of edges,
EM = V × V and EC ⊆ EM . The complete undirected graph
GM := (V,EM ) has a weight ω(i, j) associated with each edge
(i, j) ∈ EM (short ωij) modeling the time it takes for a robot
to travel with unit speed on the shortest path between vertices
i ∈ V and j ∈ V . The edges EC model the connectivity of the
vertices, and we define GC := (V,EC). An edge (i, j) ∈ EC

indicates that robots located at vertices i and j at the same time
can communicate with each other. We assume that multiple
robots can be at the same vertex at the same time and that
robots can traverse edges without collisions. We assume that
robots located at the same vertex can communicate with each
other, i.e., (i, i) ∈ EC , ∀i ∈ V . The set of SLs VS ⊆ V have
to be visited by the robots periodically, and VC := V \ VS can
be used to establish connectivity. We define a vertex induced
subgraph GM 〈VS〉 as the graph containing only vertices VS and
the respective edges from the set EM (and analog for GC).

Definition 1: (Tour, tour length) An m-tuple, i.e., |t| =
m, of mutually distinct vertices t = (v1, . . . , vm) is called a
tour, its length is defined as ω(t) :=

∑
i=1,...,m−1 ω(vi, vi+1) +

ω(vm, v1).
Definition 2: (Worst idleness) Given a set of r′ tours of

vertices from V , and the number of robots rk assigned to each
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tour tk = (vk1 , . . . v
k
|tk |), for k = 1, . . . , r′, the worst idleness is

defined as I({tk}, {rk}) := maxk=1...r′ {ω(tk)/rk}.
Definition 3: (MIMP) MIMP is the problem of finding a

disjoint set {tk} of r′ tours on VS (i.e., each v ∈ VS is part
of exactly one tour) and the number of assigned robots rk for
each tour tk (such that r ≥∑

k=1,...,r′ rk) with minimum worst
idleness I({tk}, {rk}).

Definition 4: (Tour graph, tour tree, meeting point) Two tours
ti and tj are connected if the tours contain vertices v ∈ ti and
w ∈ tj , and (v, w) ∈ EC . The edge (v, w) is called meeting
point. If the tours are interpreted as vertices of a tour graph GC

T ,
there is an edge between two vertices of GC

T if the respective
tours are connected. If GC

T is a tree, it is called a tour tree.
Definition 5: (MICP) MICP is the problem of finding a set
{tk} of r′ ≤ r tours on V , with minimum I({tk}, {rk}) and the
additional constraints that each v ∈ VS occurs in at least one
tour, all rk = 1, and the tours form a tour tree.

The tours are traversed by the robots continuously. For
MICP these tours can also contain vertices from VC to establish
connectivity between tours. The robot traversing the longest
tour can continuously move while robots traversing shorter tours
might have to wait at meeting points to communicate with robots
on neighboring tours. However, the worst idleness is not larger
than the length of the longest tour (see [6]), which we therefore
consider as the minimization criterion in the remainder of this
work.

In the following subsections, we provide MILP formulations
for MIMP and MICP, which can be used as input for integer
programming optimization software.

A. Minimum Idleness Mixed Strategy Patrolling (MIMP)

This section introduces the MILP formulation of MIMP,
which is extended to the MICP formulation in the following
section. The formulation makes use of two concepts named
vertex potentials and artificial vertices. Potentials are numbers
associated with each vertex on a tour and have been used
in formulations of traveling salesperson problems (TSP) and
vehicle routing problems (VRP) [18]. The potentials increase
along a tour, and the difference between the potentials of two
consecutive vertices is at least the respective edge weight inEM .
We introduce artificial vertices that allow to close the tour and
decrease the potential at a single vertex on a tour for MICP or
for multiple vertices (one for each robot) for MIMP. Together
these two concepts allow us to model and minimize the length
of a closed tour by minimizing the largest potential (see an
illustration in Fig. 3).

For MIMP, we assume that data transfer is either not required
or is always possible (e.g., the communication range is large
enough). Therefore, no additional vertices need to be included
to enable data transfer among the tours, i.e., VS = V .

For every vertex i ∈ V we introduce an artificial vertex ī and
denote the set of artificial vertices with V ′. In the following, an
artificial vertex from V ′ corresponds to the vertex of V with the
same symbol, i.e., ī ∈ V ′ corresponds to i ∈ V .

The MILP model contains binary decision variables xij for
arcs of a directed extended graph with vertices V ∪ V ′ and the
following arc set Ê with the arc weights ω̂ij :
� (i, j) ∈ Ê and (j, i) ∈ Ê,∀(i, j) ∈ EM , with ω̂ij =
ω̂ji := ωij

Fig. 3. (a) An example of node potentials of a solution for a closed tour for one
robot (MIMP, MICP) of length 14. The vertices and the corresponding artificial
vertices are numbered from 1 to 4 and 1 to 4, respectively. The arrows correspond
to the selected edges (xij or xk

ij ). The numbers next to the edges depict the
weight ωij , and the red numbers above the nodes depict the node potential ui

of the solution. (b) A solution of a closed tour for two robots (MIMP) with an
idleness of 12.

� (i, j̄) ∈ Ê,∀i ∈ V, j̄ ∈ V ′, with ω̂ij̄ := ωij (note that

(i, ī) ∈ Ê and ω̂īi := 0)
� (̄i, i) ∈ Ê,∀i ∈ V , with ω̂īi := 0

The variable xij = 1 if and only if the edge (i, j) ∈ Ê is part
of a tour. An artificial vertex with an outgoing edge defines the
starting point of a robot. The model below allows at most r
starting points and at least one starting point on every tour.

A continuous decision variable ui is defined for every v ∈
V ∪ V ′ and describes a vertex potential along a tour similar
to the Miller-Tucker-Zemlin subtour elimination constraints for
traditional TSP or VRP problems [18]. In our case, the purpose
is not to eliminate subtours but to describe the worst idleness of
a vertex on a tour patrolled by one or multiple robots.

Artificial vertices allow decreasing the node potential along
a tour. In the traditional VRP formulations, this is only possible
for the depot, which ensures that each tour starts and ends at
the depot. In our formulation, at most r artificial vertices can
be selected, and an artificial vertex corresponds to the starting
position of a robot on a tour. An artificial vertex ī has only one
outgoing edge to i, and a tour entering ī must continue to i. This
formulation allows multiple robots to traverse a tour if the worst
idleness can be decreased in this way. The MIMP problem is
formally defined as follows:

min I (1a)

s.t.
∑

j∈(V \{i})∪{̄i}
xji = 1 ∀i ∈ V (1b)

∑

j∈(V \{i})∪V ′
xij = 1 ∀i ∈ V (1c)

∑

j∈V
xjī = xīi ∀ī ∈ V ′ (1d)

∑

i∈V
xīi ≤ r (1e)

ui − uj +Mxij ≤M − ω̂ij ∀i ∈ V, j ∈ (V ∪ V ′) (1f)

ui ≤ I ∀i ∈ V ∪ V ′ (1g)

xij ∈ {0, 1} ∀(i, j) ∈ Ê (1h)

ui ≥ 0 ∀i ∈ V ∪ V ′. (1i)
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The objective is to minimize the worst idleness I (line 1a)
which is bounded by the potential of each vertex ui (con-
straint (1g)). The constraints (1b) and (1c) are degree constraints
and force that every vertex from V is part of exactly one tour.
The degree constraint (1d) ensures that if there is an outgoing
edge from ī, there is also an incoming edge (note that there is
only one outgoing edge of ī in Ê, namely (̄i, i)). Constraint (1e)
ensures that there are at most r vertices ī ∈ V ′ with an outgoing
edge. Constraint (1f) forces that the potentialuj of a vertex j is at
least ui + ω̂ij if the edge (i, j) is part of the tour. M is a number
that is large enough such that the constraint has no effect when
xij = 0, e.g., M :=

∑
i,j∈V ωij . This constraint does not cover

edges (̄i, i), i.e., whenever a tour passes through an edge (̄i, i),
the potential of i is not forced to be the same as the potential of
ī.

A solution to the MIMP problem can be interpreted as follows.
A robot is placed at each vertex i ∈ V with an incoming edgexīi,
and all robots start to traverse the tour at the same time towards
the direction of the edge xij . In the case that j = ī, the robot
does not move and stays on the vertex i. The worst idleness is
then I .

B. Minimum Idleness Connectivity-Constrained Patrolling
(MICP)

If the vertex induced subgraph GC〈VS〉 is connected, there
are no vertices in addition to the SLs required, and the problem
can be solved for V := VS only. Then for every pair of tours,
there exist two vertices i ∈ VS and j ∈ VS , which are not on the
same tour, such that (i, j) ∈ EC .

The formulation for MICP uses three-index variables xk
ij ,

which describe whether a particular robot k ∈ R traverses an
edge (i, j), and two-index vertex potentials uk

i . The difference
to the MIMP formulation is that every tour is traversed by exactly
one robot. The optimization problem is defined as:

min I (2a)

s.t.
∑

k∈R

∑

j∈(V \{i})∪{̄i}
xk
ji ≥ 1 ∀i ∈ VS (2b)

∑

j∈(V \{i})∪{̄i}
xk
ji ≤ 1 ∀i ∈ V, k ∈ R (2c)

∑

j∈(V \{i})∪{̄i}
xk
ji =

∑

j∈(V \{i})∪V ′
xk
ij

∀i ∈ V, k ∈ R (2d)
∑

j∈V
xk
jī = xk

īi ∀ī ∈ V ′, k ∈ R (2e)

∑

i∈V
xk
īi ≤ 1 ∀k ∈ R (2f)

uk
i − uk

j +Mxk
ij ≤M − ω̂ij

∀i ∈ V, j ∈ (V ∪ V ′), k ∈ R (2g)

uk
i ≤ I ∀i ∈ V ∪ V ′, k ∈ R (2h)

xk
ij ∈ {0, 1} ∀(i, j) ∈ Ê, k ∈ R (2i)

uk
i ≥ 0 ∀i ∈ V ∪ V ′, k ∈ R. (2j)

Constraint (2b) ensures that each SL is visited by a robot.
Constraints (2c)-(2e) are the degree constraints for each tour.
Constraint (2f) ensures that at most one artificial vertex is used
for a tour.

To describe connectivity, we extent the formulation above by
the binary variables x̃ij , ∀i, j ∈ V and the constraints:

(i, j) /∈ EC ⇒ x̃ij = 0 ∀i, j ∈ V (3a)
∑

j∈V
x̃ij ≤

∑

k∈R

∑

j∈V ∪V ′
xk
ji ∀i ∈ V (3b)

∑

k∈R
xk
ij ≤ r (1− x̃ij) ∀i, j ∈ V. (3c)

Constraint (3b) ensures that x̃ij is zero if i has no incoming
edge from a tour. This means that no data can be sent along this
edge if i is not visited by a robot. Constraint (3c) states that
if there is an edge x̃ij , the corresponding edge (i, j) cannot
be part of a tour. The combination of variables x̃ij and xk

ij
allows to model the data flow from each SL to the BS where
the information is either carried by a robot k along edge (i, j)
(xk

ij = 1) or transmitted from one robot to another (x̃ij = 1).
To model the data flow, a tree has to be selected from the

combined edge set from x̃ij and xk
ij . We use the following multi-

commodity flow formulation [19] to ensure that the tours are
connected:

fv
ij ≤

∑

k∈R
xk
ij + x̃ij ∀i, j ∈ V ∪ V ′, v ∈ VS (4a)

∑

i∈V ∪V ′
fv
ib −

∑

i∈V ∪V ′
fv
bi = 1 ∀v ∈ VS (4b)

∑

i∈V ∪V ′
fv
iv −

∑

i∈V ∪V ′
fv
vi = −1 ∀v ∈ VS (4c)

∑

i∈V ∪V ′
fv
iw −

∑

i∈V ∪V ′
fv
wi = 0

∀v ∈ VS , w ∈ (V ∪ V ′) \ {v}. (4d)

The continuous flow variable fv
ij models a flow originating

from each v ∈ VS on the edges for all i, j ∈ V ∪ V ′. Con-
straint (4a) ensures that there is no flow if neither any edge
xk
ij (for all k ∈ R) nor x̃ij between i and j is selected. Con-

straint (4b) restricts the difference between inflow and out-
flow for each flow of type v at the BS b to one, i.e., the BS
is the sink of all flows of type v ∈ VS . Constraint (4c) restricts
the difference between outflow and inflow of a flow of type v to
one at v ∈ VS , i.e., each v ∈ VS is the source of one unit of flow
of type v. Constraint (4d) states that the amount of inflow equals
the amount of outflow at a vertex w for each flow of type v not
originating atw. The MICP formulation comprises the objective
(2a) and constraints (2b)-(4d).

IV. COMPLEXITY ANALYSIS

If (VS , EC) is a complete graph, MICP is equivalent to the NP-
hard min-max cycle cover problem (MMCCP) [5] and therefore
MICP is NP-hard as well. A solution of an MMCCP is defined
by a set of tours, one for each robot, such that each SL appears
on exactly one tour (this is equivalent to MIMP with all rk = 1).
The optimal solution has the smallest possible longest tour which
is the cost of the solution. We show that even the problem of
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Fig. 4. Legend: • Sensing location (SL), ◦ vertex,�BS, — tour, · · · · · · poten-
tial tour extension, — connectivity edge. Reduction from 3-SAT instance c1 ∧
c2 ∧ c3 = (χ1 ∨ χ2 ∨ χ3) ∧ (χ1 ∨ χ2 ∨ χ4) ∧ (χ2 ∨ χ3 ∨ χ4) to e-MICP
drawn in 3D space. (a) Tours for clauses ci and variables χj with a meeting
point between the variable tours and the BS and potential meeting points between
the clause and variable tours. (b) Top: potential extension for each variable on
each side (“north” and “south”) towards the z-direction to connect clause tours
causing an additional length of 1 of the variable tour. Bottom: Details for a tour
extension (north or south) of variable χj .

Fig. 5. Legend: • Sensing location (SL), ◦ vertex, � base station (BS),−−−
connectivity edge, + obstacle. Randomly generated scenario with 5 obstacles.

constructing a feasible MICP solution with minimum cost from
a solution of MMCCP is NP-hard. We define this problem as:

Definition 6: (e-MICP) Given a solution {tk} for MIMP with
all rk = 1, e-MICP is the problem of inserting vertices from VC

into the tours (without changing the relative order of the original
vertices), resulting in a set {t′k}, such that the tour graph is a tree
and such that I({t′k}, {rk}) is minimum.

Theorem 1: e-MICP is NP-hard.
Proof: We describe a reduction from a 3-SAT instance with

clauses ci and variables χj to e-MICP (see Fig. 4 for an
illustrative example of a reduction).GM andGC are constructed
such that there is a tour of length L for each clause ci and each
variable χj , and there is no edge from EC between the tours,
except between each variable tour χj and the BS. There are
potential meeting points between a clause tour and the tours of
the variables contained in the clause. The meeting points are
either on the “north” or “south” part of the tour depending on
whether the variable occurs not negated (χj) or negated (χj).
For each variable tour, it is possible to extend the tour (i.e.,
inserting vertices from VC) in the north or south part resulting
in connecting all clause tours with potential meeting points in
the north or south part to the variable tour. By construction, each
extension increases the tour length by 1, and all other extensions
(e.g., the clause tours towards the variable tours) cause the
respective tour length to increase by more than 1. Fig. 4(b,
bottom) depicts the graph construction for one extension (south
or north) of a variable χj that appears (negated or not negated)
in clauses ci1 , ci2 , . . .. The lengths of the edges (s2j , s3j ) and (s4j ,
s1j ) in EM are 0.5. The length of (s3j , s4j ) is larger than 1 and is
equal to (s1j , s2j ). The lengths between any sj,ik and s1j or s2j are
larger than the length of (s1j , s2j ). The lengths between vj,ik and
sj,ik or any other vertex on the variable tour are larger than 0.5
(for clarity not all edges are shown in Fig. 4(b)). A vertex vj,ik
with an edge to sj,ik from EC lies on the clause tour cik . The

question is whether there is a solution with a worst idleness of
L+ 1, which is only possible if each variable tour is extended
either on the north or south part.

On the one hand, a solution of the 3-SAT instance decides
where to extend the variable tours, namely on the north/south
part if the variable is true /false, resulting in a worst idleness
of L+ 1. On the other hand, a feasible solution for MICP with a
worst idleness of L+ 1 determines also a solution for 3-SAT by
assigning true /false to a variable if a variable tour is extended
on the north/south part, respectively. �

V. APPROXIMATION ALGORITHMS

The following approximation algorithms take as input a
solution for the MMCCP obtained from the original problem
containing only the SLs as input. Since the original MMCCP
does not include any connectivity constraints between the tours,
our proposed algorithms modify the solution to ensure these
constraints.

A. MILP Formulation for e-MICP

The MILP formulation for e-MICP is an extension of the
MICP formulation from Section III-B. The solution for MMCCP
consists of a set of toursT = {t1, . . . , tr′ }, with r′ ≤ r, and tk =
(vk1

, vk2
. . . , vk|tk |). The following constraints are derived from

this solution and ensure increasing node potentials uki
along a

tour for each robot k (constraints (5a)-(5c)). These constraints
fix the order of the SL vertices to the order given by tour tk
and therefore allow to reuse all the constraints of the MICP
formulation:

uk
k1

= 0 ∀k ∈ {1, . . . , r′} (5a)

uk
ki
− uk

ki+1
≤ − ω̂kiki+1

∀k ∈ {1, . . . , r′}, ∀i ∈ {1, . . . , |tk| − 1} (5b)

uk
k|tk |
− uk

k1
≤ − ω̂k|tk |k1

∀k ∈ {1, . . . , r′} (5c)

xk1k1
= 1 ∀k ∈ {1, . . . , r′} (5d)

xk
kiki+1

= 0

∀k ∈ {1, . . . , r′}, ∀i ∈ {1, . . . , |tk| − 1}. (5e)

The constraints force the visit of the artificial vertex k1
corresponding to the vertex k1 on each tour by including the
edge xk1k1

(any vertex could be chosen for each tour) and
excluding all other edges into artificial vertices (constraints (5d)
and (5e)). The e-MICP formulation comprises the objective (2a)
and constraints (2b)-(5e) and is a constrained version of MICP
of finding the meeting points between tours such that the length
of the longest tour is minimized.

B. Greedy Heuristic for e-MICP

Our algorithm EMICP (see Algorithm 1) greedily selects a
pair of tours in each iteration which are connected by extending
each tour to meeting points (either a single vertex on both tours
or a pair of vertices which have a connectivity edge, one on
each tour) until the tour tree contains all tours. First, in line 1 a
min-max cycle cover problem is solved on the vertex induced
subgraph GM 〈VS〉, which results in a set of tours T to which a
virtual BS tour containing only the BS (b) is added. In the loop
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Algorithm 1: EMICP.
Input: SLs VS , movement graph GM , connectivity graph
GC , BS vertex b, number of robots r

Output: tour tree GT

1: T ←MMCCP (GM 〈VS〉, r) ∪ {(b)}
2: GT ← empty tour tree, r′ ← |T |
3: while |E(GT )| < r′ do
4: GC

T ←
MINCONNECTIV ITY TOURGRAPH
(GM , GC , T )

5: t1, t2 ← SELECTEDGE (GC
T , GT )

6: t′i ← insert mi in ti if mi /∈ ti, i ∈ {1, 2}
7: T ← (T ∪ {t′i}) \ {ti}, i ∈ {1, 2}
8: add (t1, t2) to E(GT )

starting in line 3, r′ − 1 (the number of actual tours excluding the
BS tour) edges are added to the edge set E(GT ) of an initially
empty tour tree GT . To this end, a tour graph GC

T containing an
edge for each pair of current tours from T is computed (line 4)
where the weight of the edge is the minimal possible increase in
the maximum tour length when connecting two tours at potential
meeting points. From this tour graph an edge, i.e., a pair of tours
(t1, t2), is selected such that GT remains a tree (line 5). The
meeting vertices are denoted by (m1,m2) and are inserted in
each tour (at the position determined in line 7 of Algorithm 2,
i.e., between vi and wi for the corresponding element in Di) if
they are not part of the respective tour already (line 8).

Algorithm EMICP makes use of the routines listed in Al-
gorithms 2 and 3, respectively. MinConnectivityTour-
Graph iterates over all pairs of consecutive vertices v1, w1 and
v2, w2 on all pairs of tours t1, t2, respectively, and computes
the increase in tour length if a pair of potential meeting vertices
m1 and m2 (either there is an connectivity edge between them
or m1 = m2) is inserted between the consecutive vertices on
each tour, respectively (line 7 and 8). The minimum increase of
the length required to connect each pair of tours is recorded by
selecting the minimum from the set Di for each tour ti (line 9).
The respective weights ξ(t1, t2), ξ(t2, t1) in the tour graph GC

T
are updated accordingly (line 10).
SelectEdge deletes the edges of the tour graph GC

T com-
puted by MinConnectivityTourGraph that would result
in a cycle in the tour tree GT or are already in the tour tree by
setting the edge weight ξ′ to ∞. Then, the minimum weight
edges from the remaining edges are collected in the set M
(line 4). For each edge (t1, t2) in M the meeting points m1

and m2 computed in Algorithm 2, line 7 are inserted in t1 and
t2, respectively, and the new tours are added to M ′ (in loop of
line 6). Finally, the pair of tours from M ′ that have the smallest
maximum length are selected as new edge (t̃1, t̃2) for the tour
tree GT (line 9). In the preceding description of the algorithm,
the virtual BS tour requires a separate treatment because this
tour cannot be extended since it is not traversed by a robot (note
that the BS vertex b can be on a tour of a robot as two tours can
be connected by a single vertex, i.e., m1 = m2 = b). We omit
this treatment in the pseudo code for brevity and clarity reasons.

Theorem 2: The runtime of Algorithm 1 is in O(r · (|V |5 +
r3)).

Proof: Line 8 in Algorithm 2 is executed |V |2 times for each
(m1,m2) ∈ E(GC) (which hasO(|V |2) elements), in total |V |4
times. Computing the lengths of the tours t′i requires O(|V |)

Algorithm 2: MinConnectivityTourGraph.
Input: movement graph GM , connectivity graph GC , BS
vertex b, tours T

Output: tour graph GC
T with weights ξ(e), e ∈ E(GC

T )
1: GC

T ← tour graph with V (GC
T ) = T,E(GC

T ) =
T × T

2: for t1, t2 ∈ T, t1 �= t2 do
3: Di ← ∅, i ∈ {1, 2}
4: for (m1,m2) ∈ E(GC) ∪ {(v, v)|v ∈ V (GC)} do
5: for each consecutive vertices v1, w1 on tour t1 do
6: for each consecutive vertices v2, w2 on tour t2

do
7: t′i ← ti with edge (vi, wi) replaced by egdes

(vi,mi), (mi, wi), i ∈ {1, 2}
8: Di ← Di ∪ {len(t′i)− len(ti)}, i ∈ {1, 2}
9: ξ(t1, t2)← minD1, ξ(t2, t1)← minD2

10: update ξ(t1, t2) and ξ(t2, t1) in E(GC
T )

Algorithm 3: SelectEdge.

Input: tour graph GC
T with weights ξ(e), e ∈ E(GC

T ),
current tour tree GT

Output: tours to connect t̃1, t̃2
1: ξ′(e)← ξ(e) ∀e ∈ E(GC

T )
2: for e ∈ E(GC

T ) do
3: if e ∪ E(GT ) has cycle or e ∈ E(GT ) then

ξ′(e)←∞
4: M ← {e|e ∈ E(GC

T ) with ξ′(e) =
mine′∈E(GC

T ){ξ′(e′)}}
5: M ′ ← ∅
6: for (t1, t2) ∈M do
7: t′i ←insert mi in ti, i ∈ {1, 2} �see Algorithm 2,

line 7
8: M ′ ←M ′ ∪ {(t′1, t′2)}
9: (t̃1, t̃2)← arg min(t1,t2)∈M ′ {max{len(t1), len(t2)}}

steps, which results in O(|V |5) steps. Checking for cycles for
each edge in the tour graph in Algorithm 3, line 3 requiresO(r3)
steps (using e.g., breadth-first search). �

VI. RESULTS

This section compares the different algorithms for e-MICP in
terms of worst idleness and computation times. We generate
GM and GC from randomly sampled vertex coordinates in
the two-dimensional plane. The first algorithm MICP-MILP
solves the MILP formulation of MICP (Section III-B) with the
integer program solver SCIP (we use the parallelized version
fscip, which is able to use all available CPU cores)2. Algo-
rithm EMICP-MILP uses an initial MMCCP solution and the
additional e-MICP constraints (Section V-A). Algorithm MICP-
MILP-TL (time limited) returns the best-found solution given
the same computation time EMICP-MILP requires to solve the
same instance. We also include these results to get an indication
of whether solving the problem from scratch can give better
results than solving the problem e-MICP with suboptimal initial
tours for MMCCP. We also include the algorithm MMCCP,

2[Online]. Available: https://www.scipopt.org/

https://www.scipopt.org/
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Fig. 6. Mean and standard deviation (narrow vertical lines) over 10 instances of the objective values of EMICP for a larger scenario.

Fig. 7. Comparison of MMCCP and EMICP (mean and standard deviation over 10 instances) for a larger scenario. The upper plot shows the increase of objective
values and the lower plot the total increase of tour lengths from MMCCP to EMICP.

which we used to get the initial tours for EMICP (Section V-B)
and EMICP-MILP, and which is an implementation of [4]. We
implemented all algorithms in Python (we used the package
pyscipopt3 as interface to SCIP/fscip) and used a computer with
an Intel i7-9700 K (8 cores, 3.6 GHz) CPU and 32 GB of RAM.

For the first scenario, the coordinates for 10 vertices are sam-
pled from the square [0, 1]× [0, 1], and five of them are randomly
selected as SLs. The BS coordinates are fixed at (0, 0). There is
a connectivity edge between two vertices with a probability of
0.8 if the Euclidean distance between them is smaller than 0.3.
The traveling distance between two vertices is the Euclidean
distance. Sampling is repeated 10 times and each instance is
solved for r ∈ {1, 2, 3} robots resulting in 30 instances in total.
Despite the small scenario, MICP-MILP was not able to find
the optimal solution within a time limit of 3 hours (10800 s) per
instance for almost all instances with r ∈ {2, 3}. EMICP-MILP
was able to find the optimal solution within the same time limit
for almost all instances. The mean objective values (length of the
longest tour) and the computation times with standard deviations
are shown in Table I.4 It shows that the objective values for
EMICP-MILP and EMICP are comparable and that solving the
problem from scratch results in worse solutions compared to

3https://github.com/scipopt/PySCIPOpt
4We do not show the computation times for MMCCP and EMICP since the

values are considerably below 1 s for each instance.

TABLE I
COMPARISON OF DIFFERENT ALGORITHMS ON A SMALL SCENARIO WITH

MEAN AND STANDARD DEVIATION OVER 10 INSTANCES

solving the problem from initial tours with the same computation
time (see EMICP-MILP and MICP-MILP-TL).

The next scenario contains 10, 20, . . . , 100 vertices with ran-
domly sampled coordinates (except the BS with coordinates
(0, 0)) from the square [0, 1]× [0, 1] from which 40% are
SLs. The scenario contains five cross-shaped obstacles of size
0.3× 0.3 (see Fig. 5). There is a connectivity edge between two
vertices if they are within the range 0.2, 0.18, . . . , 0.02 (depend-
ing on the number of vertices) and the straight line between them
is not blocked by an obstacle. The distance between two vertices

https://github.com/scipopt/PySCIPOpt
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is the shortest path passing around obstacles. We sample again
10 sets of coordinates for each number of vertices and solve
the problem for r ∈ {2, 4, 6, 8, 10}. Fig. 6 shows the means and
standard deviations of the objective values for each number of
vertices and robots. As expected, the objective values tend to
decrease with increasing number of robots. Fig. 7 compares
the values for the MMCCP solution used as input to EMICP
with the values for EMICP. The upper plot shows the differences
in the objective values IEMICP − IMMCCP . The lower plot
shows the sum of the differences in length over the tours which
result from inserting vertices to connect the tours. Comparing
the two plots, we can see that, especially for the instances with
higher number of vertices, EMICP is able to keep the original
length of the longest tour by extending shorter tours. EMICP
requires at most 3 seconds of computation time for an instance,
despite the large exponents in Theorem 2.

VII. CONCLUSION

We model the problem of multi-robot patrolling with con-
nectivity constraints as a variant of the min-max vertex cy-
cle cover problem (MMCCP), where each robot traverses a
closed tour repeatedly, and we introduce algorithms for finding
efficient solutions. Our approach provides a framework for
continuous multi-robot patrolling applications, which require
guaranteed data forwarding. The coordination effort between
robots is limited to pairwise regular encounters at meeting points
introduced by our algorithms. We show that the problem is
NP-hard. Solving the mixed-integer formulation to minimize
the longest tour requires large computation power even for
the smallest instances and suffers from exploding computation
times with increasing problem size. Therefore, we propose a
greedy approximation algorithm (EMICP) that starts from an
approximate solution for the MMCCP and connects pairs of
tours by extending the tours to meeting points until all tours
form a tree. Robots can exchange gathered data at meeting points
along the tree such that all data can finally arrive at a base station.
Our simulation experiments indicate that the algorithm is able to
keep the longest tour small by extending smaller tours. EMICP
requires a neglectable amount of computation time compared
to the MILP-based algorithms (MICP-MILP, EMICP-MILP)
but can achieve the same objective values as the MILP-based
approximation EMICP-MILP on small problem instances.

Potential future work will focus on investigating alterna-
tive heuristics, considering more advanced communication and
mobility models, and deriving theoretical guarantees for the
approximate solution.
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