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Abstract— In this paper we investigate the effect of the
unpredictability of surrounding cars on an ego-car performing
a driving maneuver. We use Maximum Entropy Inverse Rein-
forcement Learning to model reward functions for an ego-car
conducting a lane change in a highway setting. We define a new
feature based on the unpredictability of surrounding cars and
use it in the reward function. We learn two reward functions
from human data: a baseline and one that incorporates our de-
fined unpredictability feature, then compare their performance
with a quantitative and qualitative evaluation. Our evaluation
demonstrates that incorporating the unpredictability feature
leads to a better fit of human-generated test data. These results
encourage further investigation of the effect of unpredictability
on driving behavior.

I. INTRODUCTION

An increasing number of autonomous vehicles (AVs) have
started to be deployed in mixed traffic settings, where the
AV shares the same road with human-driven vehicles. To be
successful in these settings, the AV needs to understand and
predict the continuous chain of interactions between drivers.
Specifically, the AV needs to be able to predict the behavior
of other vehicles to seamlessly interact and arrive at its goal.

In a typical AV autonomy stack, a prediction model
generates information about the future of the surrounding
environment (e.g. location of adjacent vehicles, pedestrians,
road geometry) and supplies that information into a plan-
ning module to produce collision-free trajectories [1]–[4].
Therefore, the accuracy of the prediction model is critical
for safe AV operation. To this end, there has been much
progress in enabling accurate predictions [5]–[7]. However,
any model comes with uncertainty, and thus a number of
recent methods have focused on quantifying the uncertainty
and/or confidence of prediction models [8], [9]. The goal of
this uncertainty quantification is to avoid dangerous planning
caused by inaccurate predictions by switching to another
prediction model [9], or switching to a more conservative
planner [10]. While most methods investigate how to in-
corporate uncertainty into a robot’s autonomy stack, we
explore whether predictive uncertainty can provide insight
on the trajectories taken by human drivers in scenarios
where an adjacent driver is behaving erratically, and thus
unpredictably.
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Fig. 1: We compare a snapshot (at t = 3s) of ego car lane
change trajectories generated using the baseline (red) and the
unpredictability-aware (green) models, for identical adjacent cars
(gray and orange) and lanes. The history of each vehicle is
illustrated with decreasing opacity. The erratic adjacent vehicle
is perturbed to zigzag. We observe that the trajectory from the
unpredictability-aware model (green) delays changing into the target
lane and maintains a higher distance from the erratic car (orange)
than the baseline (red). Video at tiny.cc/unpredi.

In this paper we propose unpredictability as a feature for
a trajectory planning reward function. For an ego-vehicle
performing a trajectory, we measure the unpredictability
of each interacting adjacent car by using the performance
metrics of an off-the-shelf vehicle trajectory prediction model
[6]. We assume that if the off-the-shelf model performs
poorly on a particular adjacent car at a particular time, then
that car is behaving unpredictably and an ego-car should keep
its distance. Our intuition is captured in Fig. 1, where we
illustrate a snapshot of ego cars (red and green) performing
a simulated lane change in an identical scenario involving
an erratic adjacent car (orange). In the top figure, we can
see that in a trajectory generated without accounting for
unpredictability, the ego-car (red) maintains a lower distance
from the erratic car compared to the one in the bottom figure
where unpredictability is accounted for (green).

The main contribution of this paper is defining a re-
ward feature incorporating unpredictability and analyzing
human lane change behavior using an Inverse Reinforce-
ment Learning (IRL) approach. Using IRL, we learn two
reward functions for generating lane change trajectories:
an unpredictability-aware reward that includes the defined
feature and a baseline reward that does not. We demonstrate
that, compared to the baseline, the unpredictability-aware
reward generates trajectories that are more similar to those in
a human-generated dataset. We also analyze the qualitative
similarities between trajectories generated by the two rewards
and human trajectories in test scenarios with variable unpre-
dictable behavior by adjacent cars. This analysis provides
insights into the effect of the unpredictability feature.
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II. RELATED WORK

Modelling human driving behavior is explored from dif-
ferent perspectives in AV research.

Prediction and Forecasting: In the classical modular AV
design, the output of a prediction model is used in motion
planning [1]–[3]. In the field of prediction models for AVs,
many works use camera fed directly into Deep Neural Net-
work (DNN) architectures such as Long Short-Term memory
(LSTM) recurrent neural network architectures [11]–[13] or
Variational Auto Encoders (VAEs) [14]–[16] to forecast the
evolution of a scene. Other proposals use similar network
architectures with a variety of sensors, such as cameras or
LIDAR to represent the surrounding world as a Dynamic
Occupancy Grid Map (DOGMa) in 2D [17]–[19] or 3D [20].
A third group of prediction models focus on predicting time-
series trajectories (future positions and velocity) [5], [6],
[21]. In order to produce more accurate predictions, some
works explicitly account for interactions between the agents
[5], [6], and even account for the effect of an ego AV’s
plans on the predictions of future behavior by other agents
[21]. We propose tracking the predictive accuracy of the
model proposed in [6], which predicts trajectories of vehicles
driving on a highway, as an unpredictability measure that we
incorporate in a reward feature we describe in Section III-B.

Imitation Learning Approaches: Other methods focus on
imitating human driving styles by learning AV planning
models that imitate human behavior from data. A common
approach is to learn a parametric reward function represented
a weighted linear combination of nonlinear features [22],
[23] or a DNN [24] using a Maximum Entropy Inverse Re-
inforcement Learning (MaxEnt IRL) learning approach [25],
then use the reward function in a separate planner to optimize
trajectories that imitate human behavior. In contrast, end-to-
end methods forgo explicitly learning a reward function and
learn policies directly from human data [26], [27].

Feature-design Approaches: In contrast to the proposals
presented above that focus on how to generate driving
behavior, our work focuses on investigating what features
can be used to generate driving behavior. Among methods
that focus on feature design, the authors in [28] propose
maximizing the visibility of the ego-car in highway and
blind intersection scenarios. In a driving simulation, they
demonstrate that a visibility-aware AV slows down before
entering another vehicle’s blind spots. In [29], the authors
formalize a notion of being courteous to other interacting
drivers. They hypothesize that human drivers are in fact also
courteous. The authors test their hypothesis using an IRL
analysis, in the same way as this paper intends to do. Rather
than courtesy, we define the unpredictability of surrounding
traffic as a feature to incorporate in trajectory planning.

Uncertainty and Confidence: The concept of unpre-
dictability has also been studied in the context of estimating
model uncertainty and confidence for prediction models in
AVs and other robotics applications. Uncertainty estimation
methods include using Bayesian techniques to track a param-
eter that governs the variance of predictions [8], comparing
the output from an ensemble models [9], and tracking the

difference between predictions and actual outcomes [10],
[30]. The motivation behind these methods is to use the
estimate to enable downstream planning and control of the
AV to avoid dangerous actions caused by low-confidence
predictions.

In this paper, however, we investigate whether incorporat-
ing an estimate of unpredictability into a trajectory planner
could have the additional benefit of generating plans that are
more similar to human ones by generating more conservative
behavior when faced with an unpredictable adjacent vehicle.
The authors in [31] have shown that it is possible to learn
a driving policy by maximizing only the predictive accuracy
of the behavior of adjacent vehicles as the reward in a Re-
inforcement Learning (RL) approach. However, their model
is exclusively trained and tested in a simulator, and does not
use any human data. Therefore, the notion of predictability
in their proposal is limited to the driver models that coded
in the simulator. We focus on real human trajectory data and
compare trajectories generated by using a baseline reward
and an unpredictability-aware reward with trajectories from
a dataset of human lane changes.

III. PROBLEM FORMULATION

A. Lane Change Planning Problem

We formulate a lane change maneuver as trajectory opti-
mization. Concretely, we model the maneuver as a determin-
istic discrete-time optimal control task over a finite horizon,
K, and continuous state and action spaces. Starting from
an initial state, x0, that is known a priori, the optimization
problem can be written as,

max
x,u

K−1∑
k=0

R(xk,uk)

subject to xk+1 = f(xk,uk), k = 0 . . .K − 1

(1)

where (x,u) = ([x⊤
1 , . . . ,x

⊤
K ]⊤, [u0

⊤, . . . ,u⊤
K−1]

⊤) are the
sequences of states and actions in lifted notation, R is the
reward function, and f is the ego-vehicle dynamics.

System and Dynamics: We model the ego-vehicle with a
kinematic unicycle model. The state is xk =

[
xk, yk, ψk

]⊤ ∈
R3, where (xk, yk) is the two-dimensional position of the
ego-vehicle on a 2D map and ψk is its heading at time step
k. The control action is defined as uk =

[
vk, ωk

]⊤ ∈ R2,
where vk is the longitudinal velocity input and ωk is the
steering input of the car. We discretize time using the forward
Euler method with a sampling rate of δt = 0.1s to obtain
the dynamics model,

f(xk,uk) = xk + δt
[
vkcos(ψk), vksin(ψk), ωk

]⊤
. (2)

Reward Function: The reward function is formulated as a
linear combination of nonlinear reward features,

Rk(xk,uk) = θ⊤ϕ(xk,uk), (3)

where ϕ := [ϕ1, . . . , ϕp]
⊤ are a set of p features and each

feature is defined as a nonlinear function that incorporates
elements of the ego-vehicle’s surroundings that are relevant



to performing a lane change maneuver. The parameters θ :=
[θ1, . . . , θp]

⊤ ∈ Rp
≥0 provide the weight of each feature in

ϕ relative to the others.
We reviewed features commonly used for trajectory gen-

eration in highway driving. The authors in [32] present a
detailed survey of features. The features that compose our
baseline reward function are enumerated below,
1) Lateral deviation from target lane [29] is represented as,

ϕd := − exp

(
dk
w

)
, (4)

where dk is the distance from the position of the car, xk,
to the centerline of the target lane. We parametrize the
target-lane as a line and w is the average distance between
the centerlines of the current-lane and target-lane in the
vicinity of the lane change maneuver.

2) Deviation from the mean speed of traffic is represented
as,

ϕv := −(vk − vd)
2, (5)

where vd is the mean speed of the 4 closest adjacent
vehicles over the entire trajectory.

3) High angular speed is represented as,

ϕa := −ω2
k. (6)

4) Time To Collision (TTC) with preceding vehicles is rep-
resented as,

ϕp :=−
∑
i

h1(αi,k) exp

(
− 1

t2p

||xk − xi,k||2
v2k

)
, (7)

where i is the index of the two preceding vehicles,
and αi,k is the angle between the heading of the ego-
car and the vector xi,k − xk. The function h1(αi,k) =
exp (−cαi,k) when −π

2 ≤ αi,k ≤ π
2 , and 0 otherwise,

restricts penalizing TTC to preceding vehicles that are
in front of the ego-vehicle. The constants c and tp are
hyperparameters.

5) Time To Collision (TTC) with following vehicle is repre-
sented as,

ϕf :=−h2(xk) exp

(
− 1

t2f

||xf,k − xk||2
v2f,k

)
, (8)

where ·f is the index of the vehicle that follows behind
the ego-car in the target lane, and vf,k is its speed.
The function h2(xk) =

d2
k

w2 (with dk as in (4)) restricts
penalizing the TTC to the duration when the ego-vehicle
is crossing into the target lane (i.e. h2(·) > 0), but not
after being safely in front of the following vehicle.

B. Unpredictability Metric and Reward Feature

Most AVs that operate in human environments, use a
prediction model of the other agents’ behavior [33]. Our
approach to measuring predictability – which we call unpre-
dictability – uses the tracked performance of such prediction
models throughout a maneuver. We propose to take an off-
the-shelf prediction model that has been learned from human

data [6], then to use the performance of that model as a
heuristic for measuring predictability.

We calculate the mean Euclidean predictive error of the
prediction with respect to the ground truth and use this
value as the unpredictability metric. For adjacent vehicle i
at time k, we evaluate the predictive error of the prediction
made by the model at time k − tn. Then take the average
of the error from time k − tn to k as the unpredictability
measure. Concretely, for adjacent car i at time step k the
mean Euclidean predictive error is,

zi,k:=
1

tn

k∑
j=k−tn+1

√
(xi,j − x̂

(k−tn)
i,j )2 + (yi,j − ŷ

(k−tn)
i,j )2,

(9)
where tn is the number of time steps we look to the past, 0.2s
in our implementation, (x̂(k−tn)

i,j , ŷ
(k−tn)
i,j ) is the prediction

made at time k− tn by the model [6] of where car i would
be at time j, and (xi,j , yi,j) is the observed position of car
i at time j.

In order to incorporate the measure of unpredictability into
our baseline lane change reward function, we augment the
reward function with two additional features analogous to ϕp
and ϕf ,

7) Unpredictability-weighted TTC with preceding vehicles.

ϕpz :=−
∑
i

h1(αi,k) exp

(
− 1

t2p

||xk − xi,k||2−cpz2i,k
v2k

)
,

(10)
8) Unpredictability-weighted TTC with following vehicle.

Analogously, we define

ϕfz :=−h2(xk) exp

(
− 1

t2f

||xf,k−xk||2 − cfz
2
f,k

v2f,k

)
,

(11)

The intuition behind our formulation is that, if an adjacent
vehicle is behaving unpredictably, we expect the driver of
the ego-car to weigh a collision with them more highly. As
such, we use the unpredictability error (9) multiplied by a
constant (cp and cf , respectively) as an additional dynamic
weight on the baseline features.

IV. EXPERIMENTAL METHODOLOGY

The primary focus of this paper is to investigate the
effect of incorporating unpredictability on generated lane
change trajectories. We hypothesize that incorporating the
unpredictability feature in a lane change planner produces
trajectories that better fit to dataset of human lane changes.
We use an IRL approach to demonstrate this effect.

Independent Variable: We learn two reward functions
using the IRL algorithm that we will describe in Sec-
tion IV-B, on the same human lane change training data,
{(x(i)

e ,u
(i)
e )}Ni=0. We learn the vector θw ∈ R5

≥0 that
parametrizes the baseline reward function described in Sec-
tion III-A, and the vector θw+ ∈ R7

≥0 that parametrizes the
reward function that includes the additional unpredictability
feature, described in Section III-B.



Dependent Variable: We generate two sets of trajectories
that are optimal under the respective learned reward func-
tions, {(x(i)

w ,u
(i)
w )}Ntest

i=0 and {(x(i)
w+,u

(i)
w+)}Ntest

i=0 , in identical
test scenarios. Then, for each test scenario, we compare the
two generated trajectories from the learned models with the
human expert trajectory from that scenario by calculating
Mean Euclidean Error (MEE). For the test dataset, we calcu-
late the Average MEE, MEEw = 1

Ntest

∑Ntest
i=1

∑K
k=1 ||x

(i)
w −

x
(i)
e || for the baseline, and MEEw+ for the unpredictability-

aware model.

A. Lane Change Dataset Preprocessing

We use the human driving datasets, NGSIM US-101
[34] and I-80 [35] from the USA and the highD [36]
from Germany, which contain position, time, and lane label
information for each vehicle. The I-80 and US-101 datasets
are each split into three sections with increasing traffic
congestion, t0, t1, and t2.

Extracting Lane Changes: We denoise the dataset using
a symmetric exponential moving filter to smooth the paths
[37]. For each path in each dataset, we use finite differences
to calculate heading and linear and angular velocity. We
search the dataset for changes in the lane label of a vehicle,
tlc, and extract the trajectory of the ego-car conducting the
lane change on the interval t ∈ [tlc−2.0, tlc+5.0], which is
the typical duration of lane changes on the datasets [37].
We also extract the paths of four adjacent vehicles: two
vehicles preceding the ego-car before and after crossing into
the target lane, and two vehicles following the ego-vehicle
before and after crossing into the target lane. We characterize
the current-lane and the target-lane by performing linear
least squares regression on the paths of all vehicles assigned
to each lane across the entire dataset in the vicinity of the
lane change. We normalize all position values such that every
trajectory begins at x0 = [0, 0, ψ0]

⊤.
Training, Validation, Testing Split: We perform training,

validation, and testing set splitting for the lane change IRL
models such that the sets match the split used to train, val-
idate and test the off-the-shelf prediction model [6] that we
use for the unpredictability feature described in Section III-B.
Only the lane changes used in the training set for the off-
the-shelf prediction model are included in our lane change
IRL training set.

B. Learning Lane Change Reward Function from Humans

IRL Algorithm: Given training set of N human lane
change trajectories, {(x(i)

e ,u
(i)
e )}Ni=0, we obtain a maximum

likelihood estimate of reward parameters, θ(·) [22].
We define a probability distribution over lane change

trajectories as,

p(u|x0) =
exp

(∑K−1
k=0 Rk(xk,uk)

)
∫
exp

(∑K−1
k=0 Rk(x̃k, ũk)

)
dũ
. (12)

The denominator is the sum of every dynamically feasible
trajectory and intractable to calculate due to the continuous
state and action spaces. Since the dynamics are deterministic,
we can find x given u and x0, thus the distribution can

TABLE I: Model Performance on Training Datasets
Highway # Traj. MEEw ↓ MEEw+ ↓ % Imp ↑
i80 t0 188 3.77± 2.53 3.73± 2.58 1.17%
i80 t1 152 3.87± 2.34 3.73± 2.32 3.68%
i80 t2 180 3.50± 2.37 3.46± 2.32 1.00%
us101 t0 116 4.46± 3.05 3.93± 2.82 11.83%
us101 t1 93 5.13± 2.92 3.54± 1.96 31.03%
us101 t2 133 5.11± 3.15 3.84± 2.89 24.94%
highD 55 3.40± 2.38 3.36± 2.34 1.18%

TABLE II: Model Performance Comparison on Testing Datasets
Highway # Traj. MEEw ↓ MEEw+ ↓ % Imp ↑
i80 t0 23 3.21± 2.47 3.08± 2.46 4.11%
i80 t1 40 4.43± 2.78 4.38± 2.83 1.05%
i80 t2 27 3.63± 2.21 3.54± 2.12 2.48%
us101 t0 20 5.50± 2.82 4.85± 2.13 11.78%
us101 t1 22 6.12± 4.93 5.27± 4.06 13.92%
us101 t2 23 3.81± 1.56 3.51± 2.63 8.03%
highD 8 4.39± 2.31 4.13± 2.25 6.05%

be written as a function of u. Following [22] we use the
Laplace approximation to find an approximate solution to
the denominator. We arrive at a closed-form estimate of the
probability,

p(u|x0) ≈ e
1
2g

⊤H−1g| −H| 12 (2π)− du
2 , (13)

where g := ∂R
∂u is the gradient of the reward with respect

to the actions, H := ∂2R
∂u2 is the Hessian with respect to

the actions, | · | denotes the determinant, and du denotes the
dimension of the lifted vector u ∈ RKm. We finally obtain
the approximate log likelihood,

L =
1

2
g⊤H−1g +

1

2
log | −H| − du

2
log(2π). (14)

Assuming the N trajectories in a dataset are independent and
identically distributed (i.i.d), we can sum the likelihood of
each trajectory to get the likelihood over the entire dataset
then optimize the reward parameters θ that maximize the
likelihood of the dataset under the model.

IRL Implementation Details: We use the Sequential Least-
Squares Quadratic Program (SLSQP) algorithm [38] from the
NLOpt package (v2.6.2) [39]. We calculate the g and H in
addition to the gradient of (14) automatically using JAX [40].
We perform a sweep over hyperparameters defined in Sec-
tion III, and use the value that performs best on the training
set. For numerical stability, we use min-max normalization
on the features, exploit the identity log |−H| = 2tr(L) where
L is the Cholesky factor, and regularize H to be negative
definite [22].

V. RESULTS AND DISCUSSION

Tab. I summarizes trajectory similarity results on the
training sets and Tab. II on the test sets in addition to
the number of trajectories used for training and testing,
respectively. For each dataset, the third column summarizes
the average and standard deviation of the MEE, in meters,
between trajectories that are optimal with respect to the
baseline reward and the corresponding expert trajectories in
the dataset. Likewise, the fourth column summarizes the
same values for trajectories optimal with respect to the
unpredictability-aware reward. The last column presents the
improvement in average MEE of the unpredictability-aware
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Fig. 2: State values compared to time. We compare the human ego-car lane change trajectory (blue) with trajectories generated by
optimizing rewards with baseline reward, θw (red), and unpredictability-aware reward, θw+ (green) on the US-101 t1 test dataset. We
plot the average (solid lines) and 3-σ bounds (translucent fill) of the values. In the lateral direction (a) and heading (c), we observe more
similarity between the θw+ model (green) and the human data (blue) compared to the θw model (red).
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Fig. 3: Snapshot at t = 5.5s for baseline (red) unpredictability-
aware (green) trajectories, compared to the human in the test
set (blue). In this scenario none of the adjacent vehicles are
unpredictable. The unpredictability-aware model (green) is very
similar the baseline (red).

model over the baseline, as a percentage of MEEw. On the
test sets, we observe an MEE improvement between 1 to
13% in the models incorporating the unpredictability feature
and a weighted average improvement of 5.86% across all
test datasets.

We observe that the trajectories generated using the reward
function with unpredictability are consistently closer to the
human expert trajectories compared to the baseline both
on the training datasets (Tab. I) and on the test datasets
(Tab. II). Note that the results are generated using diverse
trajectory datasets from North America and Europe, and
contain trajectories with variable levels of traffic congestion,
capturing the diversity of human highway driving behavior.

In Fig. 2, we plot the states of ego-car lane change trajec-
tories from the humans in the US-101 t1 test set, as well as
the trajectories generated using the baseline reward, θw, and
the reward that incorporate unpredictability, θw+. For each
state value, we plot the mean and 3-σ bounds at each time
step for all trajectories in the test dataset. We observe that
for all state values, both models succeed in fitting the human
trajectory data reasonably well, and both models succeed
in traveling to the target lane. We note that incorporating
unpredictability results in a better match with the lateral
x coordinate information indicating that in this dataset, the
model with unpredictability is more hesitant to move into the
target lane, similar to the human trajectory data. This result
is consistent with the numerical improvement of 13.9% listed
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Fig. 4: Snapshot at t = 3.2s. In this scenario, the adjacent
vehicle preceding the ego car is behaving unpredictably by changing
lanes in front of the ego car, who is also changing lanes. The
unpredictability-aware model (green) delays changing into the target
lane and maintains a higher distance from the preceding vehicle than
the baseline (red), similar to the human (blue).

in Tab. II. We believe the variation in improvement between
the datasets can be attributed to the uneven distribution of
unpredictable scenarios.

A. Qualitative Results
We also conduct a qualitative analysis of particular lane

change scenarios from the test datasets with variations in
the unpredictability of adjacent vehicles.1 As described in
the motivating example in Fig. 1, we expect trajectories
from the model incorporating unpredictability to keep a
greater distance from an erratic or unpredictable adjacent
vehicle compared to the baseline and a similar distance in
the absence of unpredictability. Fig. 3 demonstrates a lane
change scenario with low unpredictability for all the gray
adjacent vehicles. We can observe that both models are very
similar to the human trajectory, the green (θw+) and red (θw)
vehicles are both very close to the blue (human).

Figs. 4-6 illustrate trajectories with an unpredictable ad-
jacent car. In Fig. 4, the preceding car is also moving to
the target-lane simultaneously to the ego-car’s lane change.
We can see that the green vehicle (θw+) delays entering
the target lane, similar to the blue human car, while the red
vehicle (θw) does not. We make a similar observation even
when the unpredictable adjacent vehicle is behind the ego car
in the target lane (as in Fig. 5). In this scenario, the adjacent

1Animations of all scenarios can be found at tiny.cc/unpredi.
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Fig. 5: Snapshot at t = 0.5s. In this scenario, the adjacent vehicle
in the target lane speeds up to not allow the ego vehicle in the target
lane. The unpredictability-aware model (green) delays entering the
target lane, similar to the human (blue), while the baseline model
(red) cuts in front of the adjacent car.

vehicle accelerates just as the human is changing into the
target lane. While the green car (θw+) delays entering the
target lane, similar to the blue human car, the red car (θw)
quickly enters the target lane. Like these two examples,
on average, θw+ trajectories are more similar to human
ones compared to θw. However, we also observed some
scenarios where this is not the case for the whole trajectory.
In Fig. 6, early in the lane change (6a) we observe that the
green car (θw+) delays entering the target, consistent with
the other two scenarios. Here, however, the preceding car
in the target lane behaves unpredictably by increasing its
speed. The headway of the ego-car is increasing (6b), yet
the green vehicle (θw+) maintains its cautious distance: the
increasing headway is counteracted by the unpredictability
of the preceding car’s acceleration.

In all the presented scenarios we observe that the tra-
jectories generated using the unpredictability-aware behave
more cautiously by staying farther away compared to the
baseline. Note that on average across each test dataset,
the unpredictability-aware trajectories are also more similar
to the human data than the less-cautious baselines (recall
Tab. II); the instances of over-cautiousness are a minority.

B. Limitations and Future Work

Although we can demonstrate an improvement in fitting
the human data by using the unpredictability-aware reward,
the scope of our study has limitations. First, our metric
of unpredictability relies on the output of an off-the-shelf
prediction model. Other prediction models or notions of
unpredictability (e.g. covariance [8], [9]) may have variable
success in generating values that are effective in the reward
that we present. An evaluation of such different notions is
one direction for future work.

Second, our formulation structures reward functions
as linear combinations of non-linear features, and the
unpredictability-aware reward contains an extra feature ver-
sus the baseline. With this structure, one could argue that the
additional degree of freedom bestowed by the extra feature
means that any feature that is sufficiently uncorrelated from
those in the baseline could result in an improved fit. Although
our quantitative results and qualitative analysis on simulated
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Fig. 6: Snapshots at t = 3.5s (a) and t = 7.0s (b) of the same sce-
nario. The vehicle preceding the ego car behaves unpredictably by
increasing its speed. Early in the trajectory (a) The unpredictability-
aware model (green) delays entering the target lane, similar to
the human car (blue) and unlike the baseline (red). Later in the
trajectory (b), it continues to maintain a higher distance from the
preceding vehicle despite the preceding car getting farther away,
unlike the human (blue).

(Fig. 1) and real scenarios (Figs. 3-6) serve as an encouraging
indication that unpredictability may be a cause, our study
is limited in showing a definitive link. A further step is to
also evaluate more diverse reward structures, for example,
with a nonlinear combination of features [41] or neural net
representation [24].

Third, we found that erratic or unpredictable behavior was
rare in the highway lane changes that we used. A direction of
future investigation is to extract driving scenarios where more
unpredictable behavior can be found (e.g. from interactive
driving datasets [42]) and quantitatively analyze the effect of
unpredictability in those particular occurrences, in addition
to the average across all scenarios.

VI. CONCLUSION

In this paper, we proposed unpredictability as a feature in
a reward function that can generate lane change trajectories.
We used a performance metric of an off-the-shelf trajectory
prediction model as a measure of the unpredictability of an
adjacent driver, We analyzed human lane change behavior
using an Inverse Reinforcement Learning (IRL) approach
and show that incorporating this unpredictability measure can
produce a better fit of human trajectories. We also provide
qualitative insights into how the unpredictability feature may
have an influence on the generated trajectories. We believe
our results encourage further investigation on the role of
unpredictability in generating driving behavior.
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