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Abstract— Learning models or control policies from data has
become a powerful tool to improve the performance of uncer-
tain systems. While a strong focus has been placed on increasing
the amount and quality of data to improve performance,
data can never fully eliminate uncertainty, making feedback
necessary to ensure stability and performance. We show that the
control frequency at which the input is recalculated is a crucial
design parameter, yet it has hardly been considered before.
We address this gap by combining probabilistic model learning
and sampled-data control. We use Gaussian processes (GPs) to
learn a continuous-time model and compute a corresponding
discrete-time controller. The result is an uncertain sampled-data
control system, for which we derive robust stability conditions.
We formulate semidefinite programs to compute the minimum
control frequency required for stability and to optimize perfor-
mance. As a result, our approach enables us to study the effect
of both control frequency and data on stability and closed-loop
performance. We show in numerical simulations of a quadrotor
that performance can be improved by increasing either the
amount of data or the control frequency, and that we can trade
off one for the other. For example, by increasing the control
frequency by 33%, we can reduce the number of data points
by half while still achieving similar performance.

I. INTRODUCTION

Real-world systems such as robots can exhibit complex

dynamics, making deriving accurate models from first prin-

ciples difficult. Therefore, many studies in recent years have

addressed learning unknown dynamics from measured data

using machine learning methods and designing a controller

based on the learned model [1]–[4]. Much attention has

been paid to the role of data and increasing its amount

and quality [5]. However, no derived or learned model

can perfectly capture a real system’s dynamic behavior [6].

Therefore, feedback is required to guarantee stability and

performance. The control frequency at which system mea-

surements are fed back to recalculate the control input

is often set without taking the dynamics and uncertainty

into account [1], neglecting that it represents a degree of

freedom in the controller design. However, considering the

control frequency as a design parameter can be advantageous,

especially for systems such as resource-constrained robot

platforms (e.g., drones). For example, knowledge of the

minimum control frequency (MCF) required for guaranteed

stability of an uncertain system can help improve energy

efficiency by reducing unnecessary computational demand
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Fig. 1: In digital control systems (blue shaded box), the sampler, controller,
and zero-order-hold (ZOH) operate at a certain control frequency fc. We
propose a framework (dashed-line boxes) to simultaneously compute the
minimum control frequency and design a controller using an uncertain
model learned from data using Gaussian process (GP) regression.

and data transmission. In this work, we study the effect of

both control frequency and data on closed-loop performance.

To quantify the uncertainty inherent in a learned dynamics

model, probabilistic methods such as Bayesian linear regres-

sion (BLR) [7] or Gaussian processes (GPs) [8] have become

popular [4]. While BLR assumes linearity in a set of pa-

rameters, GPs have the advantage of being a non-parametric

method. In [1]–[3], GPs are combined with robust control

methods. These works demonstrate that control performance

is impacted by model uncertainty and, thus, the training data,

but they do not investigate the role of the control frequency.

Few studies have considered the control frequency in the

context of model uncertainty. In [9], the maximum sampling

interval for stabilizing an unknown linear system is computed

directly from data. However, the approach assumes bounded

noise and involves a computationally expensive iterative op-

timization scheme for controller design. GP-based feedback

linearization with a data-dependent delay for updating the

control input is considered in [10]. It is shown empirically

that in terms of tracking accuracy, there can be a tradeoff

between the accuracy of the GP model and the computational

delay. In [11], reducing the control frequency is discussed in

the context of reinforcement learning as a way to reduce the

sample complexity and thus improve performance.

Learning a discrete-time model of unknown dynamics

yields a model specific to a particular sampling time. An-

alyzing the system’s behavior and stability for a different

controller sampling time is generally very difficult. Thus,

we consider learning a continuous-time model in this work.

Designing a discrete-time controller for a continuous-time

system falls within the domain of sampled-data control. The

stability of sampled-data systems can be analyzed via the

time-delay approach [12], and stability conditions are derived

in [13]–[15]. These conditions can also guarantee robust

stability for polytopic-type uncertainty, but this becomes



computationally intractable for the uncertainty set associated

with a dynamics model learned from data.

We propose a framework to design the control frequency

based on the uncertainty associated with a learned dynamics

model as illustrated in Fig. 1 and study the role of the

control frequency compared to the amount of data. Taking

a sampled-data control approach, we robustly stabilize a

partially unknown nonlinear continuous-time system with a

discrete-time controller. Our main contributions are:

• We combine GP-based stochastic model learning with

sampled-data control to study the effect of the control

frequency and model uncertainty on the closed-loop

performance.

• We derive robust stability conditions as matrix inequal-

ities for a sampled-data control system with learned

uncertain dynamics. Based on these, we formulate

semidefinite programs (SDPs) for the computation of

the MCF and performance optimization. Our framework

enables us to control the system at different frequencies

without having to re-learn the model.

• Through numerical simulations1, we show and analyze

the tradeoff between model uncertainty, affected by the

amount of data collected, and control frequency in terms

of stability and performance.

Our results demonstrate that the choice of the control

frequency can be as crucial as collecting more data (to further

reduce uncertainty).

Notation: We denote the Kronecker product by ⊗, the

Hadamard (element-wise) product by ◦ and the proba-

bility by Pr(·). In symmetric matrices, ∗ denotes trans-

pose elements that can be inferred from symmetry. Given

a square matrix A ∈ R
n×n, diag(A) ∈ R

n is a vector

containing the diagonal elements of A. Given a vector

a ∈ R
n, Diag(a) ∈ R

n×n is a diagonal matrix contain-

ing the elements of a on its diagonal. Given a ma-

trix B =
[
b1 . . . bm

]
∈ R

n×m, we denote its vectorization

by vec(B) =
[
bT1 . . . bTm

]T
∈ R

nm.

II. PROBLEM STATEMENT

We consider a dynamical system whose state and input

at time t ∈ R≥0 are given by x(t) ∈ R
n and u(t) ∈ R

m,

respectively. The system evolves according to the dynamics

ẋ(t) = h(x(t),u(t)) = f(x(t),u(t)) + g(x(t),u(t)), (1)

where the function f : R
n × R

m → R
n is known, for

example, derived from first principles, and the function

g : Rn × R
m → R

n is unknown, accounting for unmodeled

dynamic effects. Both f and g are assumed to be contin-

uously differentiable. We denote z = (x,u) ∈ R
nz , where

nz = n+m, for brevity. We assume the availability of noisy

measurement data collected from system (1).

Assumption 1: A dataset of N observations from (1)

D =
{

z(i),y(i) = ẋ(i) − f
(
z(i)
)
+w(i)

}N

i=1
(2)

1All code for reproducing the results reported in this paper is available
at https://github.com/ralfroemer99/lb sd

is available, with targets perturbed by independent and iden-

tically distributed (i.i.d.) Gaussian noise w(i) ∼ N (0,Σn).
While this assumption requires exact state and input

measurements, it allows for Gaussian perturbed observations

of the state derivative, which is often approximated via finite

differences in practice. Similar assumptions are made, for

example, in [5], [10].

The samples in D serve as training data to learn an approx-

imation of g, denoted by ĝ. We aim to control system (1)

robustly around a known equilibrium ze = (xe,ue) with

0 = f(ze) + g(ze) despite the uncertainty associated to ĝ.

This does not represent a significant restriction as we can

estimate any unknown equilibrium ze by solving a nonlinear

optimization problem involving f and ĝ, cf. [1]. We use a

discrete-time controller with zero-order-hold

u(t) = π(x(tk)), ∀t ∈ [tk, tk+1), (3)

where π(·) is a control law based on the learned continuous-

time model, and tk, k ∈N0, t0 = 0, are the sampling instants.

We make an assumption on the sampling instants capturing

periodic and aperiodic sampling and define the MCF.

Assumption 2: The interval between two consecutive sam-

pling instants satisfies tk+1 − tk ≤ Ts, ∀k ∈ N0, where Ts

is an upper bound on the sampling interval.

Definition 1: Let Ts,max be the largest value of Ts such

that the system (1) with the control (3) satisfying Assump-

tion 2 can be robustly stabilized around ze. Then, the MCF

is given by fc,min = 1
Ts,max

.

The MCF depends on the employed feedback control

law π(·). We consider the problem of learning a local linear

approximation of g from the data (2), computing the MCF

together with a linear control law based on the uncertainty

of the learned dynamics and aim to optimize the control

performance. Ultimately, we want to study the impact of the

control frequency on stability and performance, especially

compared to model uncertainty and the amount of data.

III. BACKGROUND

A. Gaussian Process Regression

To simplify notation, we consider learning an unknown

scalar function g : Rnz → R from training inputs z(i) and

target y(i) = g(z(i)) + w(i), i = 1, . . . , N , which are per-

turbed by i.i.d. noise w(i) ∼ N (0, σ2
n). GP regression [8]

assumes that the unknown function is drawn from a GP,

denoted as GP(µ(·), k(·, ·)), which induces a distribution

over functions such that any finite number of function evalua-

tions is jointly Gaussian distributed. The prior mean function

µ : Rnz → R can incorporate prior knowledge in the form of

an approximate model, and the kernel k : Rnz × R
nz → R

encodes information about the structure of the unknown

function. Without loss of generality, we set the mean function

to zero. Under the GP assumption, the vector of observed

targets y =
[
y(1), . . . , y(N)

]T
and the function value at a

query point z∗ ∈ R
nz have the joint probability distribution

[
y

g(z∗)

]

∼ N

(

0,

[
K̄ k(z∗)T

∗ k(z∗, z∗)

])

, (4)



where the gram matrix K̄ and vector k(z∗) are defined

as K̄ = K + σ2
nIn, where Kij = k

(
z(i), z(j)

)
, and

k(z∗)=
[
k
(
z(1), z∗) , . . . , k

(
z(N), z∗) ]T, respectively.

Conditioning g(z∗) on the training data yields the

posterior predictive distribution g(z∗) ∼ N (µ(z∗), σ2(z∗))
with mean µ(z∗) = k(z∗)TK̄−1y and variance

σ2(z∗) = k(z∗, z∗)− k(z∗)TK̄−1k(z∗).

As the derivative is a linear operator, the derivative of a

GP is also a GP [8]. We can use this property to predict the

derivative of g at z∗, denoted
∂g(z)
∂z

∣
∣
∣
z∗

. From (4), we obtain

[
y

∂g(z)
∂z

∣
∣
∣
z∗

]

∼ N



0,




K̄

∂k(z)
∂z

∣
∣
∣
z∗

∗ ∂2k(z,z)
∂z∂z

∣
∣
∣
z∗







 . (5)

Similar to the derivation of g(z∗) from (4), conditioning
∂g(z)
∂z

∣
∣
∣
z∗

on the observations y yields the predictive distribu-

tion
∂g(z)
∂z

∣
∣
∣
z∗

∼ N (µ′(z∗),Σ′(z∗)) with mean and variance

µ′(z∗)=
∂k(z)

∂z

∣
∣
∣
∣
z∗

K̄−1y, (6)

Σ
′(z∗)=

∂2k(z, z)

∂z∂z

∣
∣
∣
∣
z∗

−
∂k(z)

∂z

∣
∣
∣
∣
z∗

K̄−1

(
∂k(z)

∂z

∣
∣
∣
∣
z∗

)T

. (7)

B. Sampled-Data Systems

Consider a continuous-time LTI system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, (8)

under a discrete-time linear state-feedback control law

u(t) = Kx(tk), ∀t ∈ [tk, tk+1), (9)

where K ∈ R
m×n, and the sampling instants tk satisfy As-

sumption 2. The time-delay approach [12]–[15] to sampled-

data systems writes the closed-loop system as

ẋ(t) = Ax(t) +BKx(t− τ(t)), (10)

where τ(t) = t− tk, ∀t ∈ [tk, tk+1), is a piecewise-

continuous, time-varying delay. Stability of (10) can be

analyzed using the Lyapunov-Krasovskii functional [13]

V (t) = x(t)TP1x(t) +

∫ 0

−Ts

∫ t

t+θ

ẋ(s)TP2ẋ(s)dsdθ, (11)

where P1 ≻ 0, P2 ≻ 0. The second term in (11) is used to

compensate for the delay-dependent part in d
dtx(t)

TP1x(t).

Lemma 1 ( [13], Lemma 2.3): The control (9) asympto-

tically stabilizes system (8) for all samplings satisfying

Assumption 2 if there exist matrices Q1 = QT

1 ≻ 0, Q2, Q3,

Z1, Z2, Z3, R = RT ≻ 0, all in R
n×n, and Y ∈ R

m×n,

that satisfy the matrix inequalities

WA,B ,





Ξ ΞA,B TsQ
T

2

∗ −Q3 −QT

3 + TsZ3 TsQ
T

3

∗ ∗ −TsR



 ≺ 0, (12)





Q1R
−1Q1 0 Y TBT

∗ Z1 Z2

∗ ∗ Z3



 � 0, (13)

where ∗ denotes symmetry, Ξ = Q2 +QT

2 + TsZ1 and

ΞA,B = Q3−QT

2 +Q1A
T+TsZ2+Y TBT. The stabilizing

state-feedback gain is then given by K = Y Q−1
1 .

Proof: The proof involves multiple steps, including

defining a descriptor system of (10), differentiating (11) for

time and using that the delay is bounded by τ(t) ∈ [0, Ts]
due to Assumption 2. See [12], [13] for details.

IV. METHODOLOGY

In this section, we first discuss learning a probabilistic

estimate of the dynamics (1) and a locally valid uncertain

linearization from the dataset (2). Then, we present our

approach for robust sampled-data control for different control

frequencies based on the learned model’s uncertainty.

A. Model Learning and Linearization

We train a GP model for each output dimension of

g(·) = [g1(·), . . . , gn(·)]
T

, assuming the following:

Assumption 3: The functions gi, i = 1, . . . , n, are drawn

from zero-mean GPs with squared-exponential (SE) kernel

ki (z, z
′) = σ2

η,i exp

(

−
1

2
(z − z′)TL−2

i (z − z′)

)

, (14)

where σ2
η,i > 0 and Li = Diag(li) ∈ R

n×n, li > 0 ∈ R
n.

In (14), σ2
η,i is the output variance, and Li contains

the vector of length scales li, which corresponds to the

rate of change of gi with respect to z. Assumption 3 is

not restrictive in practice as the corresponding space of

sample functions of the GP contains all continuous func-

tions [16]. The kernel hyperparameters are often unknown,

but they can be determined, for example, by maximizing

the marginal log-likelihood of the training data (2); see [8].

We compute the derivative of the i-th GP at ze, denoted

by
∂gi(z)
∂z

∣
∣
∣
ze

∼ N (µ′
i(ze),Σ

′
i(ze)), via (6) and (7), where

the partial derivatives of (14) are straightforward to evaluate.

This gives a probabilistic estimate of the linearized dynamics.

Lemma 2: Under Assumption 3 and given the data (2), the

linearization of (1) about ze satisfies that for any p ∈ [0, 1),

Pr

(

h

∂z

∣
∣
∣
∣
ze

∈ C

)

≥ pn, (15)

where C =
[

Ĉ − C̄, Ĉ + C̄
]

⊂ R
n×nz , where

Ĉ =
[

Â B̂
]
=

∂f(z)

∂z

∣
∣
∣
∣
ze

+






µ′
1(ze)

T

...

µ′
n(ze)

T




 , (16)

C̄ =
[
Ā B̄

]
=
√

χ2
nz
(p)






√

diag(Σ′
1(ze))

T

...
√

diag(Σ′
n(ze))

T




 . (17)

Here, χ2
nz

is the quantile function of the chi-squared distri-

bution of degree nz .

Proof: The fundamental properties of multivariate

Gaussian distributions imply that for all p ∈ (0, 1],

Pr

(

∂gi(z)
∂z

∣
∣
∣
ze

− µ′
i(ze) ∈ Ei

∣
∣
∣
∣
D

)

= p, where Ei



is an ellipsoidal confidence region defined by

Ei =
{

d ∈ R
nz

∣
∣
∣dT (Σ′

i(ze))
−1

d ≤ χ2
nz
(p)
}

, i = 1, . . . , n.

The result follows from the independence of the GPs and

the fact that Ei ⊆ Bi, where Bi is a hyperrectangle with

dimensions 2
√

χ2
nz
(p) (Σ′

i(ze))jj , j = 1, . . . , nz , which is

symmetric about the origin.

Due to Lemma 2, the true linearized dynamics at z = ze
are captured with probability of at least pn by

˙̃x(t) =
(
Â+ Ā ◦Ω

)
x̃(t) +

(
B̂ + B̄ ◦Ψ

)
ũ(t), (18)

where x̃ = x − xe, ũ = u − ue are deviations about

the equilibrium, and Ω ∈ [−1, 1]n×n, Ψ ∈ [−1, 1]n×m are

unknown.

As C is a polytopic set, Lemma 1 can be applied to

analyze the stability of (18) in principle. However, this

requires evaluating the stability conditions (12) and (13) for

all 2nnz vertices of C, which is computationally infeasible

except for very low-dimensional systems. The same holds

for the stability conditions in [14], [15]. To address this

problem, we reparameterize the Hadamard product terms

in (18) corresponding to the uncertainty by making use of

the following lemma, which is straightforward to prove.

Lemma 3: Let U =
[
u1 . . . un

]T
,V ∈ R

n×m. Then,

U ◦ V = (In ⊗ 11×m)Diag
(
vec
(
V T
))






Diag(u1)
...

Diag(un)




 .

We denote the rows of Ā and B̄ by āT

1 , . . . , ā
T

n and

b̄T1 , . . . , b̄
T

n, respectively, and define p = n2 + nm. Then, we

can use Lemma 3 to rewrite the uncertainty in (18) as

Ā ◦Ω = H∆E, B̄ ◦Ψ = H∆F , (19)

where ∆ = Diag([δ1, . . . , δp]) ∈ R
p×p with |δi| ≤ 1, ∀i,

H =
[
In ⊗ 11×n, In ⊗ 11×m] and

E =
[
Diag

(
ā1

)
. . . Diag

(
ān

)
0n×nm

]T
,

F =
[
0n×n2 Diag

(
b̄1
)

. . . Diag
(
b̄n
)]T

.
(20)

Inserting (19) into (18) gives the uncertain linearized system

˙̃x(t) =
(
Â+H∆E

)
x̃(t) +

(
B̂ +H∆F

)
ũ(t), (21)

where all matrices except for ∆ are known.

B. Robust Sampled-Data Control of the Uncertain System

To robustly control the continuous-time system (21), we

consider a discrete-time linear state feedback

ũ(t) = Kx̃(tk), ∀t ∈ [tk, tk+1), (22)

where the sampling instants tk, k ∈ N0, satisfy Assump-

tion 2. This results in the uncertain closed-loop system

˙̃x(t)=
(
Â+H∆E

)
x̃(t)+

(
B̂+H∆F

)
Kx̃(t−τ(t)), (23)

where the delay τ(t) is defined similar to Section III-B and,

thus, bounded by τ(t) ∈ [0, Ts]. We employ the following

result to take the norm-bounded uncertainty in the linearized

GP dynamics model into account:

Lemma 4 ( [17]): Let Θ ∈ R
m×m satisfy Θ

T
Θ � I .

Then, for all constant matrices U ∈ R
n×m, V ∈ R

m×n and

all scalars ǫ > 0, it holds that

−ǫ−1UUT − ǫV TV � UΘV + V T
Θ

TUT

� ǫ−1UUT + ǫV TV .
Using Lemma 4, we derive the following constructive

conditions for robust stability of the closed-loop system.

Theorem 1: The uncertain system (23) is robustly asymp-

totically stable for all samplings satisfying Assumption 2 if

there exist matrices Q1 = QT

1 ≻ 0, Q2, Q3, Z1, Z2, Z3,

R = RT ≻ 0, all in R
n×n, Y ∈ R

m×n and scalars ǫ1 > 0,

ǫ2 > 0, that satisfy the matrix inequalities








W
Â,B̂

0 ǫ1
(
Q1E

T + Y TF T
)

H 0

0 0

∗ ∗ ∗ −ǫ1I 0

∗ ∗ ∗ ∗ −ǫ1I









≺ 0, (24)









2Q1 −R 0 Y TB̂T
0 ǫ2Y

TF T

∗ Z1 Z2 0 0

∗ ∗ Z3 H 0

∗ ∗ ∗ ǫ2I 0

∗ ∗ ∗ ∗ ǫ2I









� 0, (25)

where WÂ,B̂ is defined in (12). The stabilizing state-

feedback gain is then given by K = Y Q−1
1 .

Proof: The idea is to show that if (24) and (25)

are satisfied, then the nominal stability conditions (12)

and (13) hold for all realizations of the uncertain system

matrices A = Â+H∆E and B = B̂ +H∆F of (23).

We start by applying the Schur complement [18] to the first

inequality (24) in Theorem 1, which gives

WÂ,B̂ +
[
M ǫ1N

T
]
[
ǫ−1
1 I 0

0 ǫ−1
1 I

] [
MT

ǫ1N

]

≺ 0, (26)

where M =
[
0 HT

0
]T

and N =
[
EQT

1 + FY 0 0
]
.

By rewriting (26) and making use of Lemma 4, we obtain

WÂ,B̂ + ǫ−1
1 MMT + ǫ1N

TN ≺ 0

WÂ,B̂ +M∆N +NT
∆

TMT ≺ 0, (27)

for all ∆ ∈ R
p×p satisfying ∆

T
∆ � I . Inserting the

expressions for M , N and WÂ,B̂ into (27) yields

WÂ,B̂ +





0 Q1(H∆E)T + Y T(H∆F )T 0

∗ 0 0

∗ ∗ 0





︸ ︷︷ ︸

=WA,B

≺ 0, (28)

which is equivalent to (12). Thus, the satisfaction

of (24) implies the satisfaction of (12) for all realiza-

tions A = Â+H∆E, B = B̂ +H∆F of the uncertain

system matrices. Consider now the second inequality (25)

in Theorem 1. As a result of R = RT ≻ 0 and Q1 = QT

1 ,

we have

(Q1 −R)TR−1(Q1 −R) = Q1R
−1Q1 − 2Q1 +R ≻ 0

⇒ Q1R
−1Q1 ≻ 2Q1 −R. (29)



Hence, the satisfaction of (25) implies








Q1R
−1Q1 0 Y TB̂T

0 ǫ2Y
TF T

∗ Z1 Z2 0 0

∗ ∗ Z3 H 0

∗ ∗ ∗ ǫ2I 0

∗ ∗ ∗ ∗ ǫ2I









� 0. (30)

Applying the Schur complement to (30) and performing

similar steps as above results in




Q1R
−1Q1 0 Y T(B̂ +H∆F )T

∗ Z1 Z2

∗ ∗ Z3



 � 0, (31)

for all ∆
T
∆ � I , which is equivalent to (13) with

B = B̂ +H∆F . Thus, if (25) holds, then (13) is satisfied

for all realizations of B, which concludes the proof.

Remark 1: We could also assume R = ǫ3Q1 for

some ǫ3 > 0 to convexify the problem [13]. However, this

would add another scalar decision variable to Theorem 1,

increasing the computational complexity.

Theorem 1 enables us to analyze the stability of the

uncertain system (21) for a given upper bound on the

sampling interval Ts. Moreover, we can compute the

MCF fc,min = 1
Ts,max

and the corresponding stabilizing con-

trol gain K = Y Q−1
1 by solving the optimization problem

min
Ts,Q1,Q2,Q3,Z1,
Z2,Z3,R,Y ,ǫ1,ǫ2

1

Ts

s.t. (24), (25),

Q1 = QT

1 ≻ 0, R = RT ≻ 0.

(32)

For fixed values of ǫ1 and ǫ2, (24) becomes a linear

fractional constraint of the form λM(s) +N(s) ≺ 0, where

λ = 1
Ts

∈ R and s ∈ R
ns are the optimization variables, and

the matrices M and N depend affinely on s. Then, (32)

represents a generalized eigenvalue problem (GEVP), which

is a special type of SDP that can be solved efficiently, for

example, with the bisection method [18]. We can simplify

the additional optimization over the scalar variables ǫ1 and

ǫ2 by noting the following:

Lemma 5: Let S =
(
T̂s, Q̂1, Q̂2, Q̂3, Ẑ1, Ẑ2, Ẑ3, R̂, Ŷ ,

ǫ̂1, ǫ̂2
)

be an optimal solution to (32). Then, for any c > 0,

S ′ =
(
T̂s,

1
c
Q̂1, 1

c
Q̂2, 1

c
Q̂3, 1

c
Ẑ1, 1

c
Ẑ2, 1

c
Ẑ3, 1

c
R̂, 1

c
Ŷ , cǫ̂1,

cǫ̂2
)

is also an optimal solution to (32).

Proof: Both solutions S and S ′ yield the same objective

value 1
T̂s

. To show that the feasibility of S implies the feasi-

bility of S ′, we first consider the inequality constraint (25).

If S is a feasible solution to (32), then it holds by applying

the Schur complement that




2Q̂1 − R̂ 0 Ŷ ⊤BT

∗ Ẑ1 Ẑ2

∗ ∗ Ẑ3





−
1

ǫ̂2





0 ǫ̂2Ŷ
⊤F T

0 0

HT
0





[
0 0 HT

ǫ̂2F Ŷ T
0 0

]

� 0

⇔





2 1
c
Q̂1 −

1
c
R̂ 0

1
c
Ŷ ⊤BT

∗ 1
c
Ẑ1

1
c
Ẑ2

∗ ∗ 1
c
Ẑ3





−
1

cǫ̂2





0 cǫ̂2
1
c
Ŷ ⊤F T

0 0

HT
0





[
0 0 HT

cǫ̂2F
1
c
Ŷ T

0 0

]

� 0,

where we have multiplied the inequality by 1
c
> 0. Conse-

quently, S ′ also satisfies (25). We can proceed in a similar

way for the constraint (24), which concludes the proof.

The two solutions S and S ′ also yield the same stabi-

lizing control gain K = Y (Q1)
−1 = 1

c
Y
(
1
c
Q1

)−1
. As a

consequence of Lemma 5, we can simplify the optimization

problem (32) by setting ǫ2 = 1
ǫ1

.

Corollary 1: Solving the optimization problem (32) yields

the same MCF and stabilizing control gain as solving

min
Ts,Q1,Q2,
Q3,Z1,Z2

Z3,R,Y ,ǫ

1

Ts

s.t.









W
Â,B̂

0 ǫ
(
Q1E

T + Y TF T
)

H 0

0 0

∗ ∗ ∗ −ǫI 0

∗ ∗ ∗ ∗ −ǫI









≺ 0,









2Q1 −R 0 Y TB̂T
0 ǫY TF T

∗ Z1 Z2 0 0

∗ ∗ Z3 H 0

∗ ∗ ∗ ǫI 0

∗ ∗ ∗ ∗ ǫI









� 0,

Q1 = QT

1 ≻ 0, R = RT ≻ 0, ǫ > 0.

(33)

Proof: Let S be an optimal solution to (32), as

defined in Lemma 5. We can make use of Lemma 5 and

set c = 1√
ǫ̂1 ǫ̂2

. Then, S ′ corresponds to the optimal solution

of (33) and the result follows.

The reformulated optimization problem (33)

has 6n2 + nm+ n+ 2 decision variables, which is

one less than (32). In practice, having to perform only

a scalar grid search over ǫ for solving (33) instead of a

two-dimensional grid search over ǫ1 and ǫ2 for solving (32)

significantly decreases the computational demand.

Remark 2: Analyzing stability via the time-delay ap-

proach [12] is advantageous: As long as the constraints

in (33) hold, the sampling time can be changed online in

(0, Ts,max] without losing stability guarantees, for example,

to react to changes in the data transmission capacity.

C. Optimizing the Control Performance

Besides guaranteeing stability, we aim to optimize the con-

trol performance for a given sampling time Ts ∈ (0, Ts,max].
As a performance measure, we use the cost [19]

J =

∫ τ1

τ0

x̃(tk)
TQJ x̃(tk) + ũ(t)TRJ ũ(t)dtk, (34)

where τ1 − τ0 > 0 is the optimization period, and QJ ≻ 0,

RJ ≻ 0 are weight matrices. To make the problem tractable,



we let J ≤ J̄ = η
∫ τ1

τ0
x̃(tk)

TQ−1
1 Q−1

1 x̃(tk)dtk and con-

sider the minimization of η > 0. By inserting the control

law (22), substituting K = Y Q−1
1 and applying the Schur

complement, we obtain that J ≤ J̄ for all τ1 − τ0 > 0 if




−ηI Q1 Y T

∗ −Q−1
J 0

∗ ∗ −R−1
J



 � 0. (35)

Consequently, we can optimize the cost (34) while ensur-

ing robust stability of the uncertain system (21) under the

control (22) by solving the optimization problem

min
η,Q1,Q2,Q3,Z1,
Z2,Z3,R,Y ,ǫ1,ǫ2

η

s.t. Q1 = QT

1 ≻ 0, R = RT ≻ 0,

(24), (25), (35),

(36)

for a given sampling time Ts ∈ (0, Ts,max]. Note that (36)

has a GEVP structure similar to (32). However, (36) does

not allow for a simplification of the optimization over the

scalar decision variables ǫ1 and ǫ2 since Lemma 5 does not

apply due to the inequality constraint (35).

In this section, we have derived a method to calculate the

MCF fc,min required for robust control of (1) based on the

uncertain linearized GP dynamics model (21). We can also

compute a robustly stabilizing and optimal state-feedback

controller (22) for a given control frequency fc ≥ fc,min.

Next, we evaluate our approach in simulation and study the

tradeoff between data and the control frequency.

V. EVALUATION

We consider a quadrotor flying in the vertical plane with

position (x, z) and pitch angle θ. The system is simulated

with the continuous-time dynamics [20]

mẍ = −(T1 + T2) sin (θ)

mz̈ = (T1 + T2) cos (θ)−mg

Iyy θ̈ = (T1 − T2)d,

(37)

where m = 0.1 kg is the mass, (T1, T2) are the motor

thrusts, g = 9.81 m
s2 is the gravitational acceleration,

d = 0.1m is the length of the effective moment arm of the

propellers, and Iyy = 1
12md2 is the inertia about the y-axis.

By defining x =
[
x, ẋ, z, ż, θ, θ̇

]T
and u =

[
T1, T2

]T
,

we can express (37) in the general form (1). We assume

no prior knowledge about the dynamics, i.e., f ≡ 0. We

set the noise variance to Σn = Diag([0.12, . . . , 0.12]),
and draw N training inputs uniformly from the

set Z =
{
(x,u) ∈ R

8 |x ≤ x ≤ x̄, u ≤ u ≤ ū
}

,

where x =
[
0,−5 m

s , 0,−5 m
s ,−

π
2 rad,−5 rad

s

]T
,

x̄ =
[
2m, 5 m

s , 2m, 5 m
s ,

π
2 rad, 5 rad

s

]T
, u = 0 and

ū =
[
2N, 2N

]T
. We set the threshold in Lemma 2

to pn = 0.996 ≈ 0.94. The SDPs (33) and (36) are solved

using YALMIP [21] and MOSEK [22]. Additionally, we

define the grid G = {10−3, 10−2.7, . . . , 103} and optimize

over ǫ ∈ G in (33) and over (ǫ1, ǫ2) ∈ G × G in (36).

Fig. 2 shows the MCF computed by solving (33) for

randomly drawn training sets of increasing size N , where
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Fig. 2: Minimum control frequency required to ensure robust stability for
different amounts of randomly drawn training data. The error bars represent
± one standard deviation. The circles show the proportion of datasets for
which a stabilizing controller can be found by solving (33).
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Fig. 3: Quadrotor trajectories for different control frequencies
fc = ξfc,min, where ξ ∈ {1, 1.25, 1.5, 2}, and different amounts
of training data. The shaded areas represent ± one standard deviation.
Convergence to the setpoint significantly improves, and variance reduces if
the control frequency is increased from its minimum value fc = fc,min.

ten different datasets are drawn for each value of N . We

also provide the proportion of datasets for which (33) is

feasible. We observe that a certain amount of data is required

to stabilize the system and that the control frequency can be

reduced by two-thirds when more data is available.

We also investigate the impact of the control fre-

quency and model uncertainty on performance. For this, we

set the desired operating point to xe = [1m, 0, 0, 0, 0, 0]T,

ue = [0.4905N, 0.4905N]T, the initial state to x(0) =
[1.2m, 0, 0.2m, 0, 0, 0]T and the weight matrices in (34)

to QJ = diag([100, 1, 100, 1, 100, 1]), RJ = 0.01I2. As dis-

cussed in Section IV-B, robust stability of the linearized

system is guaranteed for all control frequencies fc = ξfc,min

with ξ ≥ 1. We evaluate ξ ∈ {1, 1.25, 1.5, 2} with ten

randomly drawn training sets each and compute the opti-

mized controller by solving (36). Fig. 3 shows the quadrotor

trajectories obtained from simulating the system for 10 s
with mean and standard deviation for N ∈ {200, 600}. We

observe the transient behavior improves significantly, and the

variance reduces if the control frequency is increased from

its minimum value.

For a systematic analysis of performance, we optimize for

many frequencies fc ∈ [10, 30]Hz and simulate five different

initial conditions. Fig. 4 shows the average LQR cost for a

horizon of 10 s with the weight matrices QJ and RJ and the

contour lines of the cost. We observe a tradeoff between data
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Fig. 4: Tradeoff between the control frequency and the amount of training
data in terms of closed-loop performance. The white area indicates (N, fc)
pairs for which a stabilizing controller is found for less than 50% of
the randomly drawn datasets. For an increasing amount of data, similar
performance can be achieved at a lower control frequency. Vice versa,
increasing the frequency can compensate for a significant lack of data.

and control frequency: As model uncertainty decreases due to

more data, similar performance is achieved at a lower control

frequency. On the other hand, for example, if we increase fc
by 33% from 18Hz to 24Hz, only half the amount of data

(N = 400 instead of N = 800) is needed to get the same

cost J = 5.6. Increasing the control frequency for a given

amount of data reduces the cost, for example, by 42% when

increasing fc by 29% from 14Hz to 18Hz for N = 350.

Furthermore, it is evident from the contour lines’ shape that

the sensitivity of the performance with respect to the control

frequency increases with the size of the training data set.

VI. DISCUSSION

Fig. 3 and Fig. 4 demonstrate that a higher control

frequency improves performance and reduces variance. Con-

sidering this, the MCF provides a lower bound that allows us

to safely reduce the control frequency, for example, to save

computation or communication resources.

As illustrated in Fig. 2 and Fig. 4, the amount of data

required for stability or achieving a specific performance

depends on the frequency at which we can run the controller.

A slight increase in control frequency can compensate for a

significant lack of data, as is typical for physical systems

such as robots, where data collection is expensive.

Stable regulation of the quadrotor is achieved for all

simulated initial conditions, even when operating at the MCF,

as shown in Fig. 3. This is remarkable, as the computation of

the MCF via (33) is based on the linearized dynamics (21)

and only considers the uncertainty corresponding to the GP

variance, not the error due to linearizing the true nonlinear

system (1). One reason is that the stability conditions in The-

orem 1 are sufficient but not necessary conditions, and thus,

the MCF includes some conservatism that may compensate

for the linearization error, as is the case for our example.

VII. CONCLUSION

This work considers the control frequency as a design

parameter for learning-based control of uncertain systems. To

this end, we combine learning a continuous-time dynamics

model using GPs with robust sampled-data control. This

enables us to control the system at different frequencies

without re-learning the model and to study the role of both

the control frequency and the amount of data. We show that

there is a tradeoff between the two design parameters in

terms of stability and performance: Increasing the control

frequency can make up for a lack of data and vice versa.
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