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Abstract— Methods from machine learning have successfully
been used to improve the performance of control systems in
cases when accurate models of the system or the environment
are not available. These methods require the use of data
generated from physical trials. Transfer Learning (TL) allows
for this data to come from a different, similar system. This
paper studies a simplified TL scenario with the goal of un-
derstanding in which cases a simple, alignment-based transfer
of data is possible and beneficial. Two linear, time-invariant
(LTI), single-input, single-output systems are tasked to follow
the same reference signal. A scalar, LTI transformation is
applied to the output from a source system to align with
the output from a target system. An upper bound on the
2-norm of the transformation error is derived for a large
set of reference signals and is minimized with respect to the
transformation scalar. Analysis shows that the minimized error
bound is reduced for systems with poles that lie close to each
other (that is, for systems with similar response times). This
criterion is relaxed for systems with poles that have a larger
negative real part (that is, for stable systems with fast response),
meaning that poles can be further apart for the same minimized
error bound. Additionally, numerical results show that using
the reference signal as input to the transformation reduces the
minimized bound further.

I. INTRODUCTION

Models that accurately represent dynamic systems are
often difficult to derive mathematically, or are unreliable due
to parameter uncertainties or unknown external disturbances
affecting the system. The potential use of data from simula-
tions or experiments to improve models of dynamic systems
is a prime motivator for modern research at the intersection
of machine learning and control theory. Various regression
techniques have been used to learn dynamics, kinematics
and disturbance models using data from physical trials or
simulations of the robot [1]–[4].

Transfer Learning (TL) allows for this data to be generated
by a second system. In a training phase, both systems
generate data, and a transformation that aligns one dataset to
the other is learned. Once this mapping is learned, the first
system, also called the target system, can use data generated
by the second system, the source system, in subsequent
model learning (see Fig. 1). This transfer of data may be
beneficial to the model learning process if the source system
is less costly, difficult, or hazardous to operate than the target
system.
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Fig. 1. Transfer Learning framework. Systems 1 and 2 learn from
input-output data (dashed lines). The concept of Transfer Learning (TL)
allows for System 1 to use data from System 2 for its own learning task
(red dash-dotted line). In this paper, we study TL from a system-theoretic
perspective and provide insight to when TL is beneficial.

In this paper, we study when such a data transfer is benefi-
cial. We investigate TL for two simple, linear, time-invariant
(LTI), single-input, single-output (SISO) systems. We use
an H∞-norm minimization framework to define the quality
of the data transfer and analyze when the transfer works well
and when it does not.

In robotics, TL has often been considered in the context of
speeding up a single robot’s task learning using knowledge
obtained in a previous task performed by the same robot.
TL has, for example, been successfully used in an Iterative
Learning Control (ILC) framework to speed up learning of
new tasks [5]–[7]. Research for multi-agent robotic sys-
tems is relatively sparse [8]. Most common applications
aim to speed up joint or sequential learning either in an
ILC framework by transferring task-dependent disturbance
estimates [9], or in a Reinforcement Learning framework by
transferring rules and policies of simple systems with discrete
states [10]–[12]. However, TL can also be used in a model
learning framework to apply a transformation on input-output
data generated by one robot. This transformed data can then
be input to a model learning algorithm for a second, similar
robot [13]. We are interested in the latter multi-agent learning
scenario.

In several applications beyond robotics, Manifold Align-
ment has been used to find an optimal transformation to align
datasets [14], [15]. In [16], this technique is demonstrated
for two simple state-space models that each need to learn
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a task using Reinforcement Learning. In [13], a similar
transformation technique is used on data from one robotic
arm to speed up learning of a robot model for a second
robotic arm.

While these works have shown that TL is feasible for
some examples, they do not address the question of when
the data transfer works well and when it fails. This paper
provides insight on how the quality of the transformation
depends on the system properties of the source and target
systems. We study two first-order, LTI, SISO systems tasked
to follow the same reference signal and show that the transfer
quality depends on the location of the poles (i.e., the stability
properties) of both systems.

Despite the simplicity of the systems we choose to study,
this paper offers four novel results. Firstly, we study the
feasibility of TL for control systems from a system-theoretic
perspective by formulating the problem as an H∞-norm
minimization problem. Secondly, we derive an upper bound
on the 2-norm of the transformation error for a large set of
reference signals and minimize this bound with respect to
the transformation parameter. Thirdly, we analyze how this
upper bound depends on the poles and the gains of the two
systems, which provides insight into which configurations
work best for TL in this simple scenario. Lastly, we analyze
how these results change when the reference signal is used
as an additional input to the transformation.

The remainder of the paper is structured as follows:
Section II provides a background on model learning and
TL for control systems. Section III presents the problem
formulation considered in this paper. In Section IV, an upper
bound on the 2-norm of the transformation error is derived
and minimized with respect to the transformation parameters.
In Section V-A, our analysis illustrates how this bound
depends on the systems’ poles and gains. In Section V-B,
TL is demonstrated for a pair of example systems with
proportional feedback control. Lastly, Section VI provides
concluding remarks.

II. BACKGROUND

A. Model Learning

Dynamics and kinematics models govern a robot’s be-
havior. While analytic models can be derived from first
principles, they often do not capture the real-world dynamics
accurately [2], [3]. Supervised model learning presents a
solution by employing a regression tool to find a map
from input data to labelled observations. Given a se-
quence of input-output data with input x[k] ∈ Rn and out-
put y[k] ∈ Rp, where k ∈ {0, 1, 2, ..., N} and N is the
number of samples obtained, the problem of model learning
is to find a map M : f(x)→ y such that some measure of
the magnitude of the error sequence,

ε[k] = y[k]− f(x[k]), k ∈ {0, 1, 2, ..., N}, (1)

is minimized. For example, learning an inverse dynamics
model for a robot arm can be formulated as finding a
map M : f(q, q̇, q̈)→ τ , where q ∈ Rp is a vector of joint

angles for all p joints of the arm, τ ∈ Rp is a vector of
applied torques to each joint and x ∈ R3p [17].

B. Transfer Learning

When two robots (or control systems, in general), S1

and S2, execute a task, data is generated by each system.
Data from S2 can then undergo a transformation to align
with data from S1. The problem is akin to model learning in
that a map needs to be found. In [13] and [16], the authors
model this map as a time-invariant, linear transformation for
each data sample. We make the same assumption.

Let vectors x1[k] and x2[k] be sampled data from S1

and S2. We thus define the problem of TL as finding a
matrix A such that the vector 2-norm of

ε[k] = x1[k]−Ax2[k] (2)

is minimized for all times k ∈ {0, 1, 2, ..., N}. The vector x
can consist of system states, control inputs, or other variables
that are relevant for a specific model learning algorithm. For
the inverse dynamics model learning example in [13], the
vector x is defined as x = [qT , q̇T , q̈T ,uT ]T . Once such
a matrix is learned from one pair of datasets, additional
training data for learning the model of S1 can be obtained
by transforming subsequent data collected from S2 using A.

To find an optimal transformation that aligns the discrete
datasets, a priori models of each system need not be known,
as the transformation only depends on data collected from
physical trials of the two systems. The disadvantage of
this data-alignment technique is that it is difficult to make
predictions on the quality of the transformation. Furthermore,
there usually is no guarantee on the performance of a given
transformation on subsequent data.

Work in [13] shows that for two simulated robot arms,
the data alignment worked well and sped up model learning.
However, it is not obvious that the same approach works
in other applications. Our work is motivated by an interest
to further explore the properties of a time-invariant, linear
transformation for control system data, and determine when
TL is most beneficial and when it fails.

We therefore consider two first-order, LTI, SISO sys-
tems, S1 and S2. We study TL in continuous time to facilitate
our analysis. In this framework, x1(t), x2(t) ∈ R are the
scalar system states, which are driven by the reference sig-
nal d(t), and A = α is a scalar that must map x2(t) to x1(t).
We find the transformation α∗ that optimally aligns x2(t)
to x1(t) for all t ∈ [0,∞) in an H∞-norm sense. We call
this approach the Output Transfer (OT) case.

In a second scenario, which we call the Input-Output
Transfer (IOT) case, we study the case when the common
reference signal d(t) is used in the transformation; that
is, x2(t) = [x2(t), d(t)]T and A = [β1, β2]. A transforma-
tion {β∗1 , β∗2} is numerically found to optimally align a linear
combination of x2(t) and d(t) to x1(t) for all t ∈ [0,∞) in
an H∞-norm sense.

In both cases, we derive an upper bound on the 2-norm
of the transformation error signal and minimize it with
respect to the transformation parameters. We show that for
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Fig. 2. On the left, x2(t) is multiplied by a scalar α to match x1(t). While
x1(t) and x2(t) are outputs of sub-systems S1 and S2, the output of the
overall system is eA(t). On the right, a linear combination of x2(t) and
d(t) is used to match x1(t), and the output of the overall system is eB(t).

these simple systems, the minimized upper bound strongly
depends on the poles of S1 and S2, and that systems with
a fast response have an advantage over systems with a slow
response. We further show that the IOT case reduces the
minimized error bound.

III. PROBLEM FORMULATION

In this section, we introduce a framework for analyzing TL
for simple, linear control systems and define the H∞-norm
minimization problem.

Consider two first-order, LTI, SISO systems S1 and S2,
whose transfer functions are given by

G1(s) =
k1

s+ a1
, G2(s) =

k2
s+ a2

, (3)

where −a1 and −a2 are the poles, and k1 and k2 are the
gains of G1 and G2 (see Fig. 2). The quantity of interest in
the TL problem is the error in the estimation of x1(t) and
is the output of the transfer system,

eA(t) = x1(t)− αx2(t), (4)
eB(t) = x1(t)− (β1x2(t) + β2d(t)), (5)

where α is a constant scalar that is applied to x2(t)
to estimate x1(t) in the Output Transfer (OT) case (see
Fig. 2a), and likewise {β1, β2} are two constant scalars in the
Input-Output Transfer (IOT) case (see Fig. 2b). The transfer
functions from d(t) to eA(t) and from d(t) to eB(t) are

GA(s) =
k1

s+ a1
− α k2

s+ a2
, (6)

GB(s) =
k1

s+ a1
− β1

k2
s+ a2

− β2. (7)

To assure that GA(s) and GB(s) are asymptotically sta-
ble, a1 and a2 are assumed to be positive. Furthermore, k2
is assumed to be non-zero to avoid the degenerate case
where GA = G1.

Design Criterion. The signal 2-norm is chosen as a
measure for the signals eA(t) and eB(t), and is denoted
by ‖ · ‖2. This measure can be determined for a specific
reference signal d(t) ∈ L2[0,∞), where L2[0,∞) denotes

the set of all signals that have finite energy on an infinite
time interval [0,∞). However, the H∞-norm of GA (and
likewise for GB) provides the least upper bound on ‖eA‖2
for all d(t) ∈ D := {d(t) : ‖d‖2 ≤ 1}, as shown in [18]; that
is,

‖GA‖∞ = sup{‖eA‖2 : d(t) ∈ D}, (8)

where the H∞-norm of GA is defined as

‖GA‖∞ := sup
ω
|GA(jω)|. (9)

Definition 1. The transfer problem is formulated as minimiz-
ing ‖GA‖2∞ with respect to α, and likewise, ‖GB‖2∞ with
respect to {β1, β2} :

α∗ := arg min
α

‖GA‖2∞, (10)

{β∗1 , β∗2} := arg min
{β1,β2}

‖GB‖2∞. (11)

The H∞-norm is useful in analyzing the properties of TL
for a large set of reference signals. Assuming that any signal
in D is a potential reference signal, the optimal transfor-
mation α∗ represents the best possible transformation that
would be obtained when observing the system for an infinite
amount of time under all possible reference inputs d(t) ∈ D.
Consequently, as long as the reference signal belongs to the
set D, the H∞-norm evaluated at α∗ provides the worst
possible transformation error we could get.

IV. AN UPPER BOUND ON THE ERROR 2-NORM

In this section, we derive an analytic expression
for ‖GA‖2∞ as a function of α, a1, a2, k1, and k2, and
find minα ‖GA‖2∞ as a function of a1, a2 and k1 .

The squared magnitude of GA(jω, α) is

|GA(jω, α)|2 =
λ1(α)ω2 + λ2(α)

ω4 + λ4ω2 + λ5
, (12)

where

λ1(α) = (k1 − k2α)2, λ4 = a21 + a22,

λ2(α) = (k1a2 − k2a1α)2, λ5 = a21a
2
2.

The following expressions are used in the subsequent lemma:

α1 =
k1
k2

a2
a31

(a21 + a22 − a1a2 + η), (13)

α2 =
k1
k2

a2
a31

(a21 + a22 − a1a2 − η), (14)

η =
√

(a1 − a2)2(a21 + a22), (15)

φ(α) =
λ21

λ4λ1 − 2λ2 + 2
√
λ5λ21 − λ4λ1λ2 + λ22

, (16)

ψ(α) =
λ2(α)

λ5
. (17)

Lemma 1. For GA in (6), ‖GA‖2∞ is a piecewise continuous
function with respect to α that maximizes |GA(jω, α)|2
in (12) with respect to ω for all a1, a2 > 0, k1, and k2 6= 0.
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With the expressions defined in (13)-(17), it is given by

γ2A(α) := ‖GA‖2∞ =

{
φ(α) if α2 < α < α1

ψ(α) otherwise
. (18)

Proof. The proof is presented in [19].

The function γ2A(α) thus provides the least upper bound
on ‖eA‖22, subject to d(t) ∈ D, as a function of the
user-defined parameter α. This function can be minimized
with respect to α. The result is given in Theorem 1.

Theorem 1. For GA in (6), the parameter α that mini-
mizes ‖GA‖2∞ for all a1, a2 > 0, k1, and k2 6= 0 is given
by

α∗ =
k1
k2

2a2(
4a1 + a2 −

√
8a21 + a22

) . (19)

Proof. The proof is presented in [19].

Evaluating ‖GA‖2∞ at α∗ yields

γ∗A
2 := min

α
γ2A(α) (20)

=
k21

(
4a21 − a2

(
a2 +

√
8a21 + a22

))4
32a21(a1 + a2)3

(
4a1a2

√
ξ1 + (a2 − a1)ξ2

), (21)

where

ξ1 = 2a21(a1 − a2)2
(

4a21 + 5a22 − 3a2

√
8a21 + a22

)
, (22)

ξ2 = a42 − 8a21(a21 + a22) + a2(4a21 + a22)
√

8a21 + a22. (23)

Remark 1. If a1 = a2 = a, the optimization problem in (10)
is trivial; α∗ = k1k

−1
2 and γ∗A = 0. That is, if S1 and S2

have identical poles (but potentially different gains), perfect
transfer can be achieved with zero transfer error. In this
case, α∗ only needs to compensate for the difference in the
gains of the two systems.

Remark 2. The minimized H∞-norm, γ∗A, is independent
of k2. This can be explained by observing that in Fig. 2a,
insufficient amplification of the output x2(t), by the gain k2,
can be compensated by the multiplier α.

Remark 3. If the poles −a1 and −a2 are held con-
stant, γ∗A

2 is proportional to k21 . As a result, the transfer
error decreases if |k1| is decreased with the degenerate limit
case being k1 = 0, α∗ = 0, γ∗A = 0, which achieves perfect
matching because the target system outputs zero.

Additionally, the result of Theorem 1 can be an-
alyzed for varying pole combinations (−a1, −a2).
There are two different ways to interpret the result:
(i) by keeping the target system gain k1 constant, or
(ii) by re-parametrizing the systems using their DC
gains g1 = k1a

−1
1 and g2 = k2a

−1
2 , G1 = g1a1(s+ a1)−1

and likewise for G2, and keeping the DC gains constant.

Corollary 1. If the target system gain k1 is held con-
stant, γ∗A, defined in (20), approaches infinity as the pole
of the target system S1 approaches the imaginary axis.

Therefore, TL may not be beneficial if the target system has
a slow response to reference inputs.

Proof. In (21), a21 is factored out in the denominator. There-
fore, lim

a1→0+
γ∗A →∞.

Corollary 1 shows that TL is problematic if the target
system has a pole that is close to the imaginary axis,
unless a2 ≈ a1. The interpretation of this is that if a1 � a2,
the target system response is slow and does not follow
the reference signal well, while the source system does.
However, keeping k1 constant and decreasing a1 also means
that the DC gain g1 increases, which contributes to the bad
transfer quality.

Therefore, it is valuable to study the results under the
assumption of constant DC gains, which is more realistic
in practice. The minimized bound can then be written as

γ∗A
2 = g21

(
4a21 − a2

(
a2 +

√
8a21 + a22

))4
32(a1 + a2)3

(
4a1a2

√
ξ1 + (a2 − a1)ξ2

), (24)

where ξ1 and ξ2 are from (22) and (23).

Corollary 2. If g1 is held constant, it can be shown
that γ∗A → |g1|/4 as a1 → 0 and γ∗A → |g1| as a2 → 0.

Proof. Corollary 2 follows directly from (22):(24) by taking
the limit a1 → 0 and a2 → 0.

Finding equivalent analytic results for the IOT case proved
to be more difficult. Results are obtained from numerically
finding ‖GB‖∞ as a function β = [β1, β2]. Numerical meth-
ods can then be used to find an estimate for β∗, along
with γ∗B := γB(β∗), where we use a similar notation as
in (18): γB(β) := ‖GB‖∞.

V. NUMERICAL EXAMPLES

A. Influence of System Parameters on Transfer Error

In this section, contour plots illustrate how the mini-
mized H∞-norms of GA and of GB vary as a function of
the pole magnitudes a1 and a2.

In Fig. 3a, we keep k1 constant (according to Corol-
lary 1). The minimized bound γ∗A is normalized by |k1|.
To compare the minimized H∞-norms of the transfer func-
tions GA and GB , a contour plot of the ratio γ∗B/γ

∗
A is

shown in Fig. 3b. This ratio is undefined when a1 = a2
because γ∗A = γ∗B = 0. For γ∗B , no closed-form solutions are
available to suggest how γ∗B may be normalized, if at all.
Therefore, k1 and k2 are both set to one in Fig. 3b. To
obtain β∗ and γ∗B , a basic grid-search method was employed.

In Fig. 3c, a contour plot of γ∗A is shown, where now
the DC gain g1 is held constant (according to Corollary 2).
We chose g1 = 1. This is in contrast to Fig. 3a where k1 is
held constant. A figure similar to Fig. 3b can be generated
for g1 = g2 = 1. Qualitatively, the plot looks very similar to
Fig. 3b.

In Figs. 3a and 3c, the base-10 logarithm of the data
is shown to illustrate the variation more clearly. In all the
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(a) (b) (c)

Fig. 3. On the left is a contour plot of log10[γ∗A|k
−1
1 |] vs. a1 and a2. When a1 = a2, γ∗A|k

−1
1 | is zero. As the pole a1 approaches zero, γ∗A|k

−1
1 |

grows exponentially. The black line illustrates a constant contour line where γ∗A|k
−1
1 | = 1E−2. In the middle, the ratio γ∗B/γ

∗
A vs. a1 and a2 is shown

for k1 =1 and k2 =1. It can be seen that using the reference signal in the transformation always reduces the minimized H∞-norm of the system, and
the asymmetry reveals that the benefit of doing so is most evident when a2 < a1. On the right, a contour plot of log10[γ∗A] vs. a1 and a2 is shown
for k1 = a1, that is, g1 = 1.

contour plots, a white line is drawn through the diagonal
as γ∗A = γ∗B = 0 when a1 = a2.

Key Observation 1: In Fig. 3a, the mini-
mized H∞-norm, γ∗A, increases exponentially with
diminishing a1, a result expected from Corollary 1 for
constant k1. This phenomenon holds true for γ∗B as well
if k1 and k2 are held constant. This indicates that S1 must
not have a pole close to the imaginary axis if we want to
achieve an accurate data transfer from S2 to S1, unless k1
is small as well.

Key Observation 2: For both Figs. 3a and 3c with
constant k1 and constant g1, respectively, the transfer quality
is best if the poles of S1 and S2 lie close together.

Key Observation 3: For both Figs. 3a and 3c, if the
poles a1 and a2 are of greater magnitude, they can be further
apart for the minimized error bound to stay on the same
contour line. For example, consider the two black contour
lines for γ∗A|k

−1
1 | = 1E−2 in Fig. 3a. If a1 = 10, then to

not do worse than an error of around 1E−2, a2 must be
approximately between 7.8 and 13.1. However, if a1 = 12,
then the range of allowable a2 increases by around 47% to be
approximately between 8.9 and 16.7. The same observation
holds for the IOT case and for the OT analysis with constant
DC gain.

Key Observation 4: According to Fig. 3b, γ∗A is always
greater than γ∗B . This shows that using the reference signal
in the transformation reduces the least upper bound on the
2-norm of the transformation error; that is, γ∗B/γ

∗
A is smaller

than one. The asymmetry in Fig. 3b shows that it is especially
useful to do this when a2 < a1; that is, when the target
system responds faster than the source system. The same
observation holds for the OT analysis with constant DC gain.

Key Observation 5: According to Fig. 3c, if the DC
gain g1 is held constant, then it is slightly more preferable
to have a2 > a1, in contrast to if the gain itself, k1, is held
constant.

B. Demonstration of Alignment-Based Transfer Learning for
Two Sample Systems

In this section, we consider specific source and target
systems and demonstrate TL for datasets from a specific
reference signal. We consider two first-order, LTI, SISO
systems with open-loop poles −m1 and −m2. They each
have a proportional feedback controller with gains k1 and k2.
For S1, the state and input equations are

ẋ1(t) = −m1x1(t) + u1(t), (25)
u1(t) = k1(d(t)− x1(t)), (26)

and likewise for S2. Therefore, a1 = m1 + k1 and likewise
for a2. Each system is tasked to follow a sinusoidal reference
signal d(t) = 0.5 sin(t)U(2π − t), where U(·) is the Heav-
iside step function. It can be shown that ‖d‖2 < 1. Each
of the two systems are run in simulation for eight seconds
and data is collected for x1(t), x2(t), and d(t) at a sampling
frequency of 100 Hz. Let X1 denote a (1 × N ) matrix of
samples of x1(t),

X1 =
[
x1(0) · · · x1(kδ) · · · x1(Nδ)

]T
, (27)

where δ = 0.01 and k ∈ {0, 1, 2, . . . , N}. Similarly, X2

and D are matrices constructed from samples of x2(t)
and d(t), respectively. Then, by least-squares regression, an
optimal ᾱ is found such that

ᾱ = arg min
α

ETAEA, (28)

where EA ··= X1 − αX2. Similarly,

{β̄1, β̄2} = arg min
{β1,β2}

ETBEB , (29)

where EB ··= X1 − (β1X2 + β2D). Fig. 4a shows the tra-
jectories of x1(t), x2(t) and αx2(t) for a1 = 8 and a2 = 4,
with gains k1 = k2 = 5. As expected, Fig. 4b shows that the
transformation error is reduced when the reference signal is
used.

To show the asymmetry of Figs. 3a and 3c, the simulation
can be re-run for the case where now a1 = 4 and a2 = 8.
By switching the poles to a2 > a1 and leaving the gains
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(a) (b) (c)

Fig. 4. On the left is an example of TL for the OT case. The objective is to align the red trajectory with the blue through ᾱ, see the black line. In the
middle is a comparison of the transformation error of the OT case and the IOT case; the latter shows better performance. On the right, the squared H∞-norm
of GA from (18), γA(α), is illustrated as a function of α. The two dashed lines denote where the piecewise function changes from φ(α) to ψ(α). It can
be seen here that α∗, denoted by the circle, minimizes this function. The square marker denotes ᾱ, optimized for a specific reference signal.

constant, ‖eA‖2 is increased by an order of magnitude
from 6.32E−2 to 1.24E−1. However, if the DC gains are
held constant, that is, g1 = .625 and g2 = 1.25, then it is
slightly reduced to 6.19E−2.

In Fig. 4c, ᾱ and α∗ are compared for the two sample
systems, along with the values of γA evaluated at those
optimized α values. Note that γA(ᾱ) > γA(α∗), indicating
that although ᾱ was optimally found for data generated
from a specific reference signal, α∗ provides a lower upper
bound on ‖eA‖2 for all d(t) ∈ D. A similar result can
be shown for the IOT case; for the same two sample
systems, γB(β∗) = 1.09E−2, whereas γB(β̄) = 9.21E−2.

Unlike the process to obtain solutions for α∗ and γ∗A,
finding ᾱ did not require any knowledge of the system
models. When working with complex robotic systems, we
will not be able to compute the H∞-norm, since TL is used
in cases when no model of the systems is available in the
first place. Nevertheless, our analysis provided insight and
intuition on how system properties such as the pole location
influences the quality of the transformation.

VI. CONCLUSIONS

This paper explored the feasibility of one robot using an-
other robot’s data for model learning by studying a simplified
scenario. An LTI transformation is used to map the output
from one control system to the output from another. By
framing this as an H∞-norm minimization problem, an upper
bound on the 2-norm of the transformation error is derived
and minimized with respect to the transformation scalar, for
a large set of reference inputs. This minimized error bound
is a measure of the quality and benefit of TL, and answered
the question as to when TL is beneficial. In particular, the
transfer quality is good if the system poles lie close to each
other, or if the system poles are further apart but both have
large negative real parts. The quality is further improved if
the reference signal is used in the transformation.
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