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Abstract

Methods from machine learning have successfully been
used to improve the performance of control systems
in cases when accurate models of the system or the
environment are not available. These methods require
the use of data generated from physical trials. Trans-
fer Learning (TL) allows for this data to come from a
different, similar system. The goal of this work is to
understand in which cases a simple, alignment-based
transfer of data is beneficial. A scalar, linear, time-
invariant (LTI) transformation is applied to the output
from a source system to align with the output from a tar-
get system. In a theoretic study, we have already shown
that for linear, single-input, single-output systems, the
upper bound of the transformation error depends on the
dynamic properties of the source and target system, and
is small for systems with similar response times. We
now consider two nonlinear, unicycle robots. Based on
our previous work, we derive analytic error bounds for
the linearized robot models. We then provide simula-
tions of the nonlinear robot models and experiments
with a Pioneer 3-AT robot that confirm the theoretical
findings. As a result, key characteristics of alignment-
based transfer learning observed in our theoretic study
prove to be also true for real, nonlinear unicycle robots.

Introduction

If robots are to work effectively in multi-agent scenarios,
their ability to share knowledge and learn from each oth-
ers’ experiences is important to develop. If multiple, sim-
ilar robots have to perform the same task, it is more cost-
effective if one robot learns to perform the task and transfers
its knowledge to the other robots. In cooperative team-based
scenarios, the exchange of a malfunctioning robot with a
new one can be made faster if the old robot transfers its
learned knowledge.

While there is different information that robots can share,
such as maps (Dieter et al. 2006), object models and environ-
ments (Tenorth et al. 2012), or controllers (Chowdhary et al.
2013), we focus on the transfer of data for model learning
for robot control.

Model learning is beneficial when models that accurately
represent the robot’s behavior are difficult to derive math-
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Figure 1: Transfer Learning framework. Systems 1 and 2
learn from input-output data (dashed lines). The concept of
Transfer Learning (TL) allows for System 1 to use data from
System 2 for its own learning task (red dash-dotted line). In
this paper, we study TL in the context of robotics and pro-
vide insight to when TL is beneficial.

ematically, or are unreliable due to parameter uncertainties
or unknown external disturbances affecting the robot. The
potential use of data from simulations or experiments to im-
prove robot models is a prime motivator for modern research
at the intersection of machine learning, control theory and
robotics. Various regression techniques have been used to
learn dynamics, kinematics and disturbance models using
data from physical trials or simulations of a robot (Nguyen-
Tuong and Peters 2011; Berkenkamp and Schoellig 2015;
Ostafew, Schoellig, and Barfoot 2014; Schoellig, Mueller,
and D’Andrea 2012).

Transfer Learning (TL) allows for this data to be gener-
ated by a second system. In a training phase, both systems
generate data, and a transformation that aligns one dataset to
the other is learned. Once this mapping is learned, the first
system, also called the target system, can use data gener-
ated by the second system, the source system, in subsequent
model learning (see Fig. 1). This transfer of data may be
beneficial to the model learning process if the source sys-
tem is less costly, difficult, or hazardous to operate than the
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target system.
In robotics, TL has often been considered in the context

of speeding up a single robot’s task learning using knowl-
edge obtained in a previous task performed by the same
robot (Konidaris, Scheidwasser, and Barto 2012). TL has,
for example, been successfully used in an Iterative Learn-
ing Control (ILC) framework to speed up learning of new
tasks (Arif, Ishihara, and Inooka 2001; Janssens, Pipeleers,
and Swevers 2012; Hamer, Waibel, and D’Andrea 2013).
Research for multi-agent robotic systems is relatively sparse
(Tuyls and Weiss 2012). Most common applications aim
to speed up joint or sequential learning either in an ILC
framework by transferring task-dependent disturbance esti-
mates (Schoellig, Alonso-Mora, and D’Andrea 2012), or in
a Reinforcement Learning framework by transferring rules
and policies of simple systems with discrete states (Tay-
lor and Stone 2009; Lakshmanan and Balaraman 2010;
Boutsioukis, Partalas, and Vlahavas 2012). However, TL can
also be used in a model learning framework to apply a trans-
formation on input-output data generated by one robot. This
transformed data can then be input to a model learning algo-
rithm for a second, similar robot (Bocsi, Csató, and Peters
2013). We are interested in the latter multi-agent learning
scenario.

In several applications beyond robotics, Manifold Align-
ment has been used to find an optimal transformation to
align datasets (Ham, Lee, and Saul 2005; Wang and Ma-
hadevan 2009). In (Wang and Mahadevan 2008), this tech-
nique is demonstrated for two simple state-space models that
each need to learn a task using Reinforcement Learning. In
(Bocsi, Csató, and Peters 2013), a similar transformation
technique is used on data from one robotic arm to speed up
learning of a robot model for a second robotic arm.

While these works have shown that TL is feasible for
some examples, they do not address the question of when the
data transfer works well and when it fails. In previous work
(Raimalwala, Francis, and Schoellig 2015), we introduced a
framework to conduct an analytic study of how the quality of
a linear transfer depends on the properties of the source and
target systems that are both first-order, linear, time-invariant
(LTI), and single-input, single-output (SISO).

In this paper, we consider nonlinear, unicycle robots. We
apply our previous theoretic results to the linearized unicy-
cle models to analyze when the transfer may work well and
when it may not. This paper then makes a novel contribution
by corroborating our theoretical findings with data from sim-
ulation of nonlinear unicycle models and from a real-world
experiment with an indoor robot, a Pioneer 3-AT, which dis-
plays nonlinear behavior.

We begin by providing a background on model learning
and TL for control systems, followed by the methodology
used for our theoretical analysis. These sections summa-
rize results from our previous paper (Raimalwala, Francis,
and Schoellig 2015), while subsequent sections on unicycle
robots present new results. We introduce the linearized uni-
cycle model and apply our theoretic tools to these models.
The theoretic results are then supported by results from non-
linear simulations and from an experiment with a Pioneer
3-AT robot.

Background

Model Learning

Dynamics and kinematics models govern a robot’s behav-
ior. While analytic models can be derived from first prin-
ciples, they often do not capture the real-world dynam-
ics accurately (Berkenkamp and Schoellig 2015; Ostafew,
Schoellig, and Barfoot 2014). Supervised model learning
presents a solution by employing a regression tool to find
a map from input data to labelled observations. Given a se-
quence of input-output data with input x[i] ∈ R

n and out-
put y[i] ∈ R

p, where i ∈ {0, 1, 2, ..., N} and N is the num-
ber of samples obtained, the problem of model learning is
to find a mapM : f(x)→ y such that some measure of the
magnitude of the error sequence,

ε[i] = y[i]− f(x[i]), i ∈ {0, 1, 2, ..., N}, (1)

is minimized. For example, learning an inverse dynam-
ics model for a robot arm can be formulated as finding a
map M : f(q, q̇, q̈)→ τ , where q ∈ R

p is a vector of joint
angles for all p joints of the arm, τ ∈ R

p is a vector of
applied torques to each joint and x ∈ R

3p (Nguyen-Tuong,
Seeger, and Peters 2009).

Transfer Learning

When two robots (or control systems, in general), S1 and S2,
execute a task, data is generated by each system. Data
from S2 can then undergo a transformation to align with
data from S1. The problem is akin to model learning in that
a map needs to be found. In (Bocsi, Csató, and Peters 2013)
and (Wang and Mahadevan 2008), the authors model this
map as a time-invariant, linear transformation for each data
sample. In this work, we make the same assumption.

Let vectors x1[i] and x2[i] be sampled data from S1

and S2. We thus define the problem of TL as finding a ma-
trix A such that the vector 2-norm of

ε[i] = x1[i]−Ax2[i] (2)

is minimized for all times i ∈ {0, 1, 2, ..., N}. The vector x
can consist of system states, control inputs, or other vari-
ables that are relevant for a specific model learning algo-
rithm. For the inverse dynamics model learning example
in (Bocsi, Csató, and Peters 2013), the vector x is defined
as x = [qT , q̇T , q̈T , τT ]T . Once such a matrix is learned
from one pair of datasets, additional training data for learn-
ing the model of S1 can be obtained by transforming subse-
quent data collected from S2 using A.

To find an optimal transformation A that aligns the dis-
crete datasets, a priori models of each system need not be
known, as the transformation only depends on data collected
from physical trials of the two systems. The disadvantage of
this data-alignment technique is that it is difficult to make
predictions on the quality of the transformation. Further-
more, there usually is no guarantee on the performance of
a given transformation on subsequent data.

Work in (Bocsi, Csató, and Peters 2013) shows that for
two simulated robot arms, the data alignment worked well
and sped up model learning. However, it is not obvious that
the same approach works in other applications. Our work is
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motivated by an interest to further explore the properties of a
time-invariant, linear transformation for control system data,
and determine when TL is most beneficial and when it fails.

We therefore consider two first-order, LTI, SISO sys-
tems, S1 and S2, in our analytic framework. We study TL
in continuous time to facilitate our analysis. In this frame-
work, x1(t), x2(t) ∈ R are the scalar system states, which
are driven by the reference signal d(t), and A = α is a
scalar that must map x2(t) to x1(t) (see Fig. 2). We find
the transformation α∗ that optimally aligns x2(t) to x1(t)
for all t ∈ [0,∞) in an H∞-norm sense.

This minimization provides the least upper bound on the
2-norm of the transformation error signal and we use this
error bound to show how the quality of TL varies depending
on the poles of S1 and S2, or in the case of our linearized
unicycle models, depending on their controller gains.

Methodology

In this section, we introduce a framework for analyzing TL
for simple, LTI, SISO systems: we define an H∞-norm min-
imization problem where a scalar α is used to optimally
align x2(t), the output of the source system, to x1(t), the
output of the target system.

The transfer function of the target and source system are
given by

G1(s) =
k1

s+ a1
and G2(s) =

k2
s+ a2

, (3)

respectively, where −a1 and −a2 are the poles, and k1
and k2 are the gains of G1 and G2 (see Fig. 2). These transfer
functions can represent path-following robots with closed-
loop poles−a1 and−a2 and DC gains k1/a1 and k2/a2. For
example, we later show that a unicycle’s linearized kinemat-
ics model under proportional feedback control with gain k
can be represented by the transfer function k(s+ k)−1.

The quantity of interest in the TL problem is the error
of the alignment of x2(t) to x1(t) and is the output of the
transfer system,

eA(t) = x1(t)− αx2(t), (4)

where α is a time-invariant scalar. The transfer function
from d(t) to eA(t) is

GA(s) =
k1

s+ a1
− α

k2
s+ a2

. (5)

To assure that GA(s) is asymptotically stable, a1 and a2
are assumed to be positive. Furthermore, k2 is assumed to
be non-zero to avoid the degenerate case where GA = G1.

Design Criterion. The signal 2-norm is chosen as a mea-
sure for the signal eA(t) and is denoted by ‖ · ‖2. This
measure can be determined for a specific reference sig-
nal d(t) ∈ L2[0,∞), where L2[0,∞) denotes the set of
all signals that have finite energy on an infinite-time inter-
val [0,∞). However, the H∞-norm of GA provides the least
upper bound on ‖eA‖2 for all d(t) ∈ D, as shown in (Doyle,
Francis, and Tannenbaum 2013); that is,

‖GA‖∞ = sup{‖eA‖2 : d(t) ∈ D}, (6)

k2

s+ a2

S2

α

k1

s+ a1

S1

+
−

d(t)

x2(t)

x1(t)

eA(t)

GA

Figure 2: For data transfer, x2(t) is multiplied by a scalar α
to match x1(t). While x1(t) and x2(t) are outputs of sub-
systems S1 and S2, the output of the overall system is eA(t).

where the H∞-norm of GA is given by

‖GA‖∞ = sup
ω
|GA(jω, α)|, ω ∈ R. (7)

Problem Definition. The transfer problem is formulated as
minimizing ‖GA‖∞ with respect to α:

α∗ := argmin
α

‖GA‖∞. (8)

The H∞-norm is useful in analyzing the properties of TL
for a large set of reference signals. Assuming that any sig-
nal in D is a potential reference signal, the optimal transfor-
mation α∗ represents the best possible transformation that
would be obtained when observing the system for an infinite
amount of time under all possible reference inputs d(t) ∈ D.
Consequently, as long as the reference signal belongs to the
set D, the H∞-norm evaluated at α∗, denoted by γ∗

A, pro-
vides the worst possible transformation error we could get.

In previous work (Raimalwala, Francis, and Schoellig
2015), we derived an analytic solution for α∗ and found that
the minimized lower bound takes the form

γ∗
A =

k1
a1

h(a1, a2), (9)

where h(a1, a2) is a rather complex function of a1 and a2.
The ratio k1a

−1
1 is known as the DC gain of S1 and indi-

cates the steady-state output for a unit step input. This result
can be used to study TL for linearized unicycle models with
proportional feedback control.

Unicycle Model

The 2D unicycle, depicted in Fig. 3a, has the
pose x = [x, y, θ]T and its motion in an inertial frame
can be modelled by the nonlinear kinematic equations,

ẋ(t) = v(t) cos θ(t), (10)
ẏ(t) = v(t) sin θ(t), (11)

θ̇(t) = ω(t), (12)

where v(t) and ω(t) are the translational and rotational
speed, respectively, and are considered to be inputs to the
robot. To analyze TL for the unicycle in the H∞ framework,
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(a) (b)

Figure 3: On the left is a depiction of a unicycle robot in the
2D plane. On the right is the position of the robot, z, repre-
sented in the complex plane with the point p being ahead by
distance ε in the direction of the robot’s heading.

the model must first be linearized. To begin, we represent
the unicycle pose in the complex plane,

z(t) = x(t) + jy(t), (13)

r(t) = ejθ(t). (14)

In this representation, the unicycle model is

ż(t) = r(t)v(t), (15)
ṙ(t) = jr(t)ω(t). (16)

We then linearize the unicycle about a
point p(t) := z(t) + εr(t) that is a distance ε > 0 ahead
of the unicycle in the direction r(t) (see Fig. 3b and (Yun
and Yamamoto 1992)). We can decompose the point ahead
into its real and complex parts: p(t) = px(t) + jpy(t) with
px(t), py(t) ∈ R. We define an artificial control input

u(t) = ux(t) + juy(t), ux(t), uy(t) ∈ R,

such that

ṗ(t) = u(t) ⇔ ṗx(t) = ux(t), ṗy(t) = uy(t), (17)

and the linearized dynamics are represented by a simple in-
tegrator in each direction.

The original inputs can be obtained from u(t) using
ṗ(t) = r(t)v(t) + εjr(t)ω(t) = u(t) and separating the
real and imaginary components (Yun and Yamamoto 1992):

v(t) = ux(t) cos θ(t) + uy(t) sin θ(t), (18)

ω(t) =
1

ε
(uy(t) cos θ(t)− ux(t) sin θ(t)) . (19)

While we design a linear feedback controller for the lin-
earized unicycle robot based on (17), it is important to note
that the nonlinear equations (18)–(19) will be used to control
the nonlinear unicycle model in simulation and the Pioneer
robot in our indoor experiment. In simulation and experi-
ment, we additionally assume that v(t) and ω(t) are con-
strained.

By controlling the position of a point ahead of the robot,
the rotation (the nonlinearity of the system) is removed, and

+−
k s−1

zref u p

G

Figure 4: Control block diagram for the linearized unicycle
with proportional feedback control.

the system behaves like a kinematic point. To track a refer-
ence signal zref (t) in the complex plane, a simple propor-
tional controller with gain k can be devised,

u(t) = k (zref (t)− p(t)) . (20)

The resulting closed-loop system is depicted in Fig. 4 and
summarized by the transfer function

G =
k

s+ k
, (21)

which is exactly the form of the system used in the earlier
TL analysis, where here the DC gain is equal to one. For
two of these linearized unicycle models, each with gain k1
and k2, the resulting minimized bound on the 2-norm of the
transformation error can be expressed as

γ∗
A = h(k1, k2). (22)

Theoretic Results

We began by presenting a method to analyze how the error of
data alignment varies with respect to the system parameters,
and then applied this result to linearized unicycle models,
which was shown to be a special case of the general result.
We can now visualize γ∗

A from (22) in a contour plot with
the unicycle controller gains k1 and k2 on the x- and y-axes
(see Fig. 5). The base-10 logarithm of the data is shown to
illustrate the variation more clearly. A white line is drawn
through the diagonal as γ∗

A = 0 when k1 = k2. Of note are
the following observations:

Key Observation 1. The error is lower if k1 and k2 lie
close together, that is, if the two systems are dynamically
similar.

Key Observation 2. If k1 and k2 are greater, they can
be further apart for the minimized transfer error bound to
stay on the same contour line. For example, consider the
two black contour lines for γ∗

A = 0.1 in Fig. 5. If k1 = 10,
then k2 must be approximately between 7.8 and 13.1 for γ∗

A
to stay under 0.1. However, if k1 = 12, then the range of
allowable k2 increases by around 19% to be approximately
between 9.4 and 15.7.

Key Observation 3. In contrasting the top-left and
bottom-right corners of Fig. 5, we see that it is slightly more
preferable to have k2 > k1; that is, it is preferable for the
source system to have a faster response than the target sys-
tem.
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Figure 5: A contour plot of log10[γ
∗
A] vs. k1 and k2 is shown.

The parameters k1 and k2 reflect the dynamics of unicycle 1
and 2. Low values of γ∗

A represent low transfer error.

Figure 6: The two unicycle robots move in the outward spi-
ral. The TL objective is to align the red trajectory to the blue
through ᾱ (black line).

Unicycle Simulation

In this section, we demonstrate TL for datasets generated by
tasking two linearized unicycle robots to follow a specific
reference signal in simulation. Their models and controllers
are given by (17) and (20), respectively.

For the simulation, the model and controller are dis-
cretized, resulting in the discrete-time equations

p[i+ 1] = p[i] + Δt u[i] + np,x[i] + jnp,y[i] (23)

with np,x[i], np,y[i] ∼ N (0, σ2),

u[i] = k(zref [i]− p[i]), (24)

where i and Δt are the discrete-time index and time step,
respectively. To match the experiment later, Δt is chosen to
be 0.005. To the x- and y-dimensions, we separately add
noise np,x and np,y , which are Gaussian distributed with
zero mean and variance σ2. The robots are tasked to follow
an outward spiral trajectory,

xref (t) = η3 sin(η1t)e
η2t, (25)

yref (t) = η3
(
cos(η1t)e

η2t − 1
)

(26)

Figure 7: A contour plot of log10[‖eA‖2] vs. k1 and k2
for σ2 = 1× 10−5.

with parameters η1 = 0.1, η2 = 0.01, and η3 = 0.03 (see
Fig. 6). The simulation is run for 4π/η1 ≈ 126 sec-
onds. Data is collected for p1[i], p2[i], and zref [i],
where i ∈ {1, 2, . . . , N}. Let P1 denote an (N × 1) matrix
of samples of p1[i],

P1 = [p1[1] · · · p1[i] · · · p1[N ]]
T
. (27)

Similarly, P2 is constructed from samples of p2[i].
Let M1 = [Re(PT

1 ), Im(PT
1 )]

T and likewise for M2. Then,
by ordinary least-squares regression, an optimal ᾱ is found
such that

ᾱ = argmin
α

ET
AEA, (28)

where EA := M1 − αM2. The solution is given by

ᾱ = M+
2 M1, (29)

where M+
2 = [MT

2 M2]
−1MT

2 . The mapped trajectory in
the complex plane is then

P̂ = ᾱP2. (30)

An estimate of the 2-norm of the error sig-
nal eA[i] = p1[i]− ᾱp2[i] is then computed by trapezoidal
integration,

‖eA‖2 =

√√√√Δt

2

N∑
i=2

(|eA[i]|2 + |eA[i− 1]|2) . (31)

Fig. 6 shows the trajectories of the target and source sys-
tems and the alignment for k1 = 0.5 and k2 = 1.25, with
noise variance σ2 = 1× 10−5. The error 2-norm is 0.079,
slightly lower than the 2-norm of the difference between the
source and target trajectories at 0.081.

We now see how the 2-norm of the transformation error
varies for simulations that use different combinations of k1
and k2 in Fig 7. We see that ‖eA‖2 varies in a way that is
similar to γ∗

A. The three key observations made in the pre-
vious section from the analysis for a large set of reference
signals also hold for this specific outward-spiral reference
signal. However, we note that ‖eA‖2 is only slightly asym-
metrical with respect to a1 and a2, in contrast to the more
asymmetric variation of γ∗

A.
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Figure 8: The Pioneer 3-AT robot in the motion-capture-
enabled lab at the University of Toronto Institute for
Aerospace Studies.

Figure 9: In the background is a contour plot of ‖eA‖2 vs. k1
and k2 for the simulation of the nonlinear unicycle system
moving on a spiral path. In the foreground are scaled black
circles that denote ‖eA‖2 obtained from experiments.

Experimental Results

In this section, we obtain results similar to those in the pre-
vious section, but for data gathered in physical experiments
with the Pioneer 3-AT, a small four-wheel drive, skid-steer
robot (see Fig. 8).

The Pioneer robot is roughly 27 cm long (distance be-
tween front and rear wheel centres) and 50 cm wide.
It can drive at a maximum speed of 0.7m s−1 and
turn at a maximum rate of 2.44 rad s−1. However, we
constrain these in our experiment to vlim = 0.5m s−1

and ωlim = 1.5 rad s−1. Considering these parameters, we
choose η1 = 0.1, η2 = .01, η3 = .7, and ε = 0.1 for an ap-
propriate path to track.

For data acquisition, we use a motion capture system that
uses active, infra-red cameras to provide the robot pose in an
inertial frame at 200Hz. The Pioneer is tasked to follow the
path a few times, each time with a different controller gain.

We perform experiments for various combinations of k1
and k2. The error values are presented as black circles in

Fig. 9. The values for ‖eA‖2 are used to scale the size of the
circles. In the background is a contour plot of ‖eA‖2 com-
puted from simulating the full nonlinear unicycle systems
with the same controllers and speed constraints used in the
experiment.

We see that the three key observations made from
the H∞ analysis hold for the simulation of the nonlin-
ear systems as well as for the experiments with the Pio-
neer robot. Indeed, the third observation, that it is slightly
preferable to have k2 > k1, can be demonstrated by not-
ing that for {k1 = 1.25, k2 = 0.5}, ||eA||2 = 1.56, while
for {k1 = 0.5, k2 = 1.25}, ||eA||2 = 1.52.

Conclusions

In this paper, we first conducted an analytic study on the
quality of alignment-based transfer learning (TL) for two
linearized unicycle robot models with proportional feedback
control. This is a specific application of our more general
study in previous work, where we considered the data trans-
fer between two linear, time-invariant (LTI), single-input,
single-output (SISO) systems.

For the linearized unicycle model, we showed that the
transfer quality depends on the controller gains of both
robots. In particular, the transfer quality increases if the two
systems have similar control gains and if they have larger
gains.

The two linearized unicycle models, each with a differ-
ent controller gain, were tasked to follow a spiral trajectory
in simulation. An estimate of the transfer quality was com-
puted for several combinations of the two system gains. It
was shown that the variation of transfer quality was consis-
tent with the analytic results before. This analysis was re-
peated for simulations with the nonlinear unicycle models
and controllers, and velocity constraints. Lastly, we showed
that these results also hold for data obtained from indoor ex-
periments with a Pioneer robot. As a result, we proved that
our analytic results based on linear models are consistent
with nonlinear simulations and real experiments.
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