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Abstract— Autonomous robots navigating in changing envi-
ronments demand adaptive navigation strategies for safe long-
term operation. While many modern control paradigms offer
theoretical guarantees, they often assume known extrinsic safety
constraints, overlooking challenges when deployed in real-world
environments where objects can appear, disappear, and shift
over time. In this paper, we present a closed-loop perception-
action pipeline that bridges this gap. Our system encodes an
online-constructed dense map, along with object-level semantic
and consistency estimates into a control barrier function (CBF)
to regulate safe regions in the scene. A model predictive
controller (MPC) leverages the CBF-based safety constraints
to adapt its navigation behaviour, which is particularly crucial
when potential scene changes occur. We test the system in
simulations and real-world experiments to demonstrate the
impact of semantic information and scene change handling on
robot behavior, validating the practicality of our approach.

I. INTRODUCTION
Autonomous robots face increasing demands for long-term

navigation in challenging environments like warehouses,
office spaces and public roads, where prior knowledge is
limited. Accurate mapping and localization are critical for
safe and efficient operation in such scenarios. However, most
localization and mapping systems assume a static world,
which is rarely the case in reality [1]. In these environments,
robots may encounter both highly dynamic objects, like
humans and other robots, and semi-static objects, such as
furniture and pallets, which can appear, disappear and shift
over time. Semi-static changes are especially hard to detect,
and their mishandling can lead to corrupted maps and lost
localization, resulting in catastrophic failure such as obstacle
collisions. The growing demand for long-term autonomy
necessitates robust and adaptive navigation strategies.

Recent efforts have addressed object-aware localization
and mapping in semi-static scenes [2], [3], [4], [5]. These
approaches all estimate a 0-to-1 consistency score for each
mapped object based on sensor data, updating the changed
regions and objects when necessary. However, these works
solely focus on mapping and localization accuracy, leaving a
notable gap in leveraging the resulting object-level semantic
and geometric information for downstream decision-making
tasks to ensure safe navigation.
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A video description of our framework with additional experiments is
available at http://tiny.cc/obj-mpc-cbf.

Fig. 1. Our system takes in semantically annotated RGB-D frames to
localize and construct an object-aware volumetric map. Each object holds
a semantic label and a consistency score. The map is transformed into a
CBF, which is utilized by an MPC to plan safe paths around objects. In our
framework, objects that are likely-static, such as walls, and those having
higher consistency scores, will have smaller unsafe regions around them.

An increasing amount of work has been proposed to
address the challenge of ensuring safe decision-making for
robots operating in changing and uncertain environments [6].
Examples include learning-based model predictive con-
trol (MPC) [7], [8], learning-enhanced adaptive control [9],
[10], as well as control barrier function (CBF)-based safety
filter designs [11], [12]. While these control approaches offer
promising theoretical guarantees, a notable limitation lies in
their common assumption that safety constraints are known
ahead of time [6]. Many practical robot systems rely on on-
board sensors to perceive their surroundings, while extrinsic
constraints are inferred in real-time. Though there exist a
few perception-based safe learning frameworks (e.g., [13],
[14]), they do not yet exploit object-level semantic and
geometric understanding of the environment that can be
readily distilled from perception and mapping systems. In
this work, we aim to bridge this gap and facilitate the
practical application of theoretical advancements in safe
control within real-world contexts. Our emphasis lies in
leveraging object-level semantic and geometric constraints
to enhance the adaptability and safety of robotic systems
operating in semi-static environments.

We present a closed-loop pipeline that establishes an inte-
grated perception-action loop. Our system adopts the state-
of-the-art localization and semi-static mapping strategies [3],
[15] to construct an up-to-date, object-aware volumetric
map (using truncated signed distance functions, TSDFs) of
the environment on the fly. Each object within the map
maintains a semantic label and a consistency estimate. Upon
each update cycle, the map is distilled into a CBF, which
synthesizes both the object semantic labels and consistency
estimates to regulate safe regions within the scene. Our
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system further incorporates an MPC that utilizes the CBF-
based safety constraints to adapt its navigation strategy
around objects. This adaptability is particularly critical when
potential scene changes are detected. We conduct tests in
both simulated and real-world environments. Through the
experiments, we illustrate how using semantic information
and accommodating potential scene changes significantly
influence the robot’s behavior, showcasing the practicality
of our approach. Our key contributions are as follows:

• We develop a method to encode dense volumetric maps,
object semantic labels, and object consistency estimates
into a single CBF.

• We build a closed-loop system combining localization,
object-aware mapping, and CBF-based safe control for
adaptive robot navigation in semi-static scenes.

• We demonstrate the system’s adaptability in both simu-
lated and real-world environments, showcasing dynamic
behavior adjustments based on prior semantic knowl-
edge and potential scene changes.

II. RELATED WORKS
A. Scene Representations and Object-Aware Mapping

Many geometric representations exist for scene reconstruc-
tion, including sparse features from vision systems [15],
surfels [16], triangular meshes [17], point clouds [18], and
dense volumetric methods such as occupancy grids [19],
and Signed Distance Functions (SDFs) [20]. SDFs encode
the distance to the nearest surface, gaining traction as they
contain rich geometric information for downstream decision-
making tasks. SDFs also exploit parallelism to achieve
efficient, real-time map updates [20]. Nevertheless, these
methods focus on capturing precise scene geometry, ignoring
semantic and object-level knowledge.

Researchers have attempted to fuse semantic and object-
level information into the geometric map. SLAM++ [21] is
an early method which introduces objects into localization
and mapping by leveraging existing CAD models from a
predefined object library. Voxblox++ [22], Kimera [23], and
Hydra [24] build on [20] by fusing semantic labels into the
scene-level grid representation. Works like Fusion++ [25],
SemanticFusion [26], and MaskFusion [27] leverage seman-
tic segmentation to decompose the scene into object-centric
local maps, achieving precise object reconstruction. How-
ever, many approaches still assume a static world, rendering
them ineffective during real-world deployment where objects
may change over time.

B. Change Detection in Mapping and Localization
To handle dynamics in the scene, two common strategies

have been adopted in prior works. The first approach relies on
semantic segmentation to identify potentially moving objects,
treating them as outliers during camera tracking and scene
reconstruction [28], [29], [30], [31], [32]. Although this
approach is highly efficient, it can fail when many potentially
changing objects are present. The second approach jointly
tracks the camera and potentially dynamic objects [27],
[33], [34], [35]. These methods rely on motion consistency
between consecutive frames to detect high-rate changes, thus
not effective when long-term changes are encountered.

Detecting semi-static changes is crucial for safe long-term
autonomy, but has been overlooked in literature. Existing
methods estimate a geometric consistency score for each
feature or object in the scene. Panoptic Multi-TSDF [2]
and VI-MID [36] calculate the object consistency based
on the overlap ratio between measurements and mapped
objects. NeuSE [4], NDFs [37], and 3D-VSG [38] build local
scene graphs to predict object-level changes. POCD [3] and
Rosen et al. [39] propose Bayesian filters to estimate the
object stationarity. POV-SLAM [5] proposes an expectation-
maximization method to jointly estimate the robot state and
object consistency, but incurs high computation costs.

C. Safe Decision-Making in Robotics

Control theory is a basis for providing safety guarantees
based on knowledge of the robot system [6]. There has
been an increasing trend of combining control theoretic
frameworks and learning-based methods for safe decision-
making under uncertainties (e.g., Gaussian Process (GP)-
MPC [8], GP-based robust control [40], neural adaptive
control [41], and learning-based CBF safety filter [42]). The
core idea is enforcing convergence positive invariance of a
set that can be the equilibrium in stabilization tasks [43], or a
state constraint set in more general settings [8], [42]. Whether
using classical or more advanced control techniques for safe
decision-making, theoretical guarantees are often provided
for constraint sets that are designed a priori [6].

In practice, robots must perceive the environment based
on high-dimensional sensory data and compute safe actions
from perception. There are a few safe decision-making works
that consider perception inputs. For instance, [44] proposes a
measurement-robust CBF formulation to account for percep-
tion errors, [13] leverages differentiable optimization tools to
learn a CBF safety filter for collision avoidance in an end-
to-end pipeline, [14] proposes a pipeline for safe locomotion
based on plane segmentation, and [45] introduces a dy-
namic CBF for avoiding dynamic obstacles based on LiDAR
measurements. The perception-based approaches, however,
have not fully exploited object-level semantic and geometric
information that can be obtained from a perception system.
In this work, we aim to close the perception and action loop
for safe navigation in semi-static environments.

III. APPROACH OVERVIEW
We explore the closed-loop perception and control prob-

lem in semi-static indoor environments, where the robot must
simultaneously localize itself, maintain an up-to-date object-
level map, track potential changes in the scene, and plan
a safe trajectory to reach a desired target pose. This section
presents an overview of our proposed approach. A high-level
flow diagram of the approach is shown in Figure 2.

A. Robot System

We consider a ground robot that can be modelled as
follows:

xt+1 = f(xt,ut),

where t ∈ Z≥0 is the discrete-time index, x = [x, y, θ]T ∈
X ⊂ R3 is the 3-DoF global pose (position and orientation)
of the robot with X denoting the set of admissible states,



Fig. 2. Our closed-loop pipeline (Section III) for semantically safe navigation in semi-static environments. The system maintains an object library
and takes in semantically segmented RGB-D frames at each timestep. A modified ORB-SLAM3 provides pose estimates using features from likely-static
objects. From the estimated pose, observations are associated to mapped objects and the consistency is updated for each object (Section IV-C). From the
joint object map, an object-aware CBF is constructed, that takes object semantics and consistency into account (Section IV-E). Finally, an MPC leverages
the CBF-based safety constraints to compute actions for the robot (Section IV-F).

u = [vx, vy, ω]
T ∈ U ⊂ R3 is the desired linear and angular

velocity in the world frame to the robot low-level controller
with U denoting the set of admissible inputs, f : X×U 7→ X
is a Lipschitz continuous function. In this work, we assume
that the sets X and U are convex polytopic sets.

B. Perception and Mapping
The robot is expected to navigate around rigid objects in a

semi-static scene. It is equipped with an RGB-D camera; at
each timestep it outputs a frame, Ft, that contains an RGB
image and an aligned depth image. We further segment Ft

into semantic pointcloud observations Yt = {Yt,j}j=1...J .
Given Yt, the localization and mapping systems estimate the
current robot pose, x̂t, and update a mapped object library,
O = {Oi}i=1...I , as discussed in Section IV-A-IV-C.

We assume high-level knowledge of the objects is avail-
able. Each object belongs to a semantic class, c ∈ {1 . . .K},
with an associated stationarity class (likelihood of change),
s ∈ {0, 1}, where s = 1 denotes a likely-static object (e.g.,
wall), and s = 0 denotes a likely-dynamic object (e.g., chair).

C. Safe Navigation
Given the tracked objects, O, safety constraints are con-

structed based on the semantic and geometric information
to ensure (i) static obstacles are avoided and (ii) conserva-
tive behaviours are achieved around inconsistent or likely-
dynamic objects. In our work, we encode the safety constraint
as a CBF. Based on the CBF, the controller computes actions
to minimize the distance to the target while adhering to the
map-based safety constraints.

IV. METHODOLOGY
A. Scene Representation

As our system operates in evolving environments where
objects can change over time, it is essential to construct the
dense map at an object-level. Following POCD [3], a recent
work on mapping in semi-static scenes, each object, Oi, in
the object library, O, consists of the following elements:

• a global 3D position, pi, and 1D heading, ϕi,
• an inferred semantic class, ci, and stationarity class, si

• a state distribution, p(li, vi), to model the object’s
current geometric change, li ∈ R, and consistency
(likelihood that the object has not changed), vi ∈ [0, 1],

• a TSDF reconstruction, Mi, in the global frame.
In our indoor test scenarios, objects are restricted to rotate

around the z-axis. The object TSDF encodes the approx-
imated distance in the global frame to the object surface,
with positive values for points outside the object and negative
values for points inside the object. All objects in O jointly
represent the scene, and a trilinearly interpolated 3D TSDF
map, Mtsdf : R3 7→ R, can be obtained by overlapping
object-level TSDFs and taking the minimum at each voxel.

B. Localization and Object-Level Mapping
We build our system on top of ORB-SLAM3 [15], a state-

of-the-art feature-based SLAM pipeline, and POCD [3]. The
system starts with an empty object library, O = ∅. At each
timestamp, the RGB-D frame, Ft, and 3D observations, Yt,
are input to our modified ORB-SLAM3 to estimate the cur-
rent robot pose, x̂t. To account for potential scene changes,
only feature points belonging to likely-static observations
(e.g., walls) are used in the estimation.

With the estimated robot pose, x̂t, the observations, Yt, are
associated with the mapped objects in O using the Hungarian
algorithm based on geometric and semantic consistency.
Unmatched observations are used to spawn new objects.
Each matched observation is integrated into the associated
object, and the object’s state model, p(l, v), is propagated.
Note that we employ a decoupled localization and mapping
approach due to its high efficiency for real-time performance.
A brief overview of the state propagation is provided in
Section IV-C, and more details of the mapping pipeline are
available in [3].

C. Object Consistency Estimation in Semi-Static Scenes
We follow POCD [3] to propagate the object state model

and estimate the consistency of potentially-changing objects,
as it has shown to provide more consistent and noise-robust
3D mapping when faced with discrete scene changes. Specif-
ically, each mapped object, O, maintains a joint distribution,



p(l, v), where v ∈ (0, 1) models the likelihood of the object
being consistent with historical observations, and l ∈ R
models the magnitude of geometric change. In our imple-
mentation l estimates the average TSDF change between the
initial reconstruction and subsequent measurements.

When a new observation is available, a geometric measure-
ment, p (∆ | l, v), and a semantic measurement, p (s | v), are
constructed. Here, ∆ ∈ R is the average TSDF difference
between the object reconstruction and its current depth
observation, and s encodes our knowledge on the object
stationarity (e.g., s = 1 if the object is likely-static, such
as a table, and s = 0 if the object is likely-dynamic, such
as a cart). These two measurements are used to update the
object state model via a Bayesian update rule derived in [3].

In this work, we use both the consistency, E[v], and
stationarity label, s, to regulate the CBF around objects.

D. Control Barrier Function (CBF)
CBF certification [11] provides a means to guarantee the

safety of a system in the sense of positive invariance of a
state constraint set. Let h be a continuously-differentiable
function. Consider a constraint set, C, parameterized as the
zero-superlevel set of h. The constraint set and its boundary,
∂C, are defined as C = {x ∈ X | h(x) ≥ 0} and ∂C = {x ∈
X | h(x) = 0}, respectively.

For a continuous-time system, a continuously-
differentiable function, h : X 7→ R, is a CBF of the
system if (i) ∂h

∂x (x) ̸= 0,∀x ∈ ∂C, and (ii) there exists
an extended class-K∞ function, γ : R 7→ R, such that the
following condition is satisfied [11]:

sup
u∈Rm

ḣ(x,u) ≥ −γ (h(x)) , ∀x ∈ X ,

where ḣ(x,u) = ∂h
∂x (x) ẋ = ∂h

∂x (x) fc(x,u) with ẋ =
fc(x,u) being the continuous-time model of the system.

Given a CBF, the following condition is often imposed as
a constraint in the safety filter design to guarantee positive
invariance of the constraint set:

ḣ(x,u) ≥ −γ (h(x)) .
For a discrete-time system, a similar CBF condition can

be defined as follows:

∆h(xt,ut) ≥ −γ̄h(xt),

where ∆h(xt,ut) = h
(
f(xt,ut)

)
−h(xt), and γ̄ ∈ (0, 1] is

a constant scalar [46].

E. Bridging Object Mapping and CBFs
1) Non-Semantic CBF Construction: The object TS-

DFs used to construct the global map, Mtsdf , are based
on ray-tracing from estimated robot poses, causing bias
around object boundaries with limited views. Following
prior work [45], [47], [48], we generate a 2.5D non-
semantic Euclidean Distance Function (EDF) map, denoted
as M̃edf : R2 7→ R. To capture the obstacles within the
robot’s traversal space, we first extract the TSDF layers
between the ground plane and a specified height threshold,
θz. We concatenate the layers into a single 2.5D map by
taking the minimum of the absolute value along the z−axis.

Fig. 3. Visualization of the proposed heuristics for CBFs around objects.
The Slope Heuristic scales down the slope of the CBF for uncertain objects,
inflating both the unsafe region (red) and the cautious region (orange),
causing the robot to act more conservatively. The Bias Heuristic only inflates
the unsafe region around likely-dynamic objects to create a larger safety
buffer, and the robot’s behavior is unaffected outside. The two heuristics
can be combined to achieve the desired behaviours.

The approximated zero-level set, ∂M̃edf , thresholded by
a small value, θzero, representing the obstacle surfaces, is
extracted, and the Euclidean distance is computed for M̃edf .
The process is formalized as follows:

M2.5D(x, y) = min
0<z≤θz

|Mtsdf (x, y, z)| (1a)

∂M̃edf = {(x, y) | M2.5D(x, y) ≤ θzero} (1b)

M̃edf (x, y) = min
(x̄,ȳ)∈∂M̃edf

∥(x, y)− (x̄, ȳ)∥2 (1c)

We apply two transformations to encode M̃edf into a CBF.
To account for the size of the robot, we apply a negative
bias, b, which introduces a buffer around the obstacles. To
ensure the robot’s behaviour remains unaffected when far
from obstacles, we truncate M̃edf by a cutoff threshold,
θcutoff. Formally, the continuous non-semantic CBF, denoted
by h̃, is defined as:

h̃(x) = min{M̃edf (x, y)− b, θcutoff} (2)

In our implementation, the continuity is achieved via bilinear
interpolation over a discrete 2D grid, and gradients of h̃ is
obtained via finite difference.

2) Incorporating Semantic and Geometric Knowledge:
The previously defined CBF, h̃, does not consider any object-
level semantics and consistency knowledge, which may lead
to risky behaviour such as moving too close to potentially
changed objects. We propose the Slope Heuristic and the
Bias Heuristic to generate an object-aware EDF map, Medf ,
for enhanced safety and adaptability. We first augment the
zero-level set, ∂M̃edf , with the the object consistency, E[v],
and stationarity class, s, for which the voxel belongs to:

∂Medf

={(x, y,E[vi], si) | M2.5D(x, y) ≤ θzero, (x, y) ∈ Oi}
(3)

The Slope Heuristic scales the Euclidean distances in (1c)
to regulate both the permissible proximity of the robot to
uncertain objects and the aggressiveness when navigating
around them. Under the common bias, b, and cutoff thresh-
old, θcutoff, CBFs with lower slopes will have inflated unsafe
regions, and the robot will behave more conservatively when
approaching them. We propose to utilize the adjusted object-
level consistency estimate, λcE[v], as the scaling factor,
where λc is a tunable parameter.



The Bias Heuristic changes the bias to solely control the
unsafe region around objects. We propose to upscale b with a
tunable parameter, λs > 1, for objects that are likely-dynamic
(s=0). This ensures that the robot does not get too close
to potentially changing objects, but can also move freely,
when having a high level of confidence. Combining the two
heuristics, our object-aware CBF, h, is formulated as

Medf (x, y)

= min
(x̄,ȳ,E[v],s)∈∂Medf

λcE[v]∥(x, y)− (x̄, ȳ)∥2

− [λs(1− s) + s]b

(4)

h(x) = min{Medf (x, y), θcutoff} (5)

We visualize the effect of the two heuristics in Figure 3.
F. Discrete-Time Safe Control

In this work, inspired by [46], we use an MPC-CBF
framework for computing safe actions based on the object-
level map. At each time, t, given the current state, xt, and
the CBF, h, the following optimization problem is solved:

min
xt+1:t+T | t
ut:t+T−1| t

T−1∑
k=0

lt
(
xt+k | t,ut+k | t

)
+ lT

(
xt+T | t

)
(6a)

s.t. xt | t = xt, (6b)
xt+k+1 | t = f(xt+k | t,ut+k | t), ∀k ∈ T , (6c)
xt+k | t ∈ X , ut+k | t ∈ U , ∀k ∈ T , (6d)
∆h(xt+k | t,ut+k | t) ≥ −γ̄ h(xt+k | t), ∀k ∈ T , (6e)

where T is the prediction horizon length, T = {0, 1, ..., T −
1} is the set of time indices over the prediction horizon, “:”
in the subscripts denotes consecutive timesteps, and lt and lT
are the stage cost and the terminal cost, respectively. After
solving the optimization problem in (6), the first input, ut | t,
is applied to the system.

In contrast to a typical MPC, the MPC-CBF framework
allows us to (i) conveniently define the desired behaviour
of the robot via a CBF directly derived based on map
information, and (ii) reduces the prediction horizon required
to achieve a desired level of safety behaviour [46].

Note that the MPC-CBF is not a standard convex op-
timization problem due to the dynamics in (6c) and the
CBF constraint in (6e). To allow fast online computation,
we approximate (6c) and (6e) by linearizing them about
the prediction trajectory from the previous timestep. For
each timestep, k ∈ T , we introduce a new set of decision
variables, δxt+k | t = xt+k | t−xop and δut+k | t = ut+k | t−
uop, where xop = xt−1+k | t−1 and uop = ut−1+k | t−1. The
linearized dynamics and CBF constraints can be written in
forms that are affine in the decision variables:

δxt+k+1|t = A(xop,uop)δxt+k|t +B(xop,uop)δut+k|t,
(7)

C(xop,uop)δxt+k|t +D(xop,uop)δut+k|t + c(xop,uop) ≥ 0,
(8)

where c, A, B, C, and D are constant terms de-
rived from the linear approximations. In our implemen-
tation, (8) requires querying h and its gradient, ∂h

∂x , at

Fig. 4. Visualization of the object-aware CBFs around the drawer object
under different stationarity labels and consistency estimates.

{x∗
t | t−1, ...,x

∗
t−1+T | t−1}. By replacing the dynamics, (6c),

with (7), and the CBF constraint, (6e), with (8), and re-
expressing (6a), (6b), and (6d) in terms of δx and δu, we
obtain a quadratic program that can be solved efficiently.

V. SIMULATION RESULTS

A. Experiment Setup
We demonstrate the key features of our object-aware

MPC-CBF framework in simulation. As seen in Figure 1,
an indoor scenario consisting of multiple walls and one
drawer is set up in PyBullet [49]. The walls are considered
likely-static. An omnidirectional robot, modeled as single
integrators in each dimension, is simulated and controlled
by our system. The robot is 50 cm in diameter and equipped
with a RGB-D sensor that outputs color images, Gaussian
corrupted depth measurements, and ground-truth semantic
masks. To construct the object-aware CBF, we set the zero-
level threshold, θzero, to 0.15 m, truncation distance, θcutoff,
to 1.8 m, bias, b, to 0.75 m, consistency factor, λc, to 3.0,
and stationarity factor, λs, to 2.0.

B. Object Semantic Knowledge and Consistency
We validate our CBF formulation’s capture of object-level

semantic knowledge and consistency estimates, as shown in
Figure 4. As the robot approaches the stationary drawer,
its consistency estimate increases with more observations,
causing the unsafe (enclosed by pink grids) and the cautious
(enclosed by yellow grids) regions to contract. When testing
the drawer with a likely-dynamic label, the Bias Heuristic
effectively increases the unsafe region, while the cautious
region remains the same (under the same consistency level)
due to the unchanged slope of the CBF.

C. Balancing Feasibility and Conservatism
The scalar, γ̄, in the MPC-CBF safety constraint, (6e), is

a critical design variable. A smaller γ̄ makes the controller
safer but may render the optimization in (6) infeasible. Con-
versely, a larger γ̄ improves controller feasibility but elevates
risk. Figure 5 shows robot trajectories under different γ̄
choices, with lower values resulting in more conservative
behaviour around the wall. Note that with γ̄ = 0.1, the robot
went straight through the red cautious region but did not hit
the pink zero-level set. In real-world experiments, we opt
for γ̄ = 0.03 so the system is not overly conservative under
measurement noise and localization errors.



Fig. 5. Ground-truth robot trajectories with different values of γ̄ in the
MPC-CBF safety constraint (6e).

VI. REAL WORLD EXPERIMENTS

A. Experiment Setup

We demonstrate the closed-loop capability of our system
on a real-world robot. As in the simulation tests, we use
an omnidirectional mobile base equipped with an Intel Re-
alsense D435 RGB-D camera for perception. The pipeline
runs on an external laptop with an Intel i7-8850H CPU, at a
fixed rate of 5 Hz. A low-level onboard PID controller fol-
lows the MPC trajectory at 20 Hz. We set up the test scenario
as seen in Figure 6 and adopted the same parameter settings
from Section V-A. While we tested on an omnidirectional
robot, our method can be generalized to other kinematic
models.

B. Obstacle Avoidance with Semantic Knowledge

In this experiment, the robot navigates through a narrow
gap between a wheeled drawer (likely-dynamic, left), and a
flat-base drawer (likely-static, right). We compare our object-
aware MPC-CBF against two baselines derived from (6): a
naive MPC-CBF using the non-semantic CBF h̃ in (2), and
a classic MPC replacing the full CBF constraint (6e) with
geometric state constraints, h̃(xt+k|t) > 0.

Figure 6 depicts the ground-truth trajectories recorded by
a Vicon motion capture system. The classic MPC solely
considers the state constraint at the unsafe region’s boundary.
Due to depth measurement noise and localization errors, the
unsafe region frequently expands and contracts. As a result,
the robot under the MPC often enters infeasible regions,
getting stuck between the two drawers.

In contrast, the non-semantic MPC-CBF successfully nav-
igates the gap. Since the controller does not encode any
semantic information, the robot opts for the middle path,
disregarding potential risks from scene changes.

Fig. 6. The scenario (left) and visualization (right) of the ground-truth
robot trajectories using three controllers. The wheeled drawer is considered
to be likely to change (s = 1) while the flat base drawer is likely to stay
(s = 0). The robot distinguishes between the two drawers based on color.

Fig. 7. An illustration of how our closed-loop system deviates from the
original path in response to a sudden change in the scene.

Our object-aware MPC-CBF recognizes that the left
drawer may undergo changes, resulting in larger unsafe and
cautious regions around it. Consequently, the robot navigates
the gap while remaining closer to the likely-static drawer.
Although the scenario is simple, our local planning method
can be scaled to more complex settings when combined with
a global planner such as [50].

C. Reacting to Scene Changes
In the final experiment, we showcase the system’s adapt-

ability to sudden scene changes, as depicted in Figure 7.
Initially, the robot follows a straight path near a drawer (a).
When the drawer is pushed, causing a scene change, our
semi-static mapping system quickly detects it. The drawer’s
consistency estimate begins to drop, leading to an expansion
of the unsafe region around it (b). The object-aware MPC-
CBF responds to this by redirecting the robot away from
its initial path (c). Once the drawer’s consistency estimate
falls below 40%, it is removed from the object library and
reconstructed at its new pose with high consistency. As a
result, the unsafe region returns to normal, and the robot
resumes its initial path, continuing towards its goal.

VII. CONCLUSION
In this work, we present a system designed for closed-

loop perception and safe control within semi-static environ-
ments. Our approach involves encoding object-level semantic
prior knowledge and consistency estimates into the CBF
safety constraints within the MPC-CBF framework. This
integration of scene semantics and consistency offers a
versatile means to directly shape the robot’s behavior in
complex environments based on map-derived information.
Through a series of experiments conducted in both simulated
and real-world scenarios, we demonstrate how our system
dynamically adapts its actions to address potential risks
in the environment, thereby ensuring safe navigation. By
addressing the challenges posed by changing environments,
our work presents promising prospects for the development
of robust systems capable of navigating extended periods in
dynamic real-world settings.
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