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Abstract—This paper applies an existing vision-based naviga-
tion algorithm to a micro aerial vehicle (MAV). The algorithm
has previously been used for long-range navigation of ground
robots based on on-board 3D vision sensors such as a stereo
or Kinect cameras. A teach-and-repeat operational strategy
enables a robot to autonomously repeat a manually taught
route without relying on an external positioning system such
as GPS. For MAVs we show that a monocular downward-
looking camera combined with an altitude sensor can be
used as 3D vision sensor replacing other resource-expensive
3D vision solutions. The paper also includes a simple path-
tracking controller that uses feedback from the visual and
inertial sensors to guide the vehicle along a straight and level
path. Preliminary experimental results demonstrate reliable,
accurate and fully autonomous flight of an 8-m-long (straight
and level) route, which was taught with the quadrocopter fixed
to a cart. Finally, we present the successful flight of a more
complex, 16-m-long route.

Keywords-Vision-Based Flight; Monocular Camera; Quadro-
copter;

I. INTRODUCTION

In GPS-denied environments, long-range robot navigation

is a challenging task. While relative motion estimation

systems consisting of a combination of visual, inertial and

odometric sensors have become increasingly accurate, the

error in the position estimation still grows unbounded if no

global corrections are made.

One possibility for long-range robot navigation in GPS-

denied environments is to build a manifold map [1] com-

posed of overlapping submaps from on-board vision sensors.

This approach has been presented by Furgale and Bar-

foot [2], where they used a stereo-camera-equipped ground

robot with a teach-and-repeat operational strategy for au-

tonomous long-range navigation. In the learning (teach) pass

the rover was human-piloted along a desired route while

the manifold map was built. During the repeat pass this

map is used for localization and navigation. The use of

manifold mapping allows repeating a route without requiring

a globally consistent map.

In this work, we apply for the first time the visual teach

and repeat (VT&R) algorithm to a micro aerial vehicle

(MAV). We replace the 3D position sensor with a monocular

Figure 1. Experiments are conducted at the University of Toronto Institute
for Aerospace Studies (UTIAS) using the Parrot AR.Drone 2.0 platform,
which is equipped with a downward-facing, monocular camera and altitude
sensors. The picture also shows the texture of the floor of the VT&R
experiments around the quadrocopter.

downward-looking camera and an altitude sensor. As a

platform we use a Parrot AR.Drone 2.0 (see Fig. 1), a

low-cost off-the-shelf quadrocopter equipped with various

sensors, cameras and an on-board stabilization system [3].

Flying vehicles have become increasingly popular in the

last ten years due to technical advances in sensors, actuators,

materials, processors and battery technology [4]. Potential

applications range from surveillance, monitoring to remote

sensing (for example, for precision agriculture) and aerial

mapping. Compared to ground vehicles, flying vehicles

have the advantage to access and investigate areas, which

are inaccessible to ground vehicles including challenging

terrain. However, one major challenge when aiming for

real-world autonomous flight applications is the reliable

localization and navigation in areas where GPS is not avail-

able or not accurate enough. In these applications, VT&R

can be a resource-effective alternative to other localization

approaches such as external camera-based localization [5],

which is usually a rather expensive solution, or Simultaneous

Localization and Mapping (SLAM), which aims to generate

a global map and requires extensive computation and data
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Figure 2. Block diagram of the proposed visual teach and repeat setup for the AR.Drone 2.0. In the teach pass (grey box) we pilot the quadrotor vehicle
along a desired path in order to create a map. In this work, we taught the route by mounting the AR.Drone 2.0 to a cart and driving the cart along the
desired route. Teaching a route by manually flying is another option. The created map is saved and used later for localization in the repeat pass (blue box),
where the quadrocopter autonomously repeats the previously learned route. During repeat, the height is kept constant by the built-in altitude controller.

storage.

In the following sections, we will first provide a literature

review on visual navigation (see Section II). In Section III

we describe our approach to autonomous, vision-based MAV

navigation including a description of the quadrocopter-

specific VT&R algorithm (see Section III-A), a list of the

assumptions we made (see Section III-B) and finally a

description of the position controller guiding the quadrotor

vehicle along the desired path during repeat (see Sec-

tion III-C). In Section IV we describe the hardware and

software of this project (see Sections IV-A, IV-B) and

present experimental results to show the reliable working

system (see Sections IV-C, IV-D). Results are discussed in

Section V. We comment on future work and summarize our

results in Section VI and VII, respectively.

II. RELATED WORK

The VT&R algorithm used in this project was first pre-

sented in [6], where a ground robot equipped with a stereo

camera was used to perform VT&R. In this paper, we use

a quadrocopter with a monocular, downward-facing camera

and an altitude sensor to perform 3D localization. This is

the first time VT&R is applied to a flying vehicle where

we face new difficulties such as more degrees of freedom

and faster dynamics in all three dimensions. The image-

processing part of the underlying algorithm remains similar.

One major difference is the path-tracking controller that is

used to keep the quadrocopter on track during repeat. In [2],

a dynamically changing linear velocity depending on the cur-

rent path difficulty was commanded for forward/backward

movements. The path was intercepted by controlling the

heading of the ground robot. In our approach, we control

both the heading and the sideways velocity to intercept the

path. The heading controller aligns the quadrocopter heading

with the path direction and the sideways velocity controller

intercepts the path using roll movements (see Fig. 4). Thanks

to the stereo camera, a real depth image was obtained in [2].

In contrast, we compose a ‘fake’ 3D image by assigning the

same depth obtained from the altitude sensor to all pixels of

the monocular image (see Section III-A).

A lot of work has been done in the area of MAV naviga-

tion. Several publications focus on autonomous navigation

without previous knowledge about the environment nor use

of GPS and therefore only relying on on-board sensors.

In [7], a miniature laser range finder is used to perform

SLAM in indoor environments. Likewise a Kinect camera

is used in [8] to create a 3D map of the environment, which

allows the MAV to autonomously navigate in 3D space.

The same goal is achieved in [9] by using a quadrocopter

equipped with a stereo camera. However, the inherent draw-

back of mapping systems based on lidars, kinects or stereo

cameras is high power consumption, high cost, high weight,

and therefore limited flight time. In this paper, we use a light-

weight, low-cost off-the-shelf quadrocopter with monocular

vision instead.

MAVs equipped with monocular cameras are used for

239



Figure 3. The quadrocopter (highlighted in blue) is mounted on a cart
during the teach phase in order to teach a straight path at constant height.

SLAM in [10], [11], [12], [13], [14] and [15]. A different

approach is presented in [16], where no map is built but

a perspective cue vision algorithm is used to navigate in

unknown indoor environments. In this work, we do not

try to navigate in a completely unknown environment,

but we focus on autonomous repeating of a previously

learned/mapped route. Similar to our approach, a map and

replay method for a quadrotor vehicle was presented in [17],

which uses monocular vision to correct the robot’s heading

and dead reckoning (process of calculating the current

position based on the previous position and advancing this

with estimated speed over elapsed time and course) to

estimate the distance travelled (cf. [18]). This approach can

lead to large localization errors due to the integration of

potentially noisy velocity measurements. Our approach is

different, as we use the downward-facing camera together

with the altitude sensor to create a 3D map of interest

points. Localization is performed in 3D space against the

3D map obtained in the teach pass and as a result we obtain

a 3D pose error. We use Visual Odometry (VO) to predict

the vehicle position and periodic localization against the

map to ensure global (topological) accuracy (see Section

III-A). Accordingly, we achieve small localization errors,

since localization errors are not accumulated over time.

III. METHODOLOGY

To achieve autonomous flight, we use a VT&R algorithm

for localization and derive a simple path-following controller

for straight and level routes.

A. Visual Teach and Repeat (VT&R) with the AR.Drone 2.0

Localization for the flying vehicle is provided by the

VT&R algorithm presented in [6], a slightly modified ver-

sion of [2]. In [6] an appearance-based lidar was used to

create a 3D map. In this paper, we solely rely on the vehicle’s

monocular, downward-facing camera and its altitude sensor

(see Fig. 2) for mapping. We use the raw image from the

quadrocopter bottom camera to determine the image location

of an interest point and the built-in altitude sensor to obtain

its depth.

In the first operational phase of the VT&R algorithm,

the teach phase, the vehicle is manually piloted along the

desired path by an operator. In fixed intervals (defined by

travelled distance) a new reference system, a keyframe,

is created by extracting the interest points (features) of

the current image and storing their 3D positions together

with the transformation between the current and the last

reference system (obtained from VO). During the second

operational phase, the repeat phase, the vehicle re-localizes

against the stored keyframes. More precisely, we extract

interest points from the live image and compare them to

the stored interest points, the map. The live image is not

only compared to the nearest keyframe but to a locally

consistent map that contains additional information from

surrounding keyframes. The entire image processing is based

on the Speeded-Up Robust Features (SURF) algorithm [19]

and uses the rotation-variant upright descriptor. The strength

of the VT&R algorithm is that visual odometry is used in

combination with periodic localization updates against the

stored map, which ensures global accuracy while repeating

long paths.

The proposed VT&R setup for the AR.Drone 2.0 is shown

in Fig. 2. We taught the route by mounting the quadrocopter

to a cart and driving the cart along the desired route (see

Fig. 3). In the future, we intend to teach the quadrocopter

by flying manually, for example, with an xbox controller.

After image processing the rectified, monochrome image

is used together with the altitude measurement to create a

‘fake’ 3D depth image. During the repeat phase, the VT&R

algorithm calculates a 3D pose error. However, the path-

tracking controller (see Section III-C) controls the vehicle

only in the horizontal plane based on the heading and lateral

errors from the VT&R. The vertical direction is controlled

separately by Parrot’s built-in controller, which uses the

measurements from the on-board altitude sensors for feed-

back. The quadrocopter is kept on track using pitch angle

commands, roll angle commands, and turn rate commands

around the body’s z-axis (see Fig. 4), which are the outputs

of our controller. The fact that localization is performed

in 3D space but the VT&R algorithm does not calculate

a vertical error is a legacy feature from the ground-robot

VT&R and should be changed in the future.

B. Assumptions

For this proof-of-concept demonstration, we made several

assumptions to limit the project scope. However, extensions

to more general scenarios are relatively straight-forward and

planned in the future.

We assume that the image plane and therefore the quadro-

copter itself is parallel to the ground. Furthermore, we
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Figure 4. Inertial and body-fixed coordinate systems with roll angle φ,
pitch angle θ and yaw angle ψ (assuming small angles).

assume that the ground is flat. Those two assumptions

together allow us to assign the same depth (obtained from the

altitude sensor) to every pixel in the image plane. Obviously,

the first assumption is not true during flight but with small

pitch and roll angles this is still a reasonable approximation.

In addition, we assume that the height of the quadrocopter

remains constant during teach and repeat. This is important

as path-tracking is currently implemented in a projected

plane not considering the height of the vehicle. Furthermore,

we assume a straight path in the derivation of the path-

tracking controller (see Fig. 5). However, we have shown

in experiments that the controller also works for piecewise

straight paths.

C. Path Definition and Control

First, we define an inertial and a body-fixed coordinate

system to specify the vehicle’s attitude and position in three

dimensions (see Fig. 4). We use ZYX-Euler angles [20] to

specify the attitude of the quadrocopter. Assuming small

angles, the Euler angles, roll, pitch and yaw, define rotations

around the xB-, yB- and zB-axis, respectively.

We present three decoupled feedback controllers to con-

trol pitch, roll and yaw. With the assumption of small angles,

the simplified linear quadrocopter dynamics are governed by

ẍ(t) = gθ(t) (1)

ÿ(t) = −gφ(t) (2)

ψ̇(t) = ω(t), (3)

where x and y are the vehicle’s position in the inertial

coordinate system, g is the gravitational constant, θ, φ, ω
are the pitch angle, roll angle and angular speed around the

zB-axis, respectively. Note that we neglect the dynamics in

z-direction, since we use the built-in altitude controller of

the AR.Drone 2.0.

The desired path that is taught by a human operator is

assumed to be a straight line in the inertial coordinate system

(see Fig. 5) with

(xd(t), yd(t) = yd, zd(t) = zd, ψ(t) = 0 ) , (4)

where yd and zd are constants, yd, zd ∈ R.

For the autonomous repeat, the controller aims to fly the

vehicle along the taught path with a constant, predefined ve-

locity, vd. In our derivations of the path-following controller,

we assume that θ = θcmd, φ = φcmd and ω = ωcmd. That

is, we assume that its dynamics are much faster than the

position controller we design below.

Based on (1) we derive a feedback controller for the

vehicle motion in the x-direction, which uses the current

forward velocity estimate v(t) of the quadrocopter in the

x-direction to calculate the pitch angle to be sent to the

vehicle:

θcmd =
1

gTθ
(vd − v(t)). (5)

The velocity, v(t), is obtained from the quadrocopter’s on-

board estimator and the pitch time constant, Tθ > 0, a tuning

parameter.

In order to achieve path tracking in the y-direction, we

design a controller that responds to lateral errors, εL(t) =
y(t) − yd, as a second-order system with a time constant

Tφ > 0, and a damping ratio ζφ > 0:

φcmd =
1

g

[
2ζφ

(
2π

Tφ

)
˙εL(t) +

(
2π

Tφ

)2

εL(t)

]
, (6)

Figure 5. For the controller design we assume that the taught path is a straight line at a constant altitude.
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where εL is obtained from the VT&R algorithm and ˙εL is

the sideways velocity obtained from the on-board velocity

estimator of the Parrot AR.Drone. A damping ratio, ζφ,
between 0.7 (underdamped) and 1 (critically damped) is a

reasonable choice.

To keep the yaw angle close to zero, we design a pro-

portional controller to minimize the heading error, εH(t) =
ψ(t)− ψd, in the repeat pass:

ωcmd = − 1

Tω
εH(t), (7)

where the time constant, Tω > 0, is again a tuning parameter.

IV. EXPERIMENTAL RESULTS

Several experiments were conducted to evaluate the per-

formance of the vision-based localization. Successful au-

tonomous flight was demonstrated along a straight and level

path (cf. Fig. 5), which was previously taught with the

quadrocopter mounted to a cart (see Fig. 3).

A. Hardware

For our experiments, we used a Parrot AR.Drone 2.0

quadrocopter (see Fig. 1). The vehicle is equipped with

two height sensors [21], an ultrasonic sensor and a pressure

sensor. An altitude estimation algorithm on-board the vehicle

fuses both sensor measurements and uses the resulting

estimate for controlling the height of the vehicle. In addi-

tion, velocity estimates (based on three-axis accelerometer

measurements) are computed on-board the vehicle and sent

over wireless to our off-board controller (see Section III-C).

Moreover, the quadrocopter has a downward-facing camera

with a 64 ◦ wide-angle diagonal lens, a video frequency of

60 frames per second and a resolution of 320x240 pixels

(QVGA). During this project we ran the AR.Drone 2.0 on

the firmware version 2.3.3.

The off-board image processing and position control ran

on a MacBookPro 4.1 with a 2.4 GHz Intel Core 2 Duo

processor, 2 GB RAM and NVIDIA GeForce 8600M GT

(256 MB). In addition, we used the NVIDIA’s Compute

Unified Device Architecture (CUDA) toolkit as the SURF

part of the VT&R algorithm is directly implemented on the

graphics processing unit (GPU).

B. Software

Our algorithm implementation used ROS, an open-source

robot operating system [22]. More precisely, we used ROS

Electric, installed on a 64-bit 10.04 Ubuntu version. In

addition, we used the ROS ardrone autonomy package [23]

to interface with the AR.Drone. Small modifications were

made to the package including a message that reports the

quadrocopter height not only during flight but also when

the motors are shut off. This is required to create 3D images

during the teach pass when the quadrotor vehicle is mounted

to the cart (see Fig. 3). We calibrated the bottom camera in

advance, using the ROS camera calibration package [24].

The rectified image was turned into a monochrome image

using the ROS image proc package [25].

C. Localization

In the current implementation of the VT&R strategy, we

created a new keyframe every 0.2 m travelled and every

3 ◦ of change in yaw. We found from experiments that

a successful localization at a height of about 1.75m was

possible if the pitch angle of the quadrocopter was smaller

than 8 ◦ and the roll angle smaller than 10 ◦. This is due

to the current feature selection and the camera’s field of

view. However, these limits match well to our small angle

assumption in Section III-B.

For experimental validation, we logged the lateral and

heading error. In addition, the visual odometry (VO) and

the map match failures were stored. VO failures happen

when the algorithm fails to track the interest points (features)

from one to the next image. As we are currently feeding

raw images into the VT&R algorithm at 20 Hz, the flown

distance between two images is very small and we nearly

never experienced VO failures. Similar to VO failures, map

match failures happen when the algorithm is unable to track

the features from the current image to the last keyframe.

Therefore, map match failures are more likely to happen, as

the features need to be tracked over a distance of 0.2 m.

The goal of our first two sets of experiments was to

prove that the quadrocopter successfully localizes using the

VT&R algorithm with the on-board camera and altitude

sensors. We first used the cart (see Fig. 3) to teach an 8-

m-long straight route. This exact same path was repeated

ten times consecutively with the vehicle still attached to

the cart to show that the localization works on a nominal

repeat pass. In order to repeat exactly the same route, it

was taught and repeated along multiple tables using them

as a side boundary. The average result over ten repeats is

shown in Table I under ‘Nominal’. As expected, the VT&R

algorithm reports small lateral and heading errors (small

mean and standard deviation), and shows no VO and only

few map match failures. These experimental results prove

the reliability of the VT&R algorithm in ideal conditions

when exactly repeating the taught route.

A second set of five consecutive off-nominal repeats

with the vehicle on the cart was performed to show the

robustness of the localization. The off-nominal repeats were

conducted along multiple tables off-set by about 0.2m from

the nominal path to the right. Therefore, we expect a lateral

error of -0.2 m while no change in the average heading error

is expected. In Table I, the average result over five repeats

is shown under ‘Off-nominal’.

D. Autonomous Flight

Ten autonomous repeats of the taught path in Section IV-C

were performed using the controller presented in Sec-
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Table I
PERFORMANCE OF THE VT&R ALGORITHM IN EXPERIMENTS.

Under ‘Nominal’, we show the error obtained by exactly repeating the taught route with the quadrotor vehicle fixed to the cart. Under ‘Off-nominal’, we
show experimental data for the case when repeating the route with an off-set of -0.2 m, still using the cart. Under ‘Flying’, data is shown of the

quadrocopter repeating the route flying fully autonomously.

Repeat Mean [m] Std. dev. [m]

Nominal -0.0041 0.0186

Off-nominal -0.1908 0.0266

Flying -0.0197 0.1031

(a) Lateral error.

Repeat Mean [deg] Std. dev. [deg]

Nominal 0.8660 0.4903

Off-nominal 0.3151 0.5618

Flying 0.9944 1.6901

(b) Heading error.

Repeat VO [%] Map match [%]

Nominal 0 1.6882

Off-nominal 0.1325 1.3100

Flying 0 20.8692

(c) Localization failure.

tion III-C with: Tθ = 0.7 s, vd = −0.3m/s, ζφ = 1, Tφ = 5 s

and Tω = 1 s.
Not surprisingly, the errors during autonomous flight

were slightly larger, and we experienced more map failures

compared to the on-the-cart repeats of Section III-C. Never-

theless, all ten consecutive repeats were successful, meaning

the quadrocopter always reached the end of the path, which

proves the successful working of the vision-based localiza-

tion combined with the path-following controller. The results

are shown in Table I under ‘Flying’.
Finally, the VT&R algorithm was also tested on a 16-

m-long path with two 45 ◦ angle bends (see Fig. 7b).

Similar to the previous experiments, we taught the route

with the vehicle attached to the cart and repeated it flying

autonomously. We repeated the route multiple times using

the same desired velocity vd as before. All repeats were

successful. We then increased the desired velocity vd of the

quadrocopter during repeat by a factor of four to 1.2m/s. All

repeats at the higher speed were still successful. We created

a short movie of the performance (see Fig. 7). It is found

at:
http://youtu.be/BRDvK4xD8ZY

V. DISCUSSION

As stated in Section IV, teaching was done with the

quadrocopter mounted to a cart and not flying manually (as

typically intended by the VT&R algorithm). The reason was

that we made two assumptions in our proof-of-concept im-

plementation that were hard to achieve via manual control:

first, we assumed that the quadrocopter was parallel to the

ground in Section III-B and second, we assumed a straight

path in Section III-C.

In Table Ia and b we show the average lateral and

heading error for nominal, off-nominal and flying repeats.

For the nominal and the off-nominal repeat the standard

deviations mainly resulted from the localization algorithm

and are very small, which indicates that the localization

works as intended. For the flying repeat, the standard devia-

tions increased slightly. The increase reflects the controller’s

tracking performance. A typical plot of the lateral and

heading error estimates is shown in Fig. 6a and b.

The map failures that we experienced during testing are

shown in Table Ic. VO failures are very rare. We experience

occasional map match failures in the nominal and the off-

nominal repeat pass. This is not unusual; similar behaviour

has been described in [2]. In the flying repeat pass, map

match failures happened approximately 21% of the time; at

those times the vehicle was not able to localize against the

map obtained during the teach phase but instead relied on

VO only for pose estimation. The highest experienced map

match failure was 76%. Nevertheless, all ten flying repeats

were successful, which highlights the importance of VO in
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Figure 6. Performance plots, obtained during a typical flight repeat pass. The 8-m-long straight route was taught with the quadrocopter mounted to a cart
(see Fig. 3) and afterwards repeated autonomously.
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the localization algorithm [2].

Experiments showed that the altitude at which the VT&R

algorithm is performed was crucial. Teaching at a high

altitude increases the camera’s field of view and results in

fewer map match failures. Depending on the height used

during the teach pass, different sizes of interest points are

used. The higher we fly, the bigger the feature must be in

order to be detected by the SURF algorithm. The resolution

of the bottom camera is, as mentioned in Section IV-A, very

low, and therefore small features are not visible at high

altitudes. To summarize, if enough big interest points are

available, it is beneficial to fly high. The characteristics of

the floor play an important role as well. Highly repetitive or

untextured ground is to be avoided.

Since we created a ‘fake’ depth image by assigning the

same altitude to all pixels in the image plane, the localization

algorithm cannot deal well with surface height changes. A

possible solution for high-altitude flights is to exclusively

rely on the pressure sensor for altitude estimation, which has

a reasonable accuracy for higher altitudes. Hence, ground

height changes would not affect the ‘fake’ depth image.

VI. FUTURE WORK

This paper described preliminary results obtained from

implementing, for the first time, a VT&R algorithm [6]

on a quadrocopter. In Section III-B we summarized several

assumptions of the current approach. Future work will aim

to address those limitations. The goal is to enable route

teaching through a human pilot (and not only on the cart)

and to allow arbitrary flight paths (and not straight lines

at a constant altitude). To do so, the following steps are

necessary:

• accounting for roll and pitch when assigning the depth

to each pixel;

• extending the controller to be able to track arbitrary

paths and to include a vertical controller;

• deriving a feasible desired velocity profile (instead of

a constant velocity), which takes vehicle constraints

and constraints derived from the VT&R localization

algorithm into account;

• increasing the image processing speed, which would

enable higher flight speeds;

• extensive testing under various conditions (including

lighting changes).

VII. CONCLUSION

We successfully showed that the visual teach and repeat

(VT&R) algorithm in [6], which has previously been used

for autonomous, long-range navigation of ground vehicles,

can be applied to flying vehicles with the 3D sensor being

replaced by a monocular, downward-facing camera and an

altitude sensor. The use of a manifold map of overlapping

submaps allows long-range navigation along a previously

explored path without the use of GPS or a globally consistent

(a) External video.

(b) Path and quadrocopter visualization.

(c) Visual odometry tracks.

(d) Map match tracks.

Figure 7. Snapshots of the 16-m-long autonomous flight, which is shown
in the movie found at http://youtu.be/BRDvK4xD8ZY.
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map. A series of preliminary experiments were conducted

and showed accurate localization based on the VT&R

algorithm and successful vision-based autonomous flight

along a straight, level path with the designed path-tracking

controller. The path was taught with the quadrocopter fixed

to a cart to guarantee a straight path at constant altitude.

We demonstrated the capability of the overall system by

autonomously repeating a longer and more complex route

at 1.2 m/s, see Fig. 7 and the associated video.
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