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Abstract— Robots and automated systems are increasingly
being introduced to unknown and dynamic environments where
they are required to handle disturbances, unmodeled dynamics,
and parametric uncertainties. Robust and adaptive control
strategies are required to achieve high performance in these
dynamic environments. In this paper, we propose a novel adap-
tive model predictive controller that combines model predictive
control (MPC) with an underlying L1 adaptive controller to
improve trajectory tracking of a system subject to unknown
and changing disturbances. The L1 adaptive controller forces
the system to behave in a predefined way, as specified by a
reference model. A higher-level model predictive controller then
uses this reference model to calculate the optimal reference
input based on a cost function, while taking into account input
and state constraints. We focus on the experimental validation
of the proposed approach and demonstrate its effectiveness
in experiments on a quadrotor. We show that the proposed
approach has a lower trajectory tracking error compared to
non-predictive, adaptive approaches and a predictive, non-
adaptive approach, even when external wind disturbances are
applied.

I. INTRODUCTION

Robots and automated systems are increasingly being
introduced to unknown and dynamic environments, which
requires the design of sophisticated control methods that can
achieve high overall performance in these situations. Unlike
traditional controllers where small changes in the conditions
may significantly deteriorate the controller performance and
may cause instability (see [1], [2], and [3]), controllers
deployed in changing environments must be robust to model
uncertainties, unknown disturbances, and changing dynam-
ics. Robotic applications in these increasingly challenging
environments include autonomous driving, assistive robotics,
and unmanned aerial vehicle (UAV) applications. For exam-
ple, in airborne package delivery, packages to be delivered
can have different properties (mass, center of gravity, and
inertia) and the vehicles may encounter different weather
conditions. As such, it is not feasible to design a controller
for each environmental or system condition.

In this paper, we present a controller that achieves high-
accuracy tracking performance and is robust to unknown
disturbances and changing dynamics. We consider nonlinear
systems and propose a novel architecture that combines
L1 adaptive control and model predictive control (MPC),
see Fig. 1. MPC is an attractive control scheme because
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Fig. 1. The proposed adaptive model predictive control architecture. The
underlying L1 adaptive controller forces the system to behave close to
a specified linear reference model even in the presence of uncertainties
and disturbances. Using the specified linear reference model, the model
predictive controller calculates at each time step an input to the plant
controlled by the L1 adaptive controller (which now behaves as the specified
reference model) such that the trajectory tracking error is minimized.

constraints can easily be incorporated and because of its
predictive capability. It is an optimal control scheme; how-
ever, its performance depends on the accuracy of the model
used in the optimization. To overcome this, we propose an
underlying L1 adaptive controller, which forces a potentially
nonlinear system to behave in the same predefined way, as
specified by a linear reference model, even in the presence
of model uncertainties. As a result, a standard linear MPC
is able to achieve high-accuracy trajectory tracking of the
overall system. We validate the proposed approach through
extensive experiments on a quadrotor. We show that the
predictive capabilities of MPC and the robustness to dis-
turbances of the L1 adaptive control enable the proposed
approach to achieve better trajectory tracking performance
compared to non-predictive and/or non-adaptive approaches,
especially when external, unknown disturbances are present.

Model predictive control solves an optimization problem
at each time step, based on a model of the system and
the current state of the system, to find an optimal control
sequence that minimizes the given objective function subject
to input and state constraints. The first input value of that
sequence is applied to the system. In the next time step, the
optimization problem is solved again using the new state of
the system. MPC has been widely applied in practice, where
satisfaction of constraints is important [4]. The standard
implementation of MPC using a nominal model of the
system dynamics exhibits nominal robustness to small dis-
turbances [5]. However, these robustness guarantees may be
insufficient in practical situations where larger disturbances
may be present.

To handle model uncertainties, adaptive MPC schemes



have been introduced, which update the model online based
on measurement data. In [6], an adaptive MPC method for
a class of constrained linear, time-invariant systems is pro-
posed. This approach is based on a novel method to estimate
the parameters of a model suitable for MPC. The algorithm
is initially conservative due to large parameter uncertainties,
but performance is improved over time as the parameter es-
timate’s uncertainty is reduced and the estimate converges to
the true value. However, the quality of the estimation depends
on the excitation of the state. Similar adaptive approaches
have been proposed for nonlinear systems; however, these
are challenging to design and computationally expensive. An
adaptive nonlinear MPC scheme for constrained nonlinear
systems is presented in [7]. It uses min-max nonlinear MPC
in combination with an adaptation mechanism to address the
issue of robustness while the estimated value is evolving.
Once again, the algorithm is initially conservative due to
large parameter uncertainties, and the conservativeness re-
duces as the parameter estimate improves. However, this
approach is still computationally expensive. Finally, learning-
based MPC approaches have used neural networks (see [8]
and [9]) or Gaussian processes (see [10] and [11]) to learn
the dynamics of the system used in the controller. These
approaches require a significant amount of data in order to
build an accurate model and often do not adapt to changes
in the environment in real time and at high update rates.

Further, L1 adaptive control is based on the model ref-
erence adaptive control (MRAC) architecture but includes
a low-pass filter that decouples robustness from adapta-
tion [12]. As a result, arbitrarily high adaptation gains can be
chosen for fast adaptation. It has successfully been applied
to fixed-wing vehicles [13], [14], quadrotors [15], [16], a
NASA AirSTAR flight test vehicle [17], a tailless unstable
aircraft [18], and hexacopter and octocopter vehicles [19].
The L1 adaptive controller forces a system, which may be
nonlinear and subject to model uncertainties, to behave as
a predefined linear reference model. Leveraging this charac-
teristic, it was used in combination with iterative learning
control (ILC), where ILC enabled the system to improve
trajectory tracking over iterations [16]. ILC computes the
input for the next iteration offline after the previous iteration
is completed. In contrast to [16], in this work, we calculate
the inputs online using MPC, which enables the system
to achieve high-accuracy trajectory tracking on the first
iteration.

The key contributions of this paper are:
• to demonstrate the effectiveness of a combined L1

adaptive control and a linear MPC approach to control
nonlinear systems with reduced computational cost as
compared to nonlinear MPC schemes;

• to remove the need for persistent excitation to achieve
accurate adaptation as in existing adaptive MPC strate-
gies [20];

• to validate the novel L1 adaptive control and MPC
approach through extensive experimental results;

• to demonstrate the robustness of the proposed approach
to external disturbances, (e.g. wind), as shown in exper-

imental results with a quadrotor;
• to demonstrate the improved tracking performance on a

quadrotor compared to two non-predictive and adaptive
frameworks, and a predictive and non-adaptive scheme.

The remainder of this paper is organized as follows. The
problem is defined in Section II. The details of the proposed
approach are presented in Section III. Experimental results
on a quadrotor are presented in Section IV. Conclusions are
provided in Section V.

II. PROBLEM STATEMENT

The objective of this work is to achieve high-accuracy
trajectory tracking in the presence of uncertain, and possibly
changing conditions on the first iteration. Consider a system
whose dynamics (‘Plant’ block in Fig. 1) are unknown,
can change over time, and can be described by a single-
input, single-output (SISO) system (this approach is later
extended to multi-input, multi-output (MIMO) systems) iden-
tical to [12] for output feedback:

y1(s) = A(s)(uL1
(s) + dL1

(s)) , (1)

where y1(s) is the Laplace transform of the output y1(t),
A(s) is a strictly-proper unknown transfer function that can
be stabilized by a proportional-integral controller, uL1

(s) is
the Laplace transform of the input signal, and dL1

(s) is
the Laplace transform of the disturbance signal defined as
dL1

(t) , f(t, y1(t)), where f : R× R→ R is an unknown
map subject to the following assumption:

Assumption 1 (Lipschitz continuity). There exist constants
L > 0 and L0 > 0, such that the following inequalities hold
uniformly for all t:

|f(t, v)− f(t, w)| ≤ L|v − w| , and (2)
|f(t, w)| ≤ L|w|+ L0 . (3)

The system is required to accurately track a desired
trajectory y∗1(t) defined over a finite time interval. Given
y∗1(t), we aim to compute uL1 such that the system (1) is
able to achieve high-accuracy trajectory tracking at a low
computational cost. To achieve this, we propose a control
architecture as shown in Fig. 1, where a model predictive
controller is used on top of an underlying L1 adaptive
controller.

III. METHODOLOGY

We consider two main subsystems: the L1 adaptive con-
troller (orange dashed box in Fig. 1) and the model predictive
controller. The L1 adaptive controller is presented in Sec-
tion III-A. Section III-B introduces the MPC. The combined
L1 adaptive control and MPC framework is described in
Section III-C.

A. L1 Adaptive Control

The L1 adaptive controller is used to make the system
behave as a predefined, linear system even when unknown,
changing disturbances act on the system. In this work, the
standard L1 adaptive output feedback controller for SISO



systems [12] is used. For convenience and completeness, we
present a brief summary of the L1 adaptive control scheme.

Problem Formulation: The output feedback L1 adaptive
controller computes a control input uL1

(t) such that y1(t)
tracks the bounded piecewise continuous reference input
r1(t) according to the following first-order reference system:

M(s) =
m

s+m
, m > 0 . (4)

Definitions and L1-Norm Condition: We can rewrite sys-
tem (1) in terms of the reference system (4) as follows:

y1(s) = M(s)(uL1(s) + σ(s)) , (5)

where uncertainties in A(s) and dL1(s) are combined into
σ(s):

σ(s) ,
(A(s)−M(s))uL1

(s) +A(s)dL1
(s)

M(s)
. (6)

The low-pass filter C(s) (see Fig. 1) is assumed to be strictly
proper with C(0) = 1, with:

H(s) ,
A(s)M(s)

C(s)A(s) + (1− C(s))M(s)
being stable, (7)

and the following L1-norm condition being satisfied:

‖G(s)‖L1
L < 1 , where G(s) , H(s)(1− C(s)) , (8)

where L is the Lipschitz constant defined in Assumption 1.
The above assumption holds for cases when A(s) can

be stabilized by a proportional-integral controller, as shown
in [12]. The equations that describe the implementation of
the L1 output feedback architecture are presented below.
Output Predictor: The output predictor is used to estimate

the system output based on the reference model (5):

˙̂y1(t) = −mŷ1(t) +m(uL1
(t) + σ̂(t)) , ŷ1(0) = 0 ,

where σ̂(t) is the estimate of σ(t). In the Laplace
domain,

ŷ1(s) = M(s)(uL1
(s) + σ̂(s)) . (9)

Adaptation Law: The following adaptation law is used to
update the estimate σ̂(t):

˙̂σ(t) = Γ Proj(σ̂(t),−ỹ(t)) , σ̂(0) = 0 , (10)

where ỹ(t) , ŷ1(t) − y1(t), Γ ∈ R+ is the adaptation
rate subject to the lower bound specified in [12]. To
ensure fast adaptation, the adaptation rate is chosen to
be very large. The projection operator Proj(·), as defined
in [12], guarantees that the estimated value of σ(t)
remains within a specified convex set.

Control Law: The control input is calculated by passing the
difference between the desired trajectory signal r1(t)
and the adaptive estimate σ̂(t) through a low-pass filter:

uL1(s) = C(s)(r1(s)− σ̂(s)) . (11)

This means that the L1 adaptive controller compensates
only for low-frequency uncertainty components of A(s)
and dL1(s), i.e., the frequencies that the system is

able to counteract. The low-pass filter attenuates high-
frequency components.

Performance Bounds: We choose the L1 adaptive con-
troller as it provides performance bounds on the estimation
and output errors. The closed-loop reference system for the
L1 adaptive controller is described as follows:

y1,ref (s) = M(s)(uref (s) + σref (s)) (12)

uref (s) = C(s)(r1(s)− σref (s)) , (13)

where

σref (s) =
(A(s)−M(s))uref (s) +A(s)dref (s)

M(s)

and dref (s) is the Laplace transform of dref (t) ,
f(t, y1,ref (t)). If C(s) and M(s) satisfy the L1-norm con-
dition (8), then the closed-loop reference system described
in (12) and (13) is bounded-input, bounded-output (BIBO)
stable.

In [12], it is shown that when system (1) is subject to the
L1 output feedback adaptive controller described in (9), (10),
and (11), and C(s) and M(s) satisfy the L1-norm condition
in (8), the following bounds hold:

‖ỹ‖L∞
< γ0 , (14)

‖y1,ref − y1‖L∞
< γ1 , (15)

where ỹ(t) , ŷ1(t)− y1(t), γ0 is defined in equation (4.31)
in [12] and

γ1 ,

∥∥∥C(s)H(s)
M(s)

∥∥∥
L1

1− ‖G(s)‖L1
L
γ0 .

It is important to note that γ0 ∝
√

1
Γ , which means that for

high adaptation gains, the estimation error is bounded and
can be made arbitrarily small. Furthermore, the actual system
output approaches the behavior of the reference system (12).

When the uncertainties are within the bandwidth of the
low-pass filter, the controller is able to cancel the uncertain-
ties exactly. In this ideal scenario, the system response is the
following:

y1,id(s) = M(s)r1(s) . (16)

Even when the ideal case is not achieved, the transient
and steady-state performance of the controller have the
performance guarantees provided in (14) and (15). For the
proposed L1-MPC framework, we require that the system
controlled by the L1 adaptive controller behaves as close as
possible to a known, linear model. As shown in (14), in order
to achieve this, we must choose Γ to be very large.

Multi-Input, Multi-Output Implementation The SISO ar-
chitecture described above can be extended to a MIMO
implementation. We assume that the states are decoupled,
which can be achieved after applying an appropriate feed-
back linearization. Then, for n different outputs, the low-
pass filter C(s) and the first-order reference system (4) are



implemented as (n×n) diagonal transfer function matrices:

C(s) = diag(C1(s), . . . , Cn(s)) ,

M(s) = diag(M1(s), . . . ,Mn(s)) ,
(17)

where Ci(s) = ωi

s+ωi
, ωi > 0, for example, Mi(s) = mi

s+mi
,

mi > 0, and i = 1, . . . , n.

B. Model Predictive Control

MPC finds an optimal control input sequence that steers
the system towards a desired trajectory, taking into account
input and state constraints. The algorithm updates the control
signal at every sampling time based on a known system
model and desired future outputs. The key dynamics of the
system to be controlled can be described by the following
linear, discrete-time model:

y1(k + 1) = Ay1(k) +Br1(k) , y1(0) = y1,0 , (18)

where y1(k) ∈ Rn is the output at time step k, and r1(k) ∈
Rn is the control input. The desired output trajectory y∗1(k)
is assumed to be feasible based on the model (18), where
(r∗1(k), y∗1(k)) satisfy (18). At every time step k̄, MPC solves
the following open-loop optimization problem:

min
r1(k̄),...,r1(k̄+Nh)

J(y1, r1) (19)

subject to

y1(k + 1) = Ay1(k) +Br1(k) , ∀k = k̄, . . . , k̄ +Nh ,
y1(k̄) = y1,k̄

where J(y1, r1) is defined as:

J(y1, r1) =∑k+Nh+1
k=k̄+1

(y∗1(k)− y1(k))TQ(y∗1(k)− y1(k))+∑k+Nh

k=k̄
rT1 (k)Rr1(k) + δrT1 (k)Sδr1(k) ,

(20)

where δr1(k) = r1(k) − r1(k − 1), Q ,R , S ∈ Rn×n, and
Nh is the length of the prediction horizon.

We apply the computed optimal r1(k̄) to the system and
re-solve the optimization problem at k = k̄ + 1 using the
obtained measurement y1(k̄ + 1).

C. Adaptive Model Predictive Control

The proposed architecture uses MPC with an underlying
L1 adaptive controller (see Fig. 1), which guarantees that the
controlled system behaves close to a reference model. The
MPC updates the input signal to the underlying L1 adaptive
controller r1(k) at every sampling time based on a known
system model and desired future outputs. We assume that
the L1 adaptive controller makes the system behave close
to (16), which is achievable if the low-pass filter C(s) in (17)
is chosen appropriately. In the MIMO case, the ideal system
response is described by (16) where M(s) is a diagonal
transfer function matrix defined as in (17). The ideal system
response can then be discretized and written as:

y1(k + 1) = ADy1(k) +BD(r1(k)− y1(k)) , (21)
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Fig. 2. The proposed adaptive model predictive control architecture with
an extended L1 adaptive controller. The underlying L1 adaptive controller
has been augmented with an outer feedback loop with a proportional gain.

where AD and BD are the discretized state-space matrices
related to M(s). We can then reformulate the open-loop
optimization problem as:

minr1(k̄),...,r1(k̄+Nh)[∑k̄+Nh+1
k=k̄+1

(y∗1(k)− y1(k))TQ(y∗1(k)− y1(k))+∑k̄+Nh

k=k̄
rT1 (k)Rr1(k) + δrT1 (k)Sδr1(k)

] (22)

subject to

y1(k + 1) = ADy1(k) +BD(r1(k)− y1(k)) ,

y1(k̄) = y1,k̄ ,

|r̈1(k)| ≤ rmax , ∀k = k̄, . . . , k̄ +Nh ,

where the second constraint may be added to ensure a smooth
input and rmax is designed based on the system’s physical
constraints.

IV. EXPERIMENTAL RESULTS

This section shows experimental results of the proposed
framework combining L1 adaptive control and MPC (MPC-
L1) applied to a quadrotor flying three-dimensional trajec-
tories and experiencing dynamic disturbances. We assess
two main aspects of the proposed framework: (i) predictive
performance and (ii) robustness to external disturbances, as
compared to non-predictive and/or non-adaptive frameworks.

A. Quadrotor Setup

The desired trajectory is described in the x, y and z
directions. We implement the MIMO version of the L1

adaptive controller described in Section III-A, where we
assume that the x, y and z directions are decoupled. We
use a slightly modified L1 adaptive controller structure (see
Fig. 2) as previously proposed in [16], [21]. The difference
is that this extended L1 adaptive controller includes an
additional outer feedback loop with a proportional gain.
For the quadrotor example, we define r1(s) and r2(s) as
the Laplace transforms of the desired translational velocity
r1(t) ∈ R3 and the desired bounded position reference input
r2(t) ∈ R3, respectively. We also define y1(s) and y2(s) as
the Laplace transforms of the vehichle’s translational velocity
y1(t) ∈ R3 and position y2(t) ∈ R3.



We implement an outer-loop proportional controller as
described in [16], [21], where

r1(s) = K(r2(s)− y2(s)) ,

where K = diag(K1,K2,K3) and Ki > 0 for all i = 1, 2, 3.
This extension to the L1 adaptive controller results in the
following ideal linear reference system:

y2,id(s) =


D1(s) 0 0

0 D2(s) 0

0 0 D3(s)

 r2(s) , (23)

where

Di(s) =
Kimi

s2 +mis+Kimi
for i = 1, 2, 3 . (24)

The system in (23) is used to obtain AD and BD used for
the equality constraints in the MPC implementation (22).
We use the IBM CPLEX solver to compute the desired
positions r2(k) = (r2,x(k), r2,y(k), r2,z(k)). The interface
to the real quadrotor requires commanded roll φdes, pitch
θdes, vertical velocity żdes, and yaw rate ψ̇des. Therefore,
the signal uL1

(k) (see Fig. 2) is transformed through the
following equations:

φdes = −arcsin(−uL1,xsin(ψ) + uL1,ycos(ψ))
θdes = arcsin(uL1,xcos(ψ) + uL1,ysin(ψ))
żdes = uL1,z ,

where ψ is the current yaw angle. The desired yaw angle
ψdes is set to zero and controlled through a separate propor-
tional controller.

B. Experimental Setup

The experiments were performed using the Parrot Bebop 2
quadrotor. An overhead motion capture camera system was
used to obtain position, velocity, rotation, and rotational ve-
locity measurements. Let r2,j(k) be the desired translational
positions and y2,j(k) be the measured quadrotor positions
in the j = x, y, z directions, respectively. We propose five
different trajectories to test our approach, as shown in Fig. 3.
To quantify the controller performance, we define the average
position error as:

e =
1

N

N∑
k=1

√
e2
x(k) + e2

y(k) + e2
z(k) , (25)

where ej(k) = r2,j(k)−y2,j(k), N represents the trajectory
length, and j = x, y, z.

The matrices of the cost function in (22) are defined as
Q = qI , R = rI and S = sI where q = 17, r = 0.08
and s = 0.02, and I is the identity matrix. Since the
objective is to improve the trajectory tracking performance,
a significantly larger weight is given to this part in the cost
function.

C. L1 Adaptive Control Performance Bounds

In this subsection, we experimentally verify that (i) the
estimation error ỹ remains bounded, and (ii) the actual
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by the ideal system (23) (shown in red) is compared to the actual trajectory
followed by the quadrotor (shown in blue).

system remains close to the ideal linear system for the
extended L1 adaptive controller described in [16] and shown
in Fig. 2. To do this, we use the reference input r2 to
command the quadrotor to hover for 1.5 seconds after which
it starts moving in a 3D straight line. Fig. 4 shows, on
the left side, the estimation error ŷ1,i − y1,i for each axis
i = x, y, z. It is clear that for all three axes the estimation
error remains bounded. Moreover, using the ideal linear
reference model (23), we calculate the trajectory y2,id that
the ideal reference system would follow if the reference input
r2 was applied. The right side of Fig. 4 shows in red the
trajectory of the ideal reference system y2,id and in blue the
actual trajectory that the quadrotor followed y2, when the
input r2 is applied. The actual system does behave close to
the ideal reference system.

D. Predictive Performance

We first demonstrate the benefit of the predictive controller
component. To do this, we compare the tracking performance
obtained with the proposed MPC-L1 approach to that ob-
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tained with a PID-L1 and LQR-L1 approach. The PID-L1

framework uses a proportional-integral-derivative (PID) con-
troller to modify the input r2 of the underlying L1 adaptive
controller. The LQR-L1 framework uses an infinite-horizon
linear-quadratic regulator (LQR) with integral component to
modify the input r2. The integral component in the LQR is
used to decrease the steady-state error. All three approaches
MPC-L1, PID-L1 and LQR-L1 use the same underlying
extended L1 adaptive controller. The MPC-L1 uses the
cost function specified in Section IV-B. The outer PID and
LQR controllers were tuned in experiment to maximize the
tracking performance for trajectory 4 (purple) in Fig. 3. It
is important to note that neither the PID-L1 nor the LQR-
L1 controllers take into account future desired outputs when
computing the input to the underlying L1 adaptive controller.

We compare the three controllers on the five test trajecto-
ries shown in Fig. 3. The average position tracking errors for
each controller and trajectory are shown in Fig. 5. The PID-
and LQR-based controllers use only feedback information
to correct for tracking errors and have significantly larger
tracking errors than the proposed MPC-L1 framework. This
is better observed in Fig. 6, where the positions followed
by the quadrotor for each of the three controllers, PID-L1,
LQR-L1 and MPC-L1, when tracking trajectory 4 (purple)
in Fig. 3 are shown. The feedback-only controllers show
a significant tracking delay, see the dark blue and black
lines. The predictive component of the proposed MPC-
L1 framework optimizes over the prediction horizon and
achieves a better performance, as shown by the cyan line
in Fig. 6. This shows the benefit of the predictive MPC
component of the proposed approach.

E. Robustness to Disturbances

To assess the robustness to disturbances, the proposed
framework is compared to an MPC-PID framework. The
MPC-PID framework uses an MPC to modify the input
to an underlying PID controller. The system model used
in the MPC is obtained by applying a step input to the
x, y, and z directions separately and characterizing the
system response when the quadrotor is controlled by the
PID controller. The system is assumed to be a second-order,
linear system in each direction. We first use the MPC-PID

and MPC-L1 frameworks to track each of the five desired
trajectories. The cost functions used in the MPC-PID and
MPC-L1 frameworks are the same.

The average position errors for the MPC-PID and MPC-
L1 approaches are shown in Fig. 7 in dark blue and dark
red, respectively. The system model obtained through the
step response experiments for the MPC-PID framework is
not accurate enough to describe the system behavior well. We
found that tuning this system model for each trajectory could
improve performance for that trajectory; however, doing so
affected the performance of the other trajectories. In order
to fairly compare both approaches, the model used in the
MPC-PID framework is kept constant across trajectories.

Next, using a fan we introduce a wind disturbance at
different points in each trajectory. The resulting average
errors when the fan disturbance is applied are shown in Fig. 7
in light blue and light red for the MPC-PID and MPC-L1

frameworks, respectively. The proposed MPC-L1 framework
is able to keep approximately the same performance when a
disturbance is applied since the underlying L1 adaptive con-
troller is able to compensate for it. The MPC-PID approach
performs generally worse when wind is applied compared
to without wind. Only for trajectory 3, the disturbance
applied to the system steers the system in the direction
that reduces the tracking trajectory error. Nevertheless, the
proposed framework has, on average, a significantly smaller
increase in the error when the disturbance is applied.

V. CONCLUSIONS

In this paper, we introduce a novel adaptive MPC frame-
work to improve trajectory tracking performance in the
presence of disturbances and partially unknown dynamics.
The framework relies on an L1 adaptive controller to keep
the system close to a predefined linear system behavior,
despite the presence of disturbances and changing dynamics.
The MPC is used to calculate an optimal reference input to
the underlying L1 adaptive controller based on the reference
model from the L1 adaptive controller. Finally, we validated
the proposed approach through experiments on a quadrotor.
In experiments, the proposed method improves the tracking
performance of the system as compared to non-predictive
approaches (PID-L1 and LQR-L1) and a non-adaptive ap-
proach (MPC-PID), even in the presence of strong wind
disturbances. The proposed approach is able to effectively
control nonlinear systems with a computationally-efficient,
adaptive, linear MPC approach.
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