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Abstract— We estimate the global pose of a multirotor UAV
by visually localizing images captured during a flight with
Google Earth images pre-rendered from known poses. We met-
rically localize real images with georeferenced rendered images
using a dense mutual information technique to allow accurate
global pose estimation in outdoor GPS-denied environments.
We show the ability to consistently localize throughout a sunny
summer day despite major lighting changes while demonstrat-
ing that a typical feature-based localizer struggles under the
same conditions. Successful image registrations are used as
measurements in a filtering framework to apply corrections
to the pose estimated by a gimballed visual odometry pipeline.
We achieve less than 1m and 1

◦ RMSE on a 303m flight and
less than 3m and 3

◦ RMSE on six 1132m flights as low as
36m above ground level conducted at different times of the
day from sunrise to sunset.

I. INTRODUCTION

Vision-based techniques involving Visual Odometry (VO)

are the most popular for Unmanned Aerial Vehicle (UAV)

navigation in GPS-denied environments. However, pure

odometry techniques are unreliable for accurate pose esti-

mates since they drift in the absence of corrections. Visual

Simultaneous Localization and Mapping (SLAM) corrects

drift with loop closure and has been sucessfully demonstrated

in GPS-denied environments [1]–[3] but requires revisiting

locations. Visual Teach and Repeat (VT&R) [4] can enable

safe navigation without requiring globally accurate poses but

is limited to navigation along previously traversed routes.

Such a technique is suitable to perform emergency return of

UAVs in the event of GPS loss [5].

The aforementioned techniques require the vehicle itself to

map an area either through a human-operated manual teach

phase in the case of VT&R or a carefully developed safe

exploration algorithm for autonomous SLAM. However, a

3D reconstruction of many parts of the world is already

available in Google Earth (GE). The ability to use this 3D

reconstruction as a map would enable global pose estimation

without GPS, having to worry about safe exploration, or

restricting navigation to a previously traversed route. One of

the main challenges to using this map is the large appearance

difference between the 3D reconstruction and the true world:

lighting and seasonal changes, as well as recent structural

changes to the environment all present difficulties for visual

localization.

In this work, we present a technique to determine the

full six Degree of Freedom (DoF) global pose of a UAV
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Fig. 1: Comparison of real-world UAV images and rendered Google
Earth images taken from the approximately same viewpoint at three
locations along one of the flights. Large appearance changes, espe-
cially with vegetation, impermanent objects such as cars, poor 3D
reconstructions (e.g., trees in middle pair), and structural changes to
buildings (top pair) can all cause difficulties for visual localization.

in an area where the UAV itself has not mapped by using

only a gimballed stereo camera, Inertial Measurement Unit

(IMU), and georeferenced images from GE. These images

are rendered before the flight and stored onboard the UAV

to enable navigation within the region covered by the images.

Visual localization of the real images with the rendered

images using traditional sparse features (e.g., Speeded-Up

Robust Features (SURF)) is challenging due to the large

appearance difference (see Fig. 1). Therefore, we perform

image registration using a dense technique that relies on

Mutual Information (MI). MI provides robustness to some

appearance changes enabling us to accurately register the

images. We optimize the MI over warping parameters to

align the real and rendered images. The pose recovered from

the optimal warping parameters is then fused with a pose

estimated by a gimballed VO pipeline. The performance of

this technique is evaluated on multiple datasets collected at

the University of Toronto Institute for Aerospace Studies

(UTIAS).

The contribution of this work is a method to accurately

estimate the global pose of a UAV in GPS-denied environ-

ments using pre-rendered images from a 3D reconstruction

of the Earth. Our method allows accurate estimation at lower

altitude flights compared to similar previous work described



below. We also demonstrate robust estimation over an entire

day in the presence of signficant lighting changes on several

kilometres of real-world data.

II. RELATED WORK

Some of the earliest work using georeferenced satellite

images used edges for registration. However, a simple edge

detector resulted in only two successful matches along a

1 km trajectory [6]. Building outlines extracted using local

features were more successful in estimating the 6DoF pose

of an aerial vehicle [7]. Unfortunately, this technique cannot

be employed for lower altitude flights where only part of a

building might be visible.

Some recent work using local image features use street

view images to estimate the pose of a ground robot [8]

and a UAV [9]. In both cases, techniques similar to bag-

of-words are first used for place recognition followed by

image registration using SIFT keypoints. However, the fea-

ture matching can contain 80% outliers [9] due to the large

image appearance and viewpoint differences which makes it

difficult to accurately localize.

Unsurprisingly, Convolutional Neural Networks (CNNs)

have seen increased usage in recent years as image descrip-

tors due to their ability to learn generic features that can

be applied to a variety of tasks such as image classification

and object detection [10]. Often pretrained CNNs are further

trained for the task of place recognition allowing topological

localization [11]–[13] followed by filtering with VO in a

particle filter [12] or Kalman filter [13]. These whole-image

descriptors only allow finding an image match and do not

provide metric information about the relative pose between

the query and map cameras. Often the pose from which

the matching map image was taken is used as the best

estimate thereby limiting the accuracy of the localizations

to the spatial resolution of the georeferenced images.

We are interested in accurate metric localization using

georeferenced images. To accomplish this, we use a dense

image registration technique to align images captured by a

camera mounted on the UAV with pre-rendered georefer-

enced images. Instead of minimizing the photometric error,

we use a metric computed using MI to add robustness to

appearance changes.

We adopt the use of the Normalized Information Distance

(NID) [14], [15] which is computed from MI (6). The NID

is a value between 0 and 1 that is not as dependent on the

amount of information content in the images (i.e., the amount

of image overlap) as MI. It has been shown to be able to

robustly register images [14], and localize a ground vehicle

equipped with a monocular camera using a textured 3D map

generated from a LIDAR and camera [15]. One of the reasons

for the high accuracy in [15] is their ability to directly

optimize over the SE(3) pose parameters by generating

synthetic images online from the map. Since GE has no 3D

view API, we pre-render images at a limited number of poses

and perform a warping online for interpolation.

Similar to our work is [16], which determines the global

position and heading of a UAV by finding the optimal scale-

rotation-translation (sRt) warping (4) that maximizes the MI

of a query image taken by a nadir-pointed camera warped

into a mosaic of satellite images. An sRt warping is a

4DoF image warping that performs a scaling (zoom), 1D

rotation, and 2D translation. It assumes the scene is planar

and parallel to the image plane. For a nadir-pointed camera

this assumption becomes more valid at higher altitudes since

the building heights become small relative to the distance to

the camera. In contrast to [16], we conduct lower altitude

flights (e.g., 36m Above Ground Level (AGL) compared to

150m) where the scene is often non-planar. Despite this, we

are able to use this warping due to our method of rendering

images at mulitple nearby poses in the 3D reconstruction.

III. METHODOLOGY

We estimate the global SE(3) pose of a multirotor UAV

using only a gimballed stereo camera, an IMU (for vehicle

attitude only), and a set of georeferenced GE images. Let

TW,k =

[

CW,k r
k,W
W

0⊤ 1

]

(1)

be the transformation from the vehicle at keyframe k

to a world East-North-Up (ENU) frame. The position of

the vehicle in the ENU frame is given by r
k,W
W =

[xk,WW y
k,W
W z

k,W
W ]⊤ and the roll, pitch, and yaw (φW,k, θW,k,

ψW,k, respectively) can be extracted from the 3× 3 rotation

matrix CW,k. Let Iq = (Iq
1
, I

q
2
, . . . , I

q
K) be the sequence of

real UAV query images from each keyframe. We attempt to

localize each keyframe image using a set of georeferenced

map images, Im = {Im
1
, Im

2
, . . . , ImN}, where the global pose

of map image n is denoted TW,ns
with s indicating the

sensor (camera) frame.

A. Gimballed Visual Odometry

The first step in the estimation pipeline is to perform VO

on the UAV images. VO is performed using the VT&R 2.0

software system adapted for use on UAVs with gimballed

cameras [5].

The inputs are rectified stereo greyscale images and a

non-static vehicle-to-sensor transform, Tfs,f , computed at

10Hz for each frame. It is computed by compounding

transformations using the three gimbal angles and known

translations between joints followed by a rotation into the

standard camera frame. The roll and pitch axes of the gimbal

are globally stabilized in a gravity-aligned inertial frame

while the yaw follows the vehicle heading.

For each stereo image pair, features are extracted and

SURF descriptors matched between the left and right frames

to perform stereo landmark triangulation. Features that are

unable to be triangulated from stereo matching are trian-

gulated through motion between consecutive frames. The

descriptors in the latest image are matched to the last

keyframe to generate 2D-3D point correspondances. These

are used in an Maximum Likelihood Estimation SAmple

Consensus (MLESAC) estimator to determine the full SE(3)
incremental vehicle pose with uncertainty from the current

frame to the last keyframe Tf,k,Σf,k. If the translation



or rotation exceeds a threshold, or the number of inliers

drops below a minimum amount, a new keyframe is added.

With every new keyframe, a windowed refinement (bundle

adjustment) is performed using the Simultaneous Trajectory

Estimation And Mapping (STEAM) engine [17].

B. Image Registration

For every keyframe image, I
q
k, the goal is to determine

the relative SE(3) pose between the query camera at k and

a virtual GE camera that generated image n, Tks,ns
. The

global pose measurement of the vehicle is then obtained from

TW,k = TW,ns
T−1

ks,ns

Tks,k. (2)

In this work, all real and rendered images are taken with

the camera pointed in the nadir direction. The relative roll,

φks,ns
, and pitch, θks,ns

, are estimated from our gimbal

and IMU. We perform image registration to estimate the

remaining four pose parameters:

η = [xns,ks

ks

y
ns,ks

ks

z
ns,ks

ks

ψks,ns
]⊤. (3)

Since a full homography is over-parameterized for this task,

we use an sRt warping:

x′ = w(x,µ) = sR(ψ)x+ t, (4)

where x = [x y]⊤ is the query image plane coordinate

warped to x′ = [x′ y′]⊤ in the map image, s is scale, R(ψ)
is a 1D rotation matrix, t = [tx ty]

⊤ is a 2D translation,

and µ = [s ψ tx ty]
⊤. We can also directly warp pixel

coordinates u = [u v]⊤ from the query image into map

image pixel coordinates u′ = [u′ v′]⊤:

ū′ = w(ū,µ) = K′

[

sR(ψ) t

0⊤ 1

]

K−1ū, (5)

where ū = [u v 1]⊤ and K is the camera intrinsics matrix.

The NID between a query image and warped map image

is

NID(Iqk, I
m
n ,µ) =

H(Iqk, I
m
n ,µ)−MI(Iqk; I

m
n ,µ)

H(Iqk, I
m
n ,µ)

, (6)

where MI is

MI(Iqk; I
m
n ,µ) = H(Iqk) +H(Imn ,µ)−H(Iqk, I

m
n ,µ). (7)

The joint entropy is given by

H(Iqk, I
m
n ,µ) = −

N
∑

a=1

N
∑

b=1

pqm(a, b,µ) ln(pqm(a, b,µ)),

(8)

where pqm(a, b,µ) is the joint probability distribution of

image intensities in I
q
k and Imn for N bins with bin indices

a and b. Similarly, the individual entropies are

H(Iqk) = −
N
∑

a=1

pq(a) ln(pq(a)) (9)

H(Imn ,µ) = −
N
∑

b=1

pm(b,µ) ln(pm(b,µ)), (10)

where pq(a) and pm(b,µ) are the marginal probability

distributions (e.g., pm(b,µ) gives the probability that pixel

u′ in image Imn has intensity that falls into bin b).

To register the images we determine the optimal warping

parameters, µ
∗ = [s∗ ψ∗ t∗x t∗y]

⊤, to minimize the NID

between a query image and selected map image:

µ
∗

k = argmin
µ

NID(Iqk, I
m
n ,µ). (11)

The optimization is performed using Limited-memory

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm; a

quasi-Newton method. We apply a two-stage optimization

procedure. The first stage optimizes using Gaussian blurred

images. The blurring smooths out the cost function and

gradients. The second stage is a refined optimization that

uses the raw images and is initialized with the result from the

blurred optimization. Following the optimization, the query-

to-map pose parameters (3) are recovered from the optimal

warping:

x
ns,ks

ks

= −t∗xs
∗zg,ns

ns

(12a)

y
ns,ks

ks

= −t∗ys
∗zg,ns

ns

(12b)

z
ns,ks

ks

= zg,ns

ns

(s∗ − 1) (12c)

ψks,ns
= −ψ∗, (12d)

where zg,ns

ns

is the distance from the nadir-pointed virtual

camera to the ground. Therefore, for each successfully reg-

istered image we have an estimate for Tks,ns
, which is used

to obtain the global pose via (2). An image registration is

deemed unsuccessful if the position and yaw estimated by

the registration is too far away from the VO prediction (13b).

For map selection, we compute the NID between the query

image, I
q
k, and unwarped map images in a radius around the

predicted position given by VO (13b). The map image, Imn ,

that generates the minimum NID is selected to provide the

best aligned image before any warping.

C. Pose Filtering

We follow the methods in [18] to compound uncertain

relative transforms from VO, Tk,k−1, and fuse them with

uncertain pose measurements from image registration, Tk,0.

Note that TW,0 is the transform from the local coordinate

frame to the global, and is constructed using the RTK

position and vehicle attitude at the first keyframe. As a result,

our filtering equations are

P̌k = Qk + Tk,k−1P̂k−1T
⊤

k,k−1
(13a)

Ťk,0 = Tk,k−1T̂k−1,0 (13b)

Kk = P̌k

(

P̌k +Rk

)−1

(13c)

P̂k = (1−Kk)P̌k (13d)

T̂k,0 = exp

(

(

Kk ln(Tk,0Ť
−1

k,0)
∨

)∧
)

Ťk,0, (13e)

where Tk,k−1 is the adjoint of Tk,k−1, the prior uncertainty

P̌k is a second-order approximation, Kk is the Kalman

gain, and ln(·)∨ and exp(·∧) are SE(3) operators. Our

method works very well with a fixed measurement
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Fig. 2: Example of lighting changes that occur from sunrise to sunset. The Google Earth reconstruction appears to contain late morning
to early noon shadows.

covariance, Rk = diag(0.11, 0.11, 1.0, 0.01, 0.01, 0.01),
and fixed process noise covariance, Qk =
diag(0.04, 0.04, 0.04, 0.05, 0.05, 0.01), except at the start

where we inflate Qk until a scale factor is estimated. We

estimate the scale for VO by minimizing the error between

the incremental posterior and VO translations inside a

window of keyframes. For unsuccessful registrations, the

predicted position and uncertainties are propagated (i.e.,

T̂k,0 = Ťk,0 and P̂k = P̌k). The end result is a posterior

global vehicle pose for each keyframe obtained by

T̂W,k = TW,0T̂
−1

k,0. (14)

IV. EXPERIMENTAL SETUP

A. UAV Dataset Collection

The experiments are conducted with data collected at

UTIAS using a DJI Matrice 600 Pro multirotor UAV with

a 3-axis DJI Ronin-MX gimbal. A StereoLabs ZED camera

provides stereo images at 10FPS. The RTK-GPS system and

IMU provide the vehicle pose for ground truth.

The first dataset is a 303m rectangular path flown with

height variations between 45 − 48m AGL. It was collected

in the fall during an overcast day and is the primary dataset

used for development. We also collected six datasets during

a sunny summer day on a more complicated 1132m path

flown with height variations between 36−42m AGL to show

the ability of our method to localize a) at lower altitudes,

and b) using a single map image database despite significant

lighting changes in the real-world images. We collect datasets

at distinctive times of the day: sunrise, morning, noon,

afternoon, evening, and sunset. Fig. 2 shows the extreme

lighting changes that occur throughout the day. These flights

are over both man-made structure and significant stretches

of vegetation to evaluate the performance in different envi-

ronments.

B. Map Images

The set of georeferenced map images, Im, is generated

from the 3D view in Google Earth at desired camera poses

in an offline step. We define a virtual camera at each pose

with the same focal length as the UAV-mounted camera so

that query and map images taken at the same pose can have a

nearly perfect alignment when the reconstruction is precise.

We also use GE elevation data to obtain the height of the

camera AGL at each pose.

After planning the UAV path, we render images along

and surrounding the nominal path. All images are rendered

with the camera pointed in the nadir direction. Images are

generated every 3m along the nominal path and up to 12m

to the left and right, and above and below the path with

a 6m spacing. The surrounding images ensures that if the

vehicle deviates off the nominal path, we have a nearby

map image that captures the non-planar changes in the scene

(e.g., side of a building becoming visible). This allows us

to accurately localize with sRt warping at lower altitudes.

The map spacing was chosen to match the width of our

convergence basin at the altitude flown in these experiments.

The only limitation to the number of map images is

the storage available on the UAV. Although we save high-

resolution RGB images, the image registration only uses

560 × 315 4-bit greyscale images (the NID uses 16-bin

histograms of the greyscale intensities). Our 313m and

1.1 km paths would require only 212Mb and 794Mb if saved

in the minimum required format. With today’s large capacity

and inexpensive storage, map images covering several square

kilometres could easily be stored onboard.

C. Ground Truth

The RTK-GPS and GE global coordinate frames, F−→W ′

and F−→W , respectively, do not perfectly align. Therefore, we

uniformly sample 10% of the posterior pose estimates and

use these to align the coordinate frames with a transform,

TW ′,W , that is determined by miniziming the uncertainty-

weighted relative pose errors between the RTK-GPS poses

and posterior pose estimates. We report all image registration

and filtered errors on the remaining 90% of the path.

V. RESULTS AND DISCUSSION

A. MI-based Image Registration

We first show an example of aligning two images with

sRt warping using the NID cost function. Fig. 3 shows the

cost function values swept over the four warping parameters



TABLE I: Summary of MI-based Image Registration Results

Lighting Registration Successful Registrations RMSE (m) All Registrations RMSE (m)

Condition Success (%) long. lat. altitude heading long. lat. altitude heading

Overcast 100 0.69 0.46 0.50 0.89 0.69 0.46 0.50 0.89

Sunrise 94.7 1.10 0.71 1.17 2.28 1.87 1.47 1.73 2.80
Morning 95.1 1.02 0.58 0.78 2.57 2.24 1.39 1.20 2.97
Noon 97.8 0.78 0.61 1.01 1.82 1.26 1.02 1.40 2.70
Afternoon 96.0 1.69 0.92 1.17 1.71 2.14 1.57 1.54 2.63
Evening 81.3 3.03 1.32 1.35 2.49 4.09 3.63 2.98 5.25
Sunset 87.5 1.95 1.12 1.55 2.64 3.03 1.95 2.54 3.06

for the first image in the overcast dataset. The warping

that generates the minimum NID is often the best image

alignment as shown in this example, but it is not guaranteed.

Next, we present our image registration results on all

datasets using our two-stage optimization approach. Table I

shows the success rate and Root-Mean-Square Error (RMSE)

computed using all registrations and only successful ones.

The optimizer always converged to a solution thus all failures

were due to poor image alignment.
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(a) NID cost function swept from -15 to 15 pixel translations in
tx and ty at three different scales and rotations.

(b) Alpha blended image of the UAV query image (prominent)
and the Google Earth map image warped with the optimal sRt

parameters.

Fig. 3: An example sRt alignment using the NID cost function
showing the smoothness over the warping parameters with a clear
optimum that corresponds to a nearly perfect alignment.

For the overcast flight we successfully register every

keyframe and achieve sub-metre position and sub-degree

orientation errors. This is in part due to the higher altitude

flight (although still low compared to previous work), which

provides more objects and boundaries to aid in the alignment.

For the sunrise to sunset flights, the registration performs

the best at noon as expected; the GE 3D reconstruction in

our flight area resembles early noon. The image registrations

alone were able to achieve nearly less than 3m and 3◦

position and heading RMSE.

There are two types of scenes that are particularly difficult

for our image registration: scenes with lots of self-similar

texture (e.g., vegetation in Figs. 4b, 4c), and scenes with large

shadows (e.g., Figs. 4a, 4d). Self-similar texture results in

many local minima in the registration cost function. Shadows

can trick the MI into associating the shadow with its caster

resulting in a strong local minimum. These shadows were

most prevalent in the evening flight resulting in its lower suc-

cess rate. While our blurred optimization provides robustness

to shallow local minima, we depend on good initial guesses

to handle the aforementioned problematic areas. Figs. 4f, 4g,

4h show examples of when the MI optimizer can settle in

the correct local minimum with an initial guess given by

VO near the true alignment. Another method to handle these

scenes is to optimize over a window of keyframes. Although

this may produce a suboptimal alignment for each individual

keyframe, it prevents large jumps in the measured poses.

B. Comparison with Feature-based Registration

We briefly present the results from a feature-based image

registration scheme for comparison. We use the aforemen-

tioned VT&R framework with SURF. The GE images along

the nominal path are used for the teach run. Repeats are then

attempted with each of the sunrise to sunset flights but the

result is a poor registration performance. The features are

only capable of producing less than 7% successes per repeat

where the registration is declared a failure if the number of

MLESAC inliers is below 30.

Since it is quite obvious that feature matching across

the rendered and real-world images will struggle, we also

briefly evaluate the performance of a typical teach-and-repeat

without the use of GE images. The sunrise flight is used as

the teach with subsequent flights used as repeats. This results

in 34.9%, 30.3%, 15.0%, 8.4%, and 72.4% success rate for

morning to sunset. It is clear that the dramatic changes in

lighting makes feature matching unreliable. The sunset flight

is able to localize the most frequently due to the similar

brightness and minimal shadows that appear during sunrise



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: The top row shows examples of bad alignments due to (a) alignment of the building with its shadow, (b) and (c) almost no
structure to aid in alignment, and (d) alignment of the trees with their shadows. The bottom row shows good alignments despite: (e) poor
3D reconstructions, (f) and (h) large shadows, and (g) very little structure. A better initial pose guess and slightly more structure in (h)
compared to (d) allows the MI optimizer to correctly align the images.

and sunset.

C. Filtered Pose Estimation

TABLE II: Summary of Filtered Results

Lighting RMSE (m)

Condition long. lat. altitude roll pitch heading

Overcast 0.61 0.42 0.32 0.27 0.29 0.84

Sunrise 1.10 0.76 0.32 0.31 0.69 2.19
Morning 1.15 0.80 0.31 0.35 0.46 2.67
Noon 0.91 0.82 0.30 0.55 0.78 1.76
Afternoon 1.51 0.86 0.47 0.52 0.61 1.54
Evening 2.73 1.64 0.45 0.52 0.82 2.48
Sunset 1.78 0.76 0.51 0.52 0.84 2.55

Finally, in Table II we highlight the accuracy we achieved

by fusing VO and our real-to-rendered image registration. It

is clear that the optimal fusion of VO and registrations result

in accurate global pose estimates. Fig. 5 shows the filtered

positions and height AGL with the ground truth for two

flights in our sunrise to sunset experiment: our best (noon)

and worst (evening) performances. As we saw previously, a

few particular areas were problematic for image registration

in the presence of lighting changes. However, VO was able

to carry the estimation through these small stretches (5− 10
keyframes) of failures that predominantly occurred during

the evening and sunset flights. Overall, our method is able

to estimate a global pose throughout the day with a position

accuracy that rivals (non-differential) GPS.

In future work, we aim to show the estimation running

online on the onboard computer. The localization will be

tested at even lower altitudes and in more locations. We will

also focus on proper uncertainty quantification.

VI. CONCLUSIONS

We presented a method for global pose estimation of

a UAV by visually localizing real-world images with pre-

rendered images from a 3D reconstruction of the Earth.

We used a MI-based dense image registration scheme to

align the real and rendered images for metric localization.

The registrations were then used to apply corrections to

gimballed VO in a filtering framework. On multiple flights
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Fig. 5: Filtered estimates showing only our best (noon) and worst
(evening) localization performances. The path starts at the inter-
section shown in the top left and spirals outward clockwise. The
remaining three zoomed-in segments are where image registration is
difficult for the evening flight resulting in slightly worse localization
performance. Overall, however, the localization is smooth and
performs well on the 1132m path flown as low as 36m AGL.

totaling 7.1 km of data with altitudes as low as 36m AGL,

we estimated the pose with an accuracy on the order of

a few metres and degrees. We also showed the ability to

consistently localize over the course of a sunny summer

day using a single database of pre-rendered images despite

dramatic changes in lighting. Our method enables global

pose estimation with a position accuracy on par with GPS.
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