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Abstract—Robust autonomous navigation of multirotor
UAVs in GPS-denied environments is critical to enable their
safe operation in many applications such as surveillance and
reconnaissance, inspection, and delivery services. In this paper,
we use a gimballed stereo camera for localization and demon-
strate how the localization performance and robustness can
be improved by actively controlling the camera’s viewpoint.
For an autonomous route-following task based on a recorded
map, multiple gimbal pointing strategies are compared: off-the-
shelf passive stabilization, active stabilization, minimization of
viewpoint orientation error, and pointing the camera optical
axis at the centroid of previously observed landmarks. We
demonstrate improved localization performance using an active
gimbal-stabilized camera in multiple outdoor flight experi-
ments on routes up to 315 m, and with 6-25 m altitude vari-
ations. Scenarios are shown where a static camera frequently
fails to localize while a gimballed camera attenuates perspective
errors to retain localization. We demonstrate that our orienta-
tion matching and centroid pointing strategies provide the best
performance; enabling localization despite increasing velocity
discrepancies between the map-generation flight and the live
flight from 3-9 m/s, and 8 m path offsets.

I. INTRODUCTION

The majority of Unmanned Aerial Vehicles (UAVs) avail-
able today are capable of autonomous navigation using
Global Positioning System (GPS) and inertial sensors. This
reliance on GPS poses a problem for environments where
poor satellite coverage, multipath propagation, and inten-
tional jamming can hinder its use. As a result, government
regulations generally restrict the use of UAVs to Visual Line
of Sight (VLOS) operations to allow a human to manually
pilot the vehicle in the event of GPS loss. To enable beyond
VLOS operations and expand the scope of UAV applications,
there is a need to develop safe and robust autonomous
navigation solutions that can serve as standalone or backup
solutions in the event of GPS loss.

Vision-based autonomous navigation techniques are com-
monly used for UAVs in GPS-denied environments due to
the light weight, low power consumption, and low cost of
cameras. There are many examples of vision-based flight
using monocular [1]–[9] and stereo [10], [11] cameras.
However, the majority use statically mounted cameras.

The goal of this work is to demonstrate the benefits of an
actively controlled gimballed camera for visual localization
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Figure 1: The hardware setup with a static camera (left) and
gimballed camera (right) on a multirotor UAV: (1) DJI Matrice 600
Pro, (2) DJI A3 GPS module, (3) DJI Ronin-MX 3-axis gimbal,
(4) NVIDIA Tegra TX2, (5) XBee Pro 900 MHz XSC S3B RF
module, (6) StereoLabs ZED camera.

on UAVs. In particular, we consider a visual teach and repeat
scenario where a visual map is created during a human-
piloted or autonomous GPS waypoint outbound flight and is
used to safely fly back in the event of GPS loss by visually
localizing against the map.

The underactuated nature of multirotor UAVs causes a
camera mounted statically to the vehicle to undergo large
viewpoint changes during accelerations. These viewpoint
changes are an issue as many visual localization techniques
rely on matching feature descriptors such as Speeded-Up
Robust Features (SURF) [12] which are known to be highly
sensitive to scene perspective changes. While a vehicle
controller tries to keep the vehicle close to the originally
flown path, there are no guarantees that the camera viewpoint
will be the same at matching positions along the outbound
and return flights unless the UAV follows an identical
acceleration profile.

A 3-axis gimbal fully decouples the camera and vehicle
orientations. Moreover, it allows independent camera view-
point manipulation to improve visual localization robustness
under conditions of high winds, large path-following errors,
and faster flight speeds compared to the map-generation
flight. The benefit is most apparent in scenarios where



the scene is spatially close to the camera (such as when
flying near the ground or in close proximity to buildings).
In these situations, any small viewpoint errors result in a
large reduction in image overlap which makes it difficult to
visually localize. Such close proximity flights are common
in monitoring and inspection applications or when operating
in urban environments. The use of a static camera in
these scenarios is prone to localization failures from large
perspective errors.

In this paper, we use an active gimballed camera on a
multirotor UAV in a similar manner as done in [13] for
ground vehicles and in [11] for UAVs. We improve the
response time of the gimbal controller by using angular
rate commands to handle the UAV’s fast dynamics. We
also introduce a centroid pointing strategy to handle path-
following errors. Finally, we perform multiple outdoor flight
experiments to i) highlight the robustness an active1 gim-
balled camera adds over a static camera, ii) show that an
off-the-shelf passively2 stabilized gimbal can actually be
detrimental for localization, and iii) demonstrate the ability
of orientation matching and centroid pointing strategies to
enable visual localization despite large path-following errors
and velocity discrepancies.

II. RELATED WORK

The majority of vision-based autonomous navigation so-
lutions for UAVs use static cameras [2]–[10]. Visual Simul-
taneous Localisation and Mapping (SLAM) techniques have
been sucessfully demonstrated for GPS-denied environments
in indoor [2], [3] and outdoor settings [4], [5], [10]. A
proof-of-concept demonstration of Visual Teach and Repeat
(VT&R) [14] on multirotor UAVs was shown in [6] followed
by successful offline localization on a fixed-wing UAV [7].
Recently, there have also been demonstrations of similar
teach-and-repeat style techniques for visual navigation using
semantic objects [8], and offline map building [9].

Early work using gimballed cameras on UAVs involved
applications unrelated to vision-based navigation: they were
used to increase the effectiveness of target tracking and
surveillance [15]–[17], and search and rescue [18]. Non-
static cameras have been used for vision-based landing of
UAVs: a pan-tilt monocular camera was utilized to increase
the effective Field Of View (FOV) during landing [19],
and 3-axis gimballed monocular cameras were leveraged for
autonomous landing on moving platforms [20], [21]. Recent
work demonstrates the integration of gimballed cameras with
Visual-Inertial Odometry (VIO) [22] and visual SLAM [1].
Work in [1] performs a reactive viewpoint selection strategy
by panning the camera to areas of high feature density with

1Active strategies require user control input and are further divided into
those that use visual information to determine where to point the camera
(e.g., orientation matching and centroid pointing) and those that simply
stabilize the camera (e.g., active stabilization).

2Passive strategies require no user control input.

Figure 2: A simplified overview of the vision-based localization
system with an active gimballed camera. During learn, the phase
where the map is created, active stabilization can be performed
while in return, the phase where the map is used for localization,
any of the proposed gimbal pointing strategies can be selected.

the goal of improving localization accuracy of monocular
visual SLAM using a two-axis gimbal. The most closely
related work is our previous work demonstrating the use of
VT&R as an emergency return system on multirotor UAVs
[11] using the active gimballed camera implementation
introduced in [13]. While work in [11] shows successful
localization using an orientation matching strategy, in this
work, in addition to improving the gimbal controller imple-
mentation, we perform new outdoor experiments to show
the improvement and robustness that an active gimballed
camera adds over a passive gimbal and static camera for
visual localization.

III. METHODOLOGY

VT&R is a route-following technique that enables long-
range autonomous navigation without reliance on external
positioning systems such as GPS [14]. While its develop-
ment has largely focused on ground vehicles, we adapt it for
multirotor UAVs to act as an emergency return system. Dur-
ing a human-piloted or autonomous GPS waypoint outbound
flight, termed the learn phase, a visual map is generated
using only a stereo camera and performing sparse feature-
based Visual Odometry (VO). Following a GPS loss, the
UAV returns home by autonomously navigating backwards
along the outbound flight path using a vision-based flight
controller and a gimbal controller to promote localization.

Figure 2 shows an overview of the VT&R software system
without the vehicle controller. We include a new gimbal



controller implementation that allows active control in both
the learn and return phases with faster response times.
The new implementation also provides the ability to select
different pointing methods to use in each phase.

A. VT&R Overview

During an outbound learn flight, sparse feature-based
gimballed VO is performed to estimate the pose of the
vehicle and scene structure using only the stereo images
and gimbal angular positions captured at 10Hz. The visual
observations are inserted into a relative map of pose and
scene structure in the form of a Spatio-Temporal Pose
Graph (STPG) (see Fig. 3). Each vertex α stores the 3D
positions of landmarks with associated covariances observed
by the camera, {pα,σα}, and the non-static vehicle-to-
sensor transform, Tα

sv (i.e., the pose of the vehicle in the
camera frame at vertex α). The vehicle-to-sensor trans-
form is obtained by applying forward kinematics with the
roll, pitch, and yaw gimbal angular positions. Edges link
temporally and spatially adjacent vertices metrically with
a 6 Degree of Freedom (DoF) SE(3) transformation with
uncertainty, {Tα,α−1,Σα,α−1}. The set of linked temporal
edges represent the locally consistent path. During learn,
this path is marked as privileged.

During an inbound return flight, the same visual odometry
and map building as learn is performed, however, the
experience is saved as non-privileged. In parallel, the system
visually localizes to the map of the privileged experience
which provides the error to the privileged path. These local-
ization updates are used for gimbal control in the orientation
matching and centroid pointing strategies. Although not
demonstrated here, the updates can also be sent to our vision-
based path-follower to autonomously retraverse the path.

To facilitate tracking of important vertices and associated
transforms in the STPG, a localization chain is used with a
‘tree’ naming convention: leaf (l), twig (w), branch (b), trunk
(t). The leaf (latest live frame) connects to the twig vertex
(last successfully localized vertex on the current path) by a
temporal transform. The branch is the privileged vertex that
was most recently localized against; connected to the twig by
a spatial transform. The trunk vertex is the spatially nearest
privileged vertex to the leaf frame. With every successful
VO update, the estimated transform from the trunk to the
leaf, Ťlt = Ťhc = ThgTgdTdc in Fig. 3, is updated in the
localization chain. This includes updating the trunk vertex
to the privileged vertex that is spatially closest to the new
leaf if necessary.

When VO inserts a new vertex into the STPG, visual
localization attempts to estimate a spatial transform from the
new vertex to its trunk. For example, in Fig. 3 the new vertex
will be H with C as its trunk. The first step is to extract
a local window of privileged vertices around the trunk of
the new vertex. All 3D landmarks in the local window are
transformed into trunk vertex using the privileged temporal
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Figure 3: Depiction of an STPG with a single privileged experience.
Active vision pointing strategies use the transforms from the live
(return) path to the privileged (learn) path for gimbal control (e.g.,
Tgd which is the 6DoF transformation from vertex D to G). Some
estimated transforms and uncertainties are omitted for clarity.

transforms in a step termed landmark migration. Features are
matched from the non-privileged new vertex to the features
associated with all migrated landmarks using their SURF
descriptors. These raw matches are sent to a Maximum
Likelihood Estimation SAmple Consensus (MLESAC) ro-
bust estimator to generate a set of localization inlier matches
and estimate the spatial transform. The spatial transform is
optimized in a final stage. The localization chain is updated
with the new spatial transform: Twb ← Thc.

We refer the reader to our previous work for a more de-
tailed explanation of the the gimballed VO [13], localization
[23], and the multirotor UAV emergency return adaptation
with closed-loop vehicle control [11].

B. Gimbal Control

All active gimbal strategies use a cascaded position-
velocity control loop. The outer position loop applies propor-
tional gains to the angular position errors to generate angular
rate commands which are sent to the gimbal’s internal
controller. Let Φ = [φ θ ψ]T be the roll, pitch, and yaw
angular positions of the gimbal, respectively. The angular
velocity commands are computed as

u = K (Φd −Φ) , (1)

where K is a 3 × 3 matrix with proportional gains kφ, kθ,
and kψ on the diagonal and zeros for the off-diagonals. The
gimbal controller is run at 10Hz to match the update rate
of the gimbal state and VO.

The selected gimbal only allows control of the pitch
and yaw axes with rate commands. The roll axis is left to
the gimbal to passively stabilize which promotes consistent
tracking of features.

1) Passive Stabilization: The gimbal used in this work
stabilizes all three axes without any user control input (i.e.,
passively). The roll and pitch axes are globally stabilized
in a gravity-aligned inertial frame while the yaw follows



the vehicle heading. This off-the-shelf solution, however, is
slow to respond to changes in the vehicle heading to promote
smooth image motion for filmmaking.

2) Active Stabilization: To address the yaw following
issue, the gimbal can be actively controlled to more closely
follow the vehicle heading while stabilizing the pitch. With
this strategy, the camera can also be pointed at a non-zero
fixed yaw angle relative to the vehicle heading or maintain a
global yaw angle. During active stabilization, no information
from the vision system is used for gimbal control. It is
typically used during our learn phase, but we also test its
use in the return phase for a full comparison.

3) Orientation Matching: The goal of orientation match-
ing is to minimize the camera’s viewpoint orientation error
during return. The gimbal yaw and pitch axes are actively
controlled to match the camera’s recorded orientation at the
spatially nearest privileged vertex using the current camera
pose estimated by the visual system.

At the beginning of each control step, the localization
chain is queried to obtain the latest trunk to leaf transform,
Ťlt. To compensate for the gimbal actuation delay, we
extrapolate the vehicle pose 200ms ahead on a trajectory
generated by the Simultaneous Trajectory Estimation And
Mapping (STEAM) engine [24]. We denote the extrapolated
pose as l′ with its associated trunk as t′ (vertex I and B,
respectively, in Fig. 3). The pose of the camera at t′ with
respect to the pose of the camera at l′ is given by:

T̃l′t′ = T̃ib = Ti
svTihŤhcTcbT

b −1
sv , (2)

where T̃ refers to transforms between the sensor (camera)
frames, Tih is obtained from extrapolation, and Ťhc ←
ThgTgdTdc. Currently a motion model is not used to
predict the vehicle-to-sensor transform at I . Instead we set
it to the live transform (i.e., Ti

sv ← Th
sv). The camera’s

viewpoint orientation error is extracted from T̃ib to compute
the desired gimbal angular position, Φd.

4) Centroid Pointing: Pointing the camera at the centroid
of previously observed 3D landmarks accounts for vehicle
path-following errors during return. The first two steps
in the centroid pointing procedure are submap extraction
and landmark migration (similar to visual localization). The
STEAM trajectory is queried to obtain the extrapolated
vehicle pose with respect to its spatially nearest privileged
vertex, Tl′t′ = Tib. The uncertainty in this transform in the
direction of the privileged path is used to extract a window
of vertices around vertex t′ (i.e., a submap denoted as S).
The privileged temporal transform between the extrapolated
trunk and the next vertex in the privileged path, Tt′n, and
the extrapolated trunk to extrapolated leaf, Tl′t′ , give the
direction along the path expressed in the extrapolated leaf
vehicle frame:

ûl
′

t′n = Cl′t′
rt′n
‖rt′n‖2

, (3)

where rt′n is the position of vertex n in t′, and Cl′t′ is the 3×
3 rotation matrix from the extrapolated trunk to extrapolated
leaf. Let Σr be the 3× 3 translational covariance from the
pose covariance matrix Σl′t′ . The uncertainty along the path
is given by

σû =
√

ûl
′ T
t′n Σrûl

′
t′n. (4)

This uncertainty is used as a distance criterion for selection
of a window of vertices. The maximum window size is
restricted to limit the spread of the 3D landmarks used to
compute the centroid.

All landmarks in this window are transformed into the
sensor frame at the extrapolated trunk vertex, t′, using
the privileged temporal transforms. The centroid of these
landmarks is further transformed into the sensor frame at
the extrapolated leaf, l′. Let p̃αj be the jth landmark in the
sensor frame of vertex α ∈ S. Using the extrapolated leaf
and trunk vertex in Fig. 3, the centroid in the sensor frame
at the extrapolated leaf, denoted c̃ is given by

c̃ = T̃ib

∑
α∈S

∑nα

j=1 Tb
svTbαTα −1

sv pαj∑
α∈S

nα
, (5)

where nα is the number of landmarks at vertex α and T̃ib

is computed by (2). A spherical wrist model for the gimbal
is used to compute the desired gimbal angles Φd to align
the camera’s optical axis with the centroid.

IV. EXPERIMENTAL RESULTS

We perform multiple outdoor flight tests at the University
of Toronto Institute for Aerospace Studies to compare: i) a
static and gimballed camera on dynamic and non-dynamic
paths, ii) all gimbal pointing strategies in the presence
of speed discrepancies, and iii) orientation matching and
centroid pointing in the presence of cross-track errors. An
example flight path is shown in Fig. 4. Unless otherwise
noted, the camera is pitched down 30 degrees relative to
a gravity-aligned inertial frame (or vehicle body frame for
the static camera). To perform a proper comparison, we
do not use a vision-based path-follower. Instead, we send
a GPS waypoint mission to follow the path in the reverse
direction. This allows us to directly evaluate the localiza-
tion performance without adding any coupling effects from
control-in-the-loop. Furthermore, it enables experimentation
on complicated, dynamic paths to explore failure cases
safely.

Fig. 1 shows the hardware setup for the static and gim-
balled camera systems. We use the DJI Matrice 600 Pro
(M600) multirotor UAV with a 3-axis DJI Ronin-MX gim-
bal. All processing for the VT&R system is performed on-
board by an NVIDIA Tegra TX2. A StereoLabs ZED camera
is connected to the onboard computer to provide 672× 376
grayscale stereo images. A 900 MHz XBee low-bandwidth,
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Figure 4: The dynamic path used for our gimbal pointing strat-
egy comparisons which shows the height above takeoff, vehicle
heading, and location of privileged vertices. Only the heading at
each GPS waypoint and every fifth privileged vertex are shown for
clarity. The vehicle heading rotates in the shortest direction between
waypoints. Note that at the fifth waypoint (privileged vertices 70
to 75 in this example) the altitude changes on-the-spot from 10m
to 6m (and vice-versa during return).

long-range radio communication link is used to send high-
level mission commands to the onboard computer. These
high-level mission commands include manually triggering
state transitions and sending GPS waypoint missions to the
flight controller. The gimbal connects to the flight controller
to accept control commands and feedback angular positions.
The M600’s flight controller communicates with the onboard
computer via Robot Operating System (ROS).

A. Gimballed Camera Robustness

The performance of a static and gimballed camera on
a simple 315m path at 15m altitude learned at 3m/s and
returned at 9m/s is shown in Fig. 5. One interesting outcome
is a higher maximum number of inliers for the static camera
system. This can be attributed to inaccuracies and latency
in the gimbal angular positions indicating more careful
calibration is required. However, the inconsistency of a static
camera due to large perspective shifts is clearly shown by
the variance in the inliers.

On more dynamic paths, the large perspective shifts
undergone by a static camera result in localization failures.
Fig. 6 shows a zigzag pattern flight path highlighted with
the average number of localization inliers at each position
over two runs. The path is 115m in length with 130 degree
rotations in the vehicle heading between waypoints. It was
flown at a height of 7m above ground with the camera
pitched down 80 degrees to promote the adverse effects of
viewpoint orientation error. Even for 3m/s flights, a static

Figure 5: For a simple path with few dynamic motions, a static
camera localizes even when returning at a faster speed (from
3m/s outbound to 9m/s target inbound speed). However, a gimbal
reduces the variance in localization inliers by maintaining similar
perspective.

Figure 6: For highly dynamic paths, the static camera system
has trouble localizing due to large viewpoint changes. The active
gimballed camera system minimizes perspective error during the
dynamic motions to improve localization performance with a 37%
increase in the mean number of inliers.

camera frequently fails to localize since small perspective
errors result in a large reduction in image overlap on
this path. The gimbal enables successful localizations by
attenuating viewpoint orientation errors. The gimbal with
active camera pointing increases the mean number of inliers
by 37% over a static camera.

B. Handling Velocity Discrepancies

In this experiment, we evaluate the localization per-
formance of passive and active gimballed strategies with
increasing return velocities from 3m/s to 9m/s with all
learn flights conducted at 3m/s. Fig. 4 shows the altitude-
varying 170m flight path used for these tests. The CDF of
the localization uncertainties is shown in Fig. 7 while Fig. 8
summarizes the localization inliers for each strategy over two
runs. Active pointing strategies are able to handle increasing
speed discrepancies as they show only a small drop in
inliers with no failures. Pointing strategies with vision-in-
the-loop (i.e., orientation matching and centroid pointing)
result in the highest number of inliers and the greatest
localization confidence as expected. Off-the-shelf passive
stabilization actually causes localization failures when there
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Figure 7: The CDF of the localization pose uncertainties show that active pointing strategies result in more confident localization estimates
with centroid pointing showing slightly more confidence than orientation matching. The localization uncertainty is computed as the log
determinant of the 6DoF spatial pose uncertainty matrix for each localization update (i.e., Σl,t).

are speed discrepancies between flights which demonstrates
the necessity of active pointing to add visual localization
robustness on UAVs.

Camera perspective errors that result from different vehi-
cle orientations at matching positions along the learn and
return paths can be reduced using active pointing strategies.
Fig. 9 shows the root mean square (RMS) vehicle and
camera orientation errors grouped as a pair for each pointing
strategy and across different return velocities. Each pair of
orientation errors is obtained using the vehicle and camera
spatial localization transforms (e.g., Tgd and T̃gd in Fig.

Figure 8: Active gimbal control prevents localization failures
despite increasing speed discrepancies between learn and return
flights. Incorporating visual information in the pointing strategy
results in better localization performance.

3). As the velocity discrepancy between learn and return
flight increases, the vehicle orientation error also increases
as expected. Passive stabilization actually increases the
camera viewpoint orientation error due to lag in following
the vehicle heading. Since the vehicle heading rotates in
opposite directions between learn and return, the lag results
in an increase in the camera orientation error on the yaw
axis. This effect is more pronounced with larger velocity
discrepancies resulting in localization failures. Active sta-
bilization removes the yaw lag but does not account for
vehicle yaw error between learn and return runs as it only
follows the current vehicle heading. However, the act of
stabilizing the roll and pitch to reduces the camera error.
Both active strategies with vision-in-the-loop provide the
greatest reduction in perspective error. Centroid pointing
does not directly attempt to minimize the perspective error
but provides an improvement by pointing at previously
observed landmarks. Orientation matching clearly performs
its duty by minimizing the perspective error the most. It
provides a 65%, 58%, and 54% reduction in the RMS
orientation error from the vehicle to camera frame for 3m/s,
6m/s, and 9m/s return flights, respectively.
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Figure 9: A gimballed camera with active pointing strategies
reduces the camera perspective error that result from vehicle
orientation errors between learn and return flights. The simple
act of adding a gimbal is not enough as we see an off-the-
shelf passive stabilization strategy actually increases the camera
perspective error. Centroid pointing does not attempt to minimize
viewpoint orientation error but it is compared for completeness.



C. Handling Cross-track Errors
In this experiment, large lateral and vertical cross-track

errors are added to the return path to evaluate the localization
performance of orientation matching and centroid pointing
(see Fig. 10). Intuitively, a centroid pointing strategy is more
suitable for situations with large path-following errors since
it attempts to compensate for the translational errors.

On segment 1, the vehicle descends from 10m to 6m
altitude with lateral offsets up to 6.5m. Since the scene
structure is spatially close to the camera along this seg-
ment, the 6.5m lateral offset creates perspective errors that
orientation viewpoint manipulation alone cannot compen-
sate. Landmarks simply fall out of view when matching
orientations. With centroid pointing, the angle at which
they are viewed dramatically changes resulting in difficulty
with SURF feature matching. Along segment 2, the ve-
hicle undergoes a pure vertical offset: climbing from 6m
to 10m altitude. Segment 3 contains growing lateral and
vertical offsets finishing with a −5m altitude offset when
it rejoins the original path. Segment 4 contains an 8m
lateral offset at 25m altitude while segment 5 contains pure
lateral offsets. Along segments 4 and 5, the scene structure
is far enough away from the camera that both strategies
can easily compensate for the large translational offsets.
Along segment 2 and parts of 3, the translational offsets are
large enough to reduce landmark visibility when orientation
matching but small enough to be compensated by centroid
pointing. Fig. 11 shows an example of the viewpoints of
both strategies during an altitude offset along segment 2.
Landmarks in the bottom half of the map image are not
present in the orientation matching view causing localization
to be difficult. The same landmarks are visible in the centroid
pointing view.

Although centroid pointing shows a slight performance
benefit along certain segments of the path, it is important
to note that the overall performance of both strategies
is comparable. We aim to explore dynamic selection of
pointing strategies during flight in future work. Orientation
matching can be used when closely following the path while
centroid pointing can be employed when the path offset is
large enough to cause a substantial number of landmarks to
fall out of the field of view.

V. CONCLUSIONS
In this paper, we demonstrated improved visual localiza-

tion performance using an active gimbal-stabilized camera
within a VT&R framework on multirotor UAVs. We experi-
mentally showed the need for a gimballed camera over a tra-
ditional statically-mounted camera. Multiple gimbal pointing
strategies were evaulated including off-the-shelf passive sta-
bilization, active stabilization, and two active strategies that
use visual information to minimize the camera viewpoint
orientation error (orientation matching) and point at the cen-
troid of previously observed landmarks (centroid pointing).

Figure 10: While the overall performance is similar, centroid
pointing shows an advantage along segment 2 and parts of 3. The
black line shows the outbound learn path while the inlier highlights
are centered on the return path.

(a) Map and return images for an orientation matching run

(b) Map and return images for a centroid pointing run

Figure 11: Comparison of orientation matching and centroid point-
ing return views (right) on segment 2. The spatially nearest images
captured during the learn runs (left) are used for localization. The
landmarks along the bottom of the image, such as the outlined
shrubbery, are missing from the orientation matching view due to
the altitude offset. Centroid pointing keeps the landmarks in the
field of view.

We showed that a passively stabilized gimbal can actually
lead to localization failures. Finally, we demonstrated the
ability of orientation matching and centroid pointing to
enable visual localization despite velocity discrepancies and
large path-following errors between the outbound and return
flights.
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