
Learning-based Nonlinear Model Predictive Control to
Improve Vision-based Mobile Robot Path Tracking

• •

Chris J. Ostafew, Angela P. Schoellig, and Timothy D. Barfoot
Institute for Aerospace Studies, University of Toronto, Toronto, Ontario, Canada
e-mail: chris.ostafew@mail.utoronto.ca, schoellig@utias.utoronto.ca, tim.barfoot@utoronto.ca
Jack Collier
Defence Research and Development Canada, Suffield, Alberta, Canada
e-mail: jack.collier@drdc-rddc.gc.ca

Received 6 July 2014; accepted 19 February 2015

This paper presents a Learning-based Nonlinear Model Predictive Control (LB-NMPC) algorithm to achieve
high-performance path tracking in challenging off-road terrain through learning. The LB-NMPC algorithm
uses a simple a priori vehicle model and a learned disturbance model. Disturbances are modeled as a Gaussian
process (GP) as a function of system state, input, and other relevant variables. The GP is updated based on
experience collected during previous trials. Localization for the controller is provided by an onboard, vision-
based mapping and navigation system enabling operation in large-scale, GPS-denied environments. The paper
presents experimental results including over 3 km of travel by three significantly different robot platforms
with masses ranging from 50 to 600 kg and at speeds ranging from 0.35 to 1.2 m/s (associated video at
http://tiny.cc/RoverLearnsDisturbances). Planned speeds are generated by a novel experience-based speed
scheduler that balances overall travel time, path-tracking errors, and localization reliability. The results show
that the controller can start from a generic a priori vehicle model and subsequently learn to reduce vehicle- and
trajectory-specific path-tracking errors based on experience. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

It is well recognized that autonomous guidance, navigation,
and control of mobile robots in unstructured, off-road ter-
rain is one of the highest goals in field robotics. For example,
robots capable of autonomous off-road operation would be
useful in law enforcement, disaster search and rescue, mili-
tary, forestry, and mining applications. However, operation
in off-road terrain requires advanced control techniques to
mitigate the effects of unmodeled surface materials (e.g.,
snow, sand, grass), terrain topography (e.g., side-slopes, in-
clines), and complex robot dynamics (Figure 1). Finding
representative a priori models for such effects is challeng-
ing since (i) the terrain is often not known ahead of time,
(ii) robot-terrain interaction models often do not exist, and
(iii) even if such models did exist, finding model param-
eters is cumbersome. In the past decade, there has been
significant work on learning-based controllers for robotics
(Nguyen-Tuong & Peters, 2011; Schaal & Atkeson, 2010).
Learning-based algorithms alleviate the need for signifi-
cant engineering work to identify and model all distur-
bances that a model-based controller may be required to
mitigate.

In paper, we investigate a Learning-based Nonlin-
ear Model Predictive Control (LB-NMPC) algorithm for a

path-repeating mobile robot operating in challenging out-
door terrain. The algorithm uses a fixed, simple robot model
and a learned, nonparametric disturbance model. The goal
is to reduce path-tracking errors using real-world experi-
ence and a disturbance model instead of preprogramming
accurate analytical models that are generally difficult to
derive. Disturbances represent measured discrepancies be-
tween the a priori model and the observed system behavior.
They are modeled as a Gaussian process (GP) based on pre-
vious experience as a function of state, input, and other rel-
evant variables. Modeling the disturbances as a GP enables
the algorithm to learn complex nonlinear model discrepan-
cies and generalize to novel situations.

We also investigate a novel experience-based speed
scheduler. During the first trial, when the controller is based
solely on the a priori model, the speed is set such that
path tracking is achieved with tolerable errors and reliable
vision-based localization. After this first pass, the sched-
uler adjusts the planned speed based on previous expe-
rience (i.e., tracking errors and localization quality). The
new speed schedule achieves faster overall path comple-
tion while guaranteeing low path-tracking errors and reli-
able localization. In this system, the LB-NMPC algorithm is
also shown to interpolate and extrapolate from experience.
Preliminary results for the scheduler operating with a fixed

Journal of Field Robotics 33(1), 133–152 (2016) C© 2015 Wiley Periodicals, Inc.
View this article online at wileyonlinelibrary.com • DOI: 10.1002/rob.21587

http://tiny.cc/RoverLearnsDisturbances

134 • Journal of Field Robotics—2016

Figure 1. Robots used to demonstrate the effectiveness of the learning controller. Despite significant differences in robot mass,
wheel base, kinematics, and actuator designs, the algorithm uses the same nominal model for all three robots and learns disturbances
over trials in order to accurately track desired paths.

feedback controller have been published in Ostafew, Collier,
Schoellig, & Barfoot (2014a).

Localization for the controller is provided by an on-
board, Visual Teach & Repeat (VT&R) mapping and nav-
igation algorithm enabling operation in large-scale, GPS-
denied environments (Furgale and Barfoot, 2010; Stenning,
McManus, & Barfoot, 2013). In the first operational phase,
namely the teach phase, the robot is piloted along the de-
sired path. Localization in this phase is obtained relative
to the robot’s starting position by Visual Odometry (VO),
computing pose changes over sequential images based on
extracted feature maps (three-dimensional positions and
associated descriptors). Then at discrete points along the
desired path, the algorithm stores the currently viewed fea-
ture map. During the repeat phase, the algorithm relocalizes
against stored feature maps given the current robot view,
thus generating feedback for a path-tracking controller
(Figure 2). As long as a sufficient number of feature matches
are made between the live robot view and the stored fea-
ture maps, the system generates consistent localization over
trials and is able to support a learning control algorithm.

The key contributions of this paper are as follows: (i)
a path-tracking, LB-NMPC algorithm based on a simple
a priori process model and learned disturbance model; (ii) an
experience-based speed scheduler balancing overall travel
time, path-tracking errors, and vision-based localization re-
liability; and (iii) extensive outdoor experiments on three
different robot platforms ranging from 50 to 600 kg with
both skid and Ackermann steering (Figure 1). This paper

is an extension of previous work (Ostafew, Schoellig, &
Barfoot, 2014b). Significant additions include a detailed de-
scription and discussion of the LB-NMPC algorithm, an il-
lustrative example, and an additional experiment showing
successful learning on an Ackermann-steered robot; all pre-
vious test robots were skid-steered. The structure of this
paper is as follows. Section 2 relates our work to other re-
search in this field. Sections 3 and 4 describe the proposed
LB-NMPC algorithm and implementation details for our
experiments, respectively. Section 3.4 presents simulation
results, giving an intuition of the benefits of the LB-NMPC
algorithm, while Section 5 presents experimental results,
demonstrating the successful operation of the algorithm in
practice. Finally, Sections 6 and 7 present a discussion and
conclusion.

2. RELATED WORK

In this section, we present related work aimed at achieving
high-performance path-tracking in spite of unknown dis-
turbances. First we provide a brief review of approaches
involving model-based control with (in some cases) online
parameter identification. Then we provide a background on
learning control approaches.

2.1. Model-based and Adaptive Controllers

In our testing, the two largest sources of disturbances were
the unmodeled dynamics of the robot (including actuators)

Journal of Field Robotics DOI 10.1002/rob

Ostafew et al.: Learning-based Nonlinear Model Predictive Control to Improve Vision-based Mobile Robot Path Tracking • 135

Figure 2. Visual representations of relocalization by our Visual Teach & Repeat (VT&R) navigation algorithm with high (left
image) and low (right image) path-tracking errors. Each feature track represents the translation between a feature identified during
the VT&R teach phase and the current repeat phase. Reducing the path-tracking errors leads to improved reliability of our VT&R
algorithm since it is sensitive to perspective changes.

and the wheel-terrain interactions. One method for miti-
gating the effects of unknown wheel-terrain interaction is
to design a robot with all-wheel drive and steering such
that lateral and angular vehicle slip can be compensated di-
rectly. For example, Ishigami, Nagatani, and Yoshida (2009)
estimate the vehicle slip angle and path-tracking errors
using visual and wheel odometry. Then, using two sepa-
rate proportional feedback controllers, they command the
front wheels so as to reduce path-tracking errors, and the
rear wheels so as to compensate for the vehicle slip angle.
Similarly, Helmick et al. (2006), Helmick, Angelova, and
Matthies (2009), and Angelova, Matthies, Helmick, and Per-
ona (2007) estimate lateral and angular vehicle slip rates us-
ing visual and wheel odometry. Then they use proportional
feedback control to generate desired lateral and angular ve-
locities to compensate for vehicle slip rates. Finally, they use
the robot’s inverse dynamics to generate desired individual
wheel speeds and orientations. However, these approaches
can only react to path-tracking errors and vehicle slip. On
the other hand, our approach is based on Model Predic-
tive Control (MPC), including a learned model representing
wheel-terrain interactions, robot dynamics, and other sys-
tematic disturbances, and it can therefore act in anticipation
of tracking errors.

Cariou, Lenain, Thuilot, and Berducat (2009) and Guil-
let, Lenain, and Thuilot (2013) propose online adaptive con-
trollers mitigating wheel slip and robot dynamics. They
demonstrate feedback-linearized controllers based on kine-
matic models extended with wheel slip angles. The slip
angles are estimated online using observers. They address
robot dynamics using a predictive controller including fu-
ture path curvatures and offline tuned values representing
actuator delay and robot inertias. Unlike these controllers,
which partially identify and model disturbances a priori, our
learning approach treats disturbances, including both wheel

slip and robot dynamics, as a GP, enabling the representa-
tion of complex disturbance characteristics not known prior
to operation. Furthermore, since disturbances are learned
and stored in memory, our algorithm can anticipate distur-
bances and act accordingly.

MPC is a control framework that uses a process model
directly. The current control action is obtained by solving,
at each sampling instant, a finite-horizon optimal control
problem using the current state of the plant as the ini-
tial state (Rawlings and Mayne, 2009). Kühne, Lages, and
Silva (2005), Klančar and Škrjanc (2007), and Xie and Fierro
(2008) present MPC-based mobile robot controllers based
on kinematic models and show results for robots travel-
ing on smooth, flat surfaces. Howard, Green, and Kelly
(2009) demonstrate MPC on a large-scale, outdoor robot
navigating intricate paths. Finally, Peters and Iagnemma
(2008) demonstrate MPC for a mobile robot where the pro-
cess model includes effects such as tire deformation, wheel-
terrain interaction, and suspension compliance. However,
in each of these examples, the controllers are based on a
priori models and, in some cases, rely on parameters whose
determination in practice is challenging. For example, Iag-
nemma, Kang, Shibly, and Dubowsky (2004) demonstrate
an online method of estimating terramechanics parame-
ters where the rover speed is restricted to 10 cm/s in or-
der to assume a quasi-static analysis. At higher speeds,
Seegmiller, Rogers-Marcovitz, Miller, and Kelly (2013) de-
termine vehicle model parameters, including wheel slip,
by integrated prediction error minimization. In this paper,
our NMPC algorithm is based on a fixed nominal model
and a learned, nonparametric disturbance model. This re-
duces the need for accurate a priori process models and
parameter-specific observers while maintaining the ben-
efits of MPC such as predictive behavior and constraint
handling.

Journal of Field Robotics DOI 10.1002/rob

136 • Journal of Field Robotics—2016

2.2. Learning Controllers

Unlike controllers based on fixed models, controllers us-
ing learned models gather data over time, incrementally
constructing accurate approximations of the true system
model. In this paper, we model disturbances as a GP based
on input-output data from previous trials. This approach
enables both model flexibility and consistent uncertainty
estimates (Rasmussen, 2006). For example, Kocijan, Murray-
Smith, Rasmussen, and Girard (2004) combine a GP model
and MPC for the control of a simulated pH neutralization
process. They represent the full dynamics of the system by
a GP model trained on 400 observations of the chemical
system. MPC is applied to control the system based on the
offline-identified GP model (i.e., no online learning). While
their work was restricted to offline simulation, our algo-
rithm is used for real-time path-tracking and learns from
trial to trial. Sparse GP approximations are one approach
to enable fast, online GP evaluation, and they do so by
discarding some training points and keeping only “induc-
ing inputs,” also known as “support points” (Quiñonero-
Candela and Rasmussen, 2005). An alternative are local
GP (LGP) methods, as implemented in this work, which
enable online operation by dividing the GP input space
into smaller subspaces and generating an LGP for each
subspace (Rasmussen and Ghahramani, 2002; Snelson and
Ghahramani, 2007). For example, Nguyen-Tuong, Peters,
and Seeger (2009) and Meier, Hennig, and Schaal (2014) fo-
cus on achieving online operation and use LGP models to
approximate the inverse dynamics of seven degrees of free-
dom (7-DoF) manipulator arms. Unlike these two examples,
where many LGP models are generated for operation, we
rapidly compute a single LGP model online based on a slid-
ing window of learned data and use NMPC to enable pre-
dictive control. Finally, robustness of learning controllers is
a large unanswered question. Aswani, Gonzalez, Shankar
Sastry, and Tomlin (2013) focus on developing a safe and ro-
bust LB-MPC approach using Tube MPC (Langson, Chrys-
sochoos, Raković, and Mayne, 2004). The approach pro-
duces optimal inputs based on the learned system dynam-
ics. However, they ensure safety and robustness by checking
whether these inputs keep the nominal model stable when
it is subject to uncertainty. In this paper, we do not explic-
itly consider the robustness of the controller but focus on
the practical application of LB-NMPC to mobile robots. This
requires continuous operation from the first trial and repre-
sentation of complex disturbances by the learned model.

Additionally, Iterative Learning Control (ILC) and Re-
inforcement Learning (RL) are two other common ap-
proaches to learning from experience. Schoellig, Mueller,
and D’Andrea (2012) and Ostafew, Schoellig, and Barfoot
(2013) present ILC algorithms for quadrotors and mobile
robots, respectively, that learn a feedforward control sig-
nal over sequential trials. Unlike ILC, our LB-NMPC al-
gorithm learns a flexible, general disturbance model that

GP-based
Disturbance Model

Nonlinear Model
Predictive Control

Mobile Robot

zd,k
zkuk

a g(a)

Figure 3. The LB-NMPC algorithm is composed of two parts:
1) the path-tracking NMPC algorithm that includes a nominal
process model, and 2) the GP-based disturbance model. During
the first trial, the algorithm relies solely on the nominal process
model to guide the vehicle along the desired path, zd . In subse-
quent trials, the NMPC algorithm uses the disturbance model
as a correction to the nominal model at states, a, to be defined
in Section 3.1. Dashed lines indicate that the signals zk and uk

update the model.

allows interpolation and extrapolation of learned experi-
ence, and thus covers multiple paths and speed schedules
simultaneously. RL, on the other hand, learns a control pol-
icy that maximizes a cumulative expected reward. For ex-
ample, Abbeel, Quigley, and Ng (2006) and Ko, Klein, Fox,
and Haehnel (2007) present RL algorithms for the control
of a mobile robot and an autonomous blimp, respectively.
However, unlike our algorithm, which provides continu-
ous operation from the first trial, RL is known to require
a prohibitively large number of training examples before
operation, an issue for RL that is the focus of much current
work (Deisenroth, Fox, and Rasmussen, 2014).

3. MATHEMATICAL FORMULATION

3.1. Nonlinear Model Predictive Control

At a given sample time, the NMPC algorithm finds a se-
quence of control inputs that optimizes the plant behavior
over a prediction horizon based on the current state. The
first input in the optimal sequence is then applied to the
system, resulting in a new system state. The entire process is
repeated at the next sample time for the new system state. In
traditional NMPC implementations (Rawlings and Mayne,
2009), the process model is specified a priori and remains un-
changed during operation. In this paper, we augment the
process model with a disturbance model generated from
experience in order to compensate for effects not captured
by the fixed process model, such as environmental distur-
bances and unknown dynamics (Figure 3).

3.1.1. Full-state Feedback Control

Consider the following nonlinear, state-space system:

zk+1 = ftrue(zk, uk), (1)

Journal of Field Robotics DOI 10.1002/rob

Ostafew et al.: Learning-based Nonlinear Model Predictive Control to Improve Vision-based Mobile Robot Path Tracking • 137

with an observable system state, zk ∈ R
n, and control input,

uk ∈ R
m, both at time k. In this work, the true system is not

known exactly and is represented by the sum of an a priori
model and an experience-based, learned model,

zk+1 =
a priori model︷ ︸︸ ︷

f(zk, uk) +
learned disturbance model︷ ︸︸ ︷

g(zk, uk). (2)

The models f(·) and g(·) are nonlinear process models: f(·)
is a known nominal process model representing our knowl-
edge of ftrue(·), while g(·) is an (initially unknown) distur-
bance model representing discrepancies between the nom-
inal model and the actual system behavior. The system is
further assumed to be Markovian, thus the processes f(·)
and g(·) involve only states from the current time.

As previously mentioned, the objective of the NMPC
algorithm is to find a set of controls that optimizes the plant
behavior over a given prediction horizon. Toward that end,
we define the cost function to be minimized over the next
K time-steps to be

J (u) = (zd − z)T Q (zd − z) + uT R u, (3)

where Q ∈ R
Kn×Kn is positive semidefinite, R ∈ R

Km×Km

is positive-definite, u is a sequence of control inputs
u = (uk, . . . , uk+K−1), zd is a sequence of desired states
zd = (zd,k+1, . . . , zd,k+K), z is a sequence of predicted states
z = (zk+1, . . . , zk+K), obtained from Eq. (2) when applying
u, and K is a given prediction horizon length. Weighting
on the state begins at time k + 1 since the state at time
k can no longer be affected by the control input. Also, by
requiring R to be positive-definite, inputs are guaranteed
to be finite. Further restrictions on control inputs or states
are commonly imposed using constraints when solving for
the optimal control input (Diehl, Ferreau, and Haverbeke,
2009).

Since both our process model and our disturbance
model are nonlinear, the minimum of J (u) must be found
iteratively using a nonlinear optimization technique. In this
paper, we use unconstrained Gauss-Newton minimization
(Nocedal and Wright, 1999) to solve the nonlinear least-
squares problem. We begin by linearizing around an ini-
tial guess for the optimal control input sequence, ū, with
u = ū + δu. A good initial guess for ū is the sequence of
optimal inputs calculated in the previous time-step. For the
first time-step, we use ū = 0. With z̄ representing a sequence
of states obtained from Eq. (2) when applying ū and with
z = z̄ + δz, and z̄k = zk , we find

z̄k+b+1 = f(z̄k+b, ūk+b) + g(z̄k+b, ūk+b) (4)

and

δzk+b+1 ≈ Hz,k+b δzk+b + Hu,k+b δuk+b, (5)

where

Hz,k+b = ∂f(·)
∂z

∣∣∣∣∣
z̄k+b,ūk+b

+ ∂g(·)
∂z

∣∣∣∣∣
z̄k+b,ūk+b

,

Hu,k+b = ∂f(·)
∂u

∣∣∣∣∣
z̄k+b,ūk+b

+ ∂g(·)
∂u

∣∣∣∣∣
z̄k+b,ūk+b

(6)

for b ∈ {0, . . . , K − 1}. In the case of f(·), we have an an-
alytical model, and in the case of g(·), the derivatives are
tractable so long as a continuously differentiable kernel
function is chosen for use in the Gaussian process model
(see Section 3.2). As zk is the current state as measured,
δzk = 0. Given Eqs. (5) and (6), we have

δz = Hzδz + Huδu (7)

= (1 − Hz)−1Hu δu (8)

= H′δu, (9)

where 1 represents an identity matrix, Hu = diag(Hu,k, . . .,
Hu,k+K−1), and

Hz =
[

0 0
�z 0

]
, �z = diag(Hz,k+1, . . . , Hz,k+K−1).

(10)

Substituting z = z̄ + δz, Eq. (9), and u = ū + δu into Eq. (3)
results in J (·) being quadratic in δu,

J (u) = (zd − z̄ − δz)T Q (zd − z̄ − δz) + (ū + δu)T R(ū + δu)

(11)

≈ (zd − z̄ − H′δu)T Q (zd − z̄ − H′δu)

+ (ū + δu)T R(ū + δu).

(12)

We can find the value of δu that minimizes J (·) by solving

∂J (u)
∂δu

= 0 (13)

for δu, and compute the control input about which (3) is
linearized in the next iteration,

ū ← ū + δu. (14)

After iterating to convergence, we apply the first element of
the resulting optimal control input sequence for one time-
step, and start all over at the next time-step.

Journal of Field Robotics DOI 10.1002/rob

138 • Journal of Field Robotics—2016

3.1.2. Partial-state Feedback Control

Consider the following system, covering most robotic sys-
tems, where the dynamics cascade into the kinematics:

kinematics: xk+1 = fx,true(xk, vk), (15)

dynamics: vk+1 = fv,true(vk, uk), (16)

with the system state, zk = (xk, vk), representing pose, xk ∈
R

nx , and velocity, vk ∈ R
nv , separately, and control input,

uk , all at time k. By substituting vk = fv,true(vk−1, uk−1) into
Eq. (15), we can write

xk+1 = f
′
true(xk, vk−1, uk−1). (17)

Now, if we assume that our a priori model represents the
robot kinematics with vk = uk (i.e., the a priori model as-
sumes robot dynamics are negligible), and that the true
process, f

′
true(·), can be represented by the sum of our a priori

and learned models, we find

xk+1 =
a priori model︷ ︸︸ ︷

f(xk, uk) +
learned model︷ ︸︸ ︷

g(xk, vk−1, uk, uk−1︸ ︷︷ ︸
ak

), (18)

with disturbance query state, ak ∈ R
p ,

ak = (xk, vk−1, uk, uk−1). (19)

In other words, in order to capture the dynamics of the
system, the disturbance query state, ak , is now required
to include historic states. We can further define the corre-
sponding cost function to be

J (u) = (xd − x)T Qx (xd − x) + uT R u, (20)

where Qx ∈ R
Knx×Knx is positive-semidefinite, R and u are

as in Eq. (3), xd is a sequence of desired states, xd =
(xd,k+1, . . . , xd,k+K), x is a sequence of predicted states,
x = (xk+1, . . . , xk+K), and K is the given prediction horizon
length. The state, xk , and learned model, g(·), are now of
reduced dimension, nx ≤ n, while still capturing both un-
known disturbances and unmodeled dynamics. This ap-
proach enables a user to provide a simple a priori model
with few parameters, if any. Further, the derivation sug-
gests that the approach is applicable to processes with even
higher-order dynamics by continuing to add historic states
to the disturbance dependency.

3.2. Gaussian Process Disturbance Model

We model the disturbance, g(·), as a GP, which is a func-
tion of a disturbance dependency, a. The model depends on
observations of the disturbances collected during previous
trials, representing attempts to achieve a control objective,
such as tracking a path from start to finish. At time k, we
use the estimated poses, x̂k and x̂k−1, from the VT&R system,
and the control input, uk−1, to isolate Eq. (18) for ĝ(ak−1),

ĝ(ak−1) = x̂k − f(x̂k−1, uk−1). (21)

We collect observations for all sample times in a trial
and organize the data from trial j into a set of data
pairs,D(j) = [{a0, ĝ(a0)}, . . . , {ak, ĝ(ak)}, . . . , {aNj−1, ĝ(aNj−1)}],
where N (j) is the number of time-steps it took to travel
the length of the path during trial j , and ak is as defined
in Eq. (19). After j trials, we have multiple datasets,
D(1), . . . ,D(j), that we combine into a single database, D,
with N = N (1) + · · · + N (j) observations. We also drop the
time-step index, k, on each data pair in D, so that when
referring to aD,i or ĝD,i , we mean the ith pair of data in
the superset D. Note that there is no requirement that
N (j) = N (j−1) as the system simply collects observations as
they occur for the length of time that it takes to complete
a trial. Moreover, all experiences are treated equally as
observations of the underlying unmodeled disturbance. In
fact, the system collects experience data whenever it moves
while repeating the desired path. As a result, the system
does not require identical initial conditions, termination
conditions, or speed schedules.

In this work, we train a separate GP for each dimen-
sion in g(·) ∈ R

n to model disturbances as the robot travels
along a path. This approach makes the assumption that dis-
turbances are uncorrelated. For simplicity of discussion, we
will assume for now that n = 1 and denote ĝD,i by ĝD,i . The
learned model assumes a measured disturbance originates
from a Gaussian process model,

ĝ(aD,i) ∼ GP(0, k(aD,i , aD,i)), (22)

with zero mean and kernel function, k(aD,i , aD,i), to be
defined. We assume that each disturbance measurement
is corrupted by zero-mean additive noise with vari-
ance, σ 2

n , so that ĝD,i = gD,i + ε, ε ∼ N (0, σ 2
n). Then a mod-

eled disturbance, g(ak), and the N observed disturbances,
ĝ = (ĝD,1, . . . , ĝD,N), are jointly Gaussian,[

ĝ
g(ak)

]
∼ N

(
0,

[
K k(ak)T

k(ak) k(ak, ak)

])
, (23)

where K ∈ R
N×N with (K)i,j = k(aD,i , aD,j), and k(ak) =

[k(ak, aD,1), k(ak, aD,2), . . . , k(ak, aD,N)]. In our case, we use
the Squared-Exponential (SE) kernel function (Rasmussen,
2006),

k(ai , aj) = σ 2
f exp

(
− 1

2
(ai − aj)T M−2(ai − aj)

)
+σ 2

n δij ,

(24)

where δij is the Kronecker delta, which is 1 if and only if
i = j and 0 otherwise, and the constants M, σf , and σn are
hyperparameters. The SE kernel function is an example of
a radial basis function (Rasmussen, 2006) and is commonly
used to represent continuous functions based on dense data.
Further, the SE kernel is continuously and analytically dif-
ferentiable, enabling the rapid computation of derivatives
for the Gauss-Newton optimization algorithm. In our im-
plementation with ak ∈ R

p , the constant M is a diagonal

Journal of Field Robotics DOI 10.1002/rob

Ostafew et al.: Learning-based Nonlinear Model Predictive Control to Improve Vision-based Mobile Robot Path Tracking • 139

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

z
(m

)
LB−MPC anticipates both changes in the desired state
and disturbances affecting its known process model

Desired
Feedback Control
MPC
LB−MPC (Trial 3)

0 1 2 3 4 5 6
−3

−2

−1

0

1

2

3

E
rr

or
 (

m
)

Feedback Control MPC LB−MPC (Trial 3)

0 1 2 3 4 5 6

0

1

2

3

4

5

d k (
m

/s
)

Time (k)

Disturbance

Figure 4. Compared to both simple feedback control (red) and MPC (black), LB-NMPC (blue) is able to anticipate and reduce
errors caused by changes in the desired state and unmodeled disturbances.

matrix, M = diag(m), m ∈ R
p , representing the relevance

of each component in ak , while the constants, σ 2
f and σ 2

n ,
represent the process variation and measurement noise, re-
spectively. Finally, we have that the prediction, g(ak), of
the disturbance at an arbitrary state, ak , is also Gaussian
distributed,

g(ak)|ĝ ∼ N
(

k(ak)K−1ĝ , k(ak, ak) − k(ak)K−1k(ak)T
)

.

(25)

In this work, we only make use of the predicted mean
value of disturbances. However, in future work, the pre-
dicted variance could be used as an indication of the uncer-
tainty in the learned model and used appropriately in de-
ciding the resulting control command. Finally, we include
further detail on the storage and retrieval of observations
for online operation in Section 4.3.

3.3. Gaussian Process Hyperparameter Selection

Having defined the NMPC algorithm and disturbance
model, g(ak), it remains to define the source of the
hyperparameters, M, σ 2

f , and σ 2
n . Solving for optimal hy-

perparameters is not currently a real-time process in our

experiments. As such, we assume that a suitable set of
hyperparameters has been determined prior to each trial
based on previous experience (i.e., from previous trials).
For the first trial, when the robot has no experience, the pre-
dicted disturbance is zero. Given a set of experiences, we
find the optimal hyperparameters offline by maximizing
the log marginal likelihood of collected experiences using a
gradient ascent algorithm (Rasmussen, 2006). To avoid local
maxima, the algorithm is repeated several times, initialized
with different initial values, and the set of hyperparameters
resulting in the greatest likelihood is selected.

3.4. Illustrative Example

In this section, we highlight the benefits of LB-NMPC and
present an illustrative example comparing (i) fixed feed-
back control, (ii) nonlearning NMPC, and (iii) LB-NMPC.
Consider the following process model:

zk+1 = α zk + �t β uk + �t dk, (26)

with system state, zk ∈ R, control input, uk ∈ R, and time-
dependent disturbance, dk ∈ R, shown in Figure 4. Further,
α, β ∈ R are unknown constants. In simulation, they are
0.99 and 0.5, respectively. The goal is to track a sequence
of desired states, zd,k , as shown in green in Figure 4, which

Journal of Field Robotics DOI 10.1002/rob

140 • Journal of Field Robotics—2016

ωk
θk

vk

xd,i−1

xd,i

xd,i+1

xk

yk

Figure 5. Definition of the robot velocities, vk and ωk , and
three pose variables, xk , yk , and θk . At each time-step, the VT&R
algorithm provides an estimate of the robot position relative to
the nearest desired pose by Euclidean distance.

is known to the example controllers prior to starting. The
feedback controller uses a simple feedback law,

ufb,k = kfb (zd,k − zk). (27)

Both the NMPC and LB-NMPC controllers assume a
nominal process model,

zk+1 = zk + �t uk, (28)

a prediction horizon, K = 10, and a cost function (3), with
Q = 10×1 and R = 0.01×1, where 1 is the identity matrix.
The LB-NMPC algorithm also includes a learned distur-
bance model, as described in Section 3.1, such that the com-
plete system model used by the LB-NMPC algorithm is

zk+1 = zk + �t uk + g(zk, uk, k). (29)

In this simple example, the disturbances are a function of
time (26) and hence the learned disturbance is a function of
time, k. However, in practice, we assume disturbances are
time-invariant (18).

As expected, the feedback controller is incapable of an-
ticipating errors caused by either changes in desired state,
zd,k , or disturbances, dk (Figure 4). On the other hand, the
MPC controller (without a learned model) enables some
amount of predictive control to reduce tracking errors due
to changes in the desired state. However, tracking errors are
not canceled completely because the MPC algorithm does
not have the correct process model. Finally, the LB-NMPC
algorithm exploits its previous experience to predict and
compensate for both changes in the desired state and un-
known disturbances not anticipated by the a priori process
model.

4. IMPLEMENTATION

4.1. Robot Model

In this paper, robots are modeled (Figure 5) as
unicycle-type vehicles with “position” state variables (18),
xk = (xk, yk, θk). At every time-step, the VT&R localization

algorithm provides the position of the robot, xk , relative to
the nearest desired pose by Euclidean distance (Figure 6).
The robots have two control inputs, their linear and angular
velocities, uk = (vcmd,k, ωcmd,k). The commanded linear ve-
locity, vcmd,k , is constrained to the scheduled speed for the
j th trial at the nearest path vertex, vcmd,k = v

(j)
sched,i , leaving

only the angular velocity, ωcmd,k , for the NMPC algorithm
to optimize considering (20). Prior to each trial, scheduled
path speeds are optimized by the experience-based speed
scheduler (Section 4.2).

When the time between control signal updates is de-
fined as �t , the resulting nominal process model employed
by the NMPC algorithm is

f(xk, uk) = xk+

⎡
⎢⎢⎣

�t cos θk 0
�t sin θk 0

0 �t

⎤
⎥⎥⎦ uk, (30)

which represents a simple kinematic model for our robot;
it does not account for dynamics or environmental distur-
bances. We use the same a priori model for all robots in our
experiments, despite the fact that they are quite different in
scale (Figure 1).

The “velocity” state variables are vk = (vact,k, ωact,k),
which represent the actual linear and rotational speeds of
the robot. These will differ from the commanded ones, uk ,
due to the fact that the robots we are working with have
underlying control loops that attempt to drive the robot at
the commanded velocities. However, the combined dynam-
ics of the robot and these rate controllers are not modeled.
We allow the LB-NMPC algorithm to learn these dynam-
ics, as well as any other systematic disturbances, based on
experience.

To build and query the learned model, g(·), through-
out the prediction horizon, we require all of the quanti-
ties in Eq. (19): ak+b = (xk+b, vk−1+b, uk+b, uk−1+b), b ∈ B =
{0, . . . , K−1}. We know uk+b and uk−1+b, b ∈ B, as these are
commanded inputs. We initially obtain the robot position
from our vision-based localization system, xk = x̂k , and then
from our system model (18), xk+1+b = f(xk+b, uk+b) + g(ak+b),
b ∈ B. Finally, we compute the velocity state variables,
vk−1+b = (vact,k−1+b, ωact,k−1+b), based on the computed robot
positions,

vact,k−1+b =
√

(xk+b − xk−1+b)2 + (yk+b − yk−1+b)2

�t
, b ∈ B

and

ωact,k−1+b = (θk+b − θk−1+b)
�t

, b ∈ B,

with xk−1 = x̂k−1. Since x̂k and x̂k−1 come from our vision-
based localization system, we are able to initialize the
predictive controller with accurate velocity estimates with
respect to the ground. This is preferable to using wheel

Journal of Field Robotics DOI 10.1002/rob

Ostafew et al.: Learning-based Nonlinear Model Predictive Control to Improve Vision-based Mobile Robot Path Tracking • 141

GP-based
Disturbance Model

Mobile Robot
zk

a g(a)

VT&R

Speed Schedule

vsched,i

vertex i

Nonlinear Model
Predictive Control

LB-NMPC

uk

xd,k

xk

Figure 6. In practice, our overall system combines the LB-NMPC algorithm (Section 3), the experience-based speed scheduler
(Section 4.2), and a vision-based VT&R system for localization.

encoders because they are unable to measure wheel slip
and other ground-interaction effects.

4.2. Automated Speed Scheduler

We implemented an automated speed scheduler (Ostafew
et al., 2014a) to demonstrate the LB-NMPC algorithm’s abil-
ity to interpolate and extrapolate from learned experiences.
The algorithm uses experience from previous trials to sched-
ule speeds that minimize travel time while ensuring reliable
localization, low path-tracking errors, and realizable control
inputs. Effectively, the scheduler incrementally increases or
decreases speeds along the path where possible or neces-
sary, respectively, requiring the LB-NMPC algorithm to in-
terpolate and extrapolate from previous experience.

When using vision-based localization systems, there
exists a speed limit above which localization becomes unre-
liable and the safety of the robot can no longer be assured.
This speed limit may come as a result of motion blur, a de-
graded scene (relative to when the path was taught), or large
deviations from the path. As an indicator of the conditions
faced by the localization system, we record the number of
features matched by the VT&R system, c

(j)
feature,i , when pass-

ing the ith vertex during the j th trial for use in the speed
scheduler.

We also record the lateral and heading path-tracking
errors, e

(j−1)
L,i and e

(j−1)
H,i , respectively,

[
e

(j−1)
L,i

e
(j−1)
H,i

] [
0 1 0

0 0 1

]
(x(j−1)

d,i − x(j−1)
i),

when passing the ith vertex during the j th trial. Since we
have assumed that the desired path is safe and free of ob-
stacles, it is important to maintain low path-tracking er-
rors. Further, the vision system is sensitive to perspective
changes between the teach pass and any repeat pass. Per-
spective changes are the direct result of path-tracking errors
and reduce the reliability of the localization system.

Finally, the scheduled linear speed also addresses con-
straints on angular velocities resulting from actuator lim-
its. The true robot angular velocity differs from the com-
manded velocity as a result of wheel slip, side slopes, and
other model discrepancies. As a result, we record the com-
manded angular velocity, ω

(j)
cmd,i , during the j th trial when

passing the ith path vertex.
If path-tracking errors are below (above) a threshold,

control inputs are below (above) a threshold, and (or) there
is a sufficient (insufficient) number of matched features in
a certain section, then the speed in that section is increased
(decreased). Using tuned values for increasing and decreas-
ing the scheduled speed, γ1 > 0 and γ2 > 0, respectively, and
thresholds, λL ≥ 0, λH ≥ 0, λω > 0, and λfeat ≥ 3, the sched-
uler follows rules to generate the suggested speeds for each
path vertex:

v
(j+1)
sched,i =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
(j)
sched,i+γ1 if (|e(j)

L,i | < λL) ∧ (|e(j)
H,i | < λH) ∧

(|ω(j)
cmd,i | < λω) ∧ (c(j)

feature,i > λfeat),

v
(j)
sched,i−γ2 if (|e(j)

L,i | > λLλdb) ∨ (|e(j)
H,i | > λH λdb) ∨

(|ω(j)
cmd,i | > λωλdb)∨(c(j)

feature,i < λfeat/λdb),

v
(j)
sched,i otherwise.

(31)

Effectively, the automated speed scheduler identifies sec-
tions of the path where the system can tolerate higher speeds
and sections where it cannot, thus balancing the tradeoff
between speed, path-tracking errors, and vision-based lo-
calization reliability. We use λdb > 1 to produce a deadband
where the speed at a vertex is neither increased nor de-
creased. For the first trial, the scheduled speed at all vertices
in the path was set to a fixed speed, v

(1)
sched,i = vinit.

4.3. Managing Experiences

To ensure the LB-NMPC algorithm is executed in con-
stant computation time, our implementation requires the

Journal of Field Robotics DOI 10.1002/rob

142 • Journal of Field Robotics—2016

Figure 7. The first and second experiments were conducted inside the University of Toronto Institute for Aerospace Studies
(UTIAS) MarsDome on gravel, sand, and loose dirt. The 30-m-long path, shown here, was used for the first experiment. In
all experiments, the nominal unicycle model used in our LB-NMPC algorithm included no prior information on wheel-terrain
interactions or robot dynamics.

ability to use a subset of the observed experiences when
computing a disturbance. Similar to work by Nguyen-
Tuong et al. (2009) and Meier et al. (2014), we employ a
local model. However, unlike their work, we use a single
sliding local model. As experiences are learned, they are
stored in bins, Di,l , by path vertex, i, and commanded ve-
locity, l = ⌊

vcmd,k/vbin
⌋

, where vbin represents the velocity
discretization and �· represents the floor function. When
the number of experiences in a bin exceeds a threshold,
cbin, the oldest experience in the bin is discarded. Then,
when computing a control input at the ith vertex, a “local”
dataset is created, drawing experiences from bins at nearby
path vertices and commanded velocities,D = {Da,b| a ∈ {i−
cvertex, . . . , i+cvertex}, b ∈ {l−cvelocity, . . . , l+cvelocity}}. Thus,
models are effectively assembled on demand rather than
precomputing hundreds of local models, enabling a
constant-time algorithm independent of path length or de-
ployment time.

5. FIELD TESTING

5.1. Overview

We tested the LB-NMPC algorithm in three different exper-
iments involving three significantly different mobile robots
(Figure 1) and paths with dirt, gravel, sand, grass, inclines,
and side slopes. This resulted in over 3 km of learning-
enabled path-tracking in GPS-denied environments. The
three tests demonstrate the algorithm’s effectiveness at re-
ducing path-tracking errors with only cursory prior knowl-
edge of the robot’s behavior (i.e., that it could be treated as
a unicycle robot, Section 4.1). Details on the tuning param-
eters are presented in Section 5.2.

The first experiment (Section 5.3) demonstrated the al-
gorithm’s ability to learn unmodeled environmental distur-
bances. We tested on a 30-m-long path including slopes,
dusty ground, and loose gravel surfaces (Figure 7). The
robot was a 50 kg, four-wheeled Clearpath Husky robot
traveling at a desired speed of 0.4 m/s (i.e., the automated
speed scheduler was disabled for the first experiment). With
a 0.5 m wheelbase, Husky robots are relatively small and ag-
ile skid-steered mobile robots. As such, the path included
slope angles up to 15◦, side-slope angles up to 15◦, and path
curvatures up to 1 m−1.

The second experiment (Section 5.4) demonstrated the
algorithm’s ability to interpolate and extrapolate from pre-
vious experience. We used a 150 kg, six-wheeled ROC6 robot
(Figure 1) learning to drive at a range of scheduled speeds
over 20 trials on a 60-m-long path. Like the Husky, the ROC6
robot is a skid-steered platform. However, the ROC6 is heav-
ier and longer, with a 1.5 m wheelbase, and it is better suited
to operate in more open terrains at higher speeds. Sched-
uled speeds for each trial, vsched,k , were provided by the
proposed automated scheduler that used matched features,
path-tracking errors, and control inputs from previous trials
to determine safe speeds for the next trial (Section 4.2).

Finally, the third experiment (Section 5.5) further
demonstrated the algorithm’s ability to learn disturbances
due to robot design. Whereas the first two experiments
involved skid-steered robots, this experiment used a
600 kg, Ackermann-steered DMRV robot (Figure 1). Tradi-
tional path-tracking controllers would represent the robot
using a bicycle model (Figure 8) with steering angle, δcmd,k ,
and linear velocity, vcmd,k , as control inputs. However, in
this paper, the LB-NMPC algorithm treats the Ackermann-
steered robot as a unicycle robot with linear and angular

Journal of Field Robotics DOI 10.1002/rob

Ostafew et al.: Learning-based Nonlinear Model Predictive Control to Improve Vision-based Mobile Robot Path Tracking • 143

ωcmd,k

vcmd,k δcmd,k

L

Figure 8. Here we show the relationship between the steering
angle of an Ackermann-steered robot, δcmd,k , and the linear and
angular velocities, vcmd,k and ωcmd,k , respectively. In experiment
3, we used the LB-NMPC algorithm for path-tracking on a
600 kg, Ackermann-steered mobile robot.

velocity commands, vcmd,k and ωcmd,k , respectively. The
robot then converted these velocity commands to a steer-
ing angle, δcmd,k ,

δcmd,k = tan−1
(

Lωcmd,k

vcmd,k

)
, (32)

where L is defined as the wheelbase of the Ackermann-
steered robot. The robot learned to drive at a range of sched-
uled speeds over 10 trials on a 100-m-long path. The sched-
uled speeds for each trial, vsched,k , were generated using the
same automated speed scheduler (Section 4.2) as was used
in the second experiment.

The first and second experiments were performed in
the University of Toronto Institute for Aerospace Studies
(UTIAS) MarsDome in Toronto, Ontario, Canada (Figure 7).
The third experiment was performed at the Defence Re-
search and Development Canada (DRDC) Experimental
Proving Grounds in Suffield, Alberta, Canada. In all ex-
periments, the controller described in Section 3 was im-
plemented and run in addition to the VT&R software on a
Lenovo W530 laptop with an Intel 2.6 GHz Core i7 processor
with 16 GB of RAM. The camera in all tests was a Point Grey
Bumblebee XB3 stereo camera. The resulting real-time lo-
calization and path-tracking control signals were generated
at approximately 10 Hz. As previously mentioned, hyper-
parameter selection is currently an offline process, taking
up to 5 min in the later trials of an experiment when the
system had accumulated approximately 5,000 experiences.
Since GPS was not available, the improvement due to the
LB-NMPC algorithm was quantified by the localization of
the VT&R algorithm. The VT&R algorithm is based on vi-
sual odometry and provides localization with errors less
than 4 cm/m when compared against GPS ground-truth
(Stenning, McManus, & Barfoot, 2013).

5.2. Tuning Parameters

The performance of the system was adjusted using the
NMPC weighting matrices Qx and R, the experience man-
agement parameters, and the speed scheduler gains and
thresholds. The weighting matrices for each test were

selected in advance ranging from roughly a 3:1 ratio weight-
ing path-tracking errors and control inputs for the 50 kg
Husky to a 1:1 ratio for the 600 kg DMRV robot. The in-
creased weighting on the control inputs for the heavier
robots was selected to ensure controller stability at higher
speeds. Local GP models were generated based on a sliding
window of size, cvertex = 5 and cvelocity = 1, where velocities
were discretized by vbin = 0.25 m/s. The maximum number
of experiences per bin, cbin, was set to 4, resulting in local
models based on up to 180 experiences. Finally, the speed
scheduler parameters we used are shown in Table I.

5.3. Experiment 1: Learning to Follow a Path with a
Fixed Speed Schedule

In the first experiment, the 50 kg Husky robot autonomously
traveled the length of a 30-m-long path for 20 trials at a fixed
speed of 0.4 m/s resulting in 600 m of travel (Figure 7).
Figure 9 shows plots of path characteristics, path-tracking
errors, and angular velocity control input vs. distance along
the path. The plots include comparisons between the first
trial (red), when the learned model has no experience from
which to draw, and the 20th trial (blue), when the learned
model has a significant amount of experience from which
to draw. The heading and lateral errors, eH and eL, respec-
tively, reached their peaks in trial 20 (blue) around 14-22 m
along the path where the path pitched forward, rolled to
the right, and turned to the right. This section also corre-
sponded to the largest changes in control input between the
first and last trial. In Figure 10, we show plots of the max-
imum and RMS path-tracking errors vs. trial number. By
disabling the speed scheduler for experiment 1, the learned
model was allowed to converge. As a result, the LB-NMPC
algorithm successfully reduced the maximum lateral and
heading errors by roughly 75% in the first few trials, then
maintained these errors for the next 15 trials. However, even
after many trials, the maximum and RMS errors continued
to vary. We suspect that these changes were due mainly to
evolving path conditions (e.g., ruts, dirt piles, etc.) and our
experience management scheme, which handles computa-
tional complexity and changing disturbances by forgetting
experiences over time.

5.4. Experiment 2: Learning to Follow a Path at
Increasing Speeds

In the second experiment, the 150 kg ROC6 robot au-
tonomously traveled the length of a 60-m-long path at a
range of scheduled speeds over 20 trials to demonstrate the
ability of the algorithm to interpolate and extrapolate from
learned experiences (Figure 11). The path for the second
experiment was mainly on level ground, but it included
path curvatures up to 0.5 m−1, suiting the capabilities of
the ROC6 robot. Figure 12 shows plots of path character-
istics, scheduled speeds, and VT&R matched features vs.

Journal of Field Robotics DOI 10.1002/rob

144 • Journal of Field Robotics—2016

Table I. Speed scheduler gains and thresholds. The scheduler was not used in experiment 1.

γ1 γ2 λL λH λfeature λω λdb

Experiment 1 N/A N/A N/A N/A N/A N/A N/A
Experiment 2 0.15 0.1 0.15 m 10◦ 30 1.0 rad/s 1.1
Experiment 3 0.2 0.15 0.15 m 10◦ 30 1.0 rad/s 1.1

0 5 10 15 20 25 30
−0.1

0

0.1

0.2

0.3

e L
(m

)

Trial 1 Trial 20

0 5 10 15 20 25 30
−10

0

10

20

e H
(d

eg
)

0 5 10 15 20 25 30
−20

−10

0

10

20

Pa
th

R
ol

l
an

d
P
it
ch

(d
eg

)

Roll Pitch

0 5 10 15 20 25 30
0

0.5

1

1.5

Pa
th

C
ur

va
tu

re
(m

−1
)

Curvature

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

ω
cm

d
(r

ad
/s

)

Distance Along Path (m)

Figure 9. The desired path for experiment 1 included slope angles up to 15◦, side-slope angles up to 15◦, and path curvatures up
to 1 m−1 as estimated relative to the start of the path by the VT&R algorithm. We also show the lateral and heading path-tracking
errors, e

(j)
L,i and e

(j)
H,i , and the commanded angular velocity, ω

(j)
cmd,i

, for j = {1, 20}.

distance along the path. The speed scheduler (Section 4.2)
determined where along the path the system could tolerate
higher speeds using experience from previous traversals,
thus minimizing the travel time in sequential trials. In some
sections of the path (e.g., at ∼22 m), the system took up
to three trials before safely increasing the scheduled speed.
This does not necessarily mean the learned model in these
sections had converged, but only that the path-tracking er-
rors, the matched feature counts, and the control inputs

were within the specified limits for the speed scheduler
(Section 5.2). In general, the speed schedules resulted in the
robot learning to drive the path faster, increasing speeds
from 0.35 to 1.0 m/s. Sections of the path with poor lighting
and high curvature, such as at 10, 20, and 40 m along the
path, had relatively low VT&R matched features. In these
sections, the speed scheduler suggested increased speeds,
though not as high as sections with good lighting and low
curvature, such as at 15 or 30 m along the path. Further, with

Journal of Field Robotics DOI 10.1002/rob

Ostafew et al.: Learning-based Nonlinear Model Predictive Control to Improve Vision-based Mobile Robot Path Tracking • 145

1 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

Trial Number

e L
(m

)

Maximum
RMS

1 5 10 15 20
0

5

10

15

Trial Number

e H
(d

eg
)

Maximum
RMS

Figure 10. The maximum and root mean square (RMS) path-tracking errors in experiment 1 were reduced significantly within
the first few trials. Since MPC is an optimal controller balancing path-tracking errors and control input, we do not expect the
path-tracking errors to be eliminated completely.

Figure 11. The second and third experiments focused on the algorithm’s ability to learn unmodeled robot dynamics. Here we
show the skid-steered ROC6 robot driving at 0.6 m/s with learning enabled. The white line shows the desired trajectory (tire
tracks), the red line shows a trajectory with learning disabled, while the dashed blue line shows a trajectory with learning enabled
and reduced path-tracking errors.

learning enabled and reduced path-tracking errors, the av-
erage number of matched features was increased from 38.33
to 55.77. Since the VT&R localization algorithm depends
on matching features between the live-view and teach-pass
view, an increase in matches tends to result in an increase
in the localization reliability for the vision-based mapping
and localization system. Figure 13 shows plots of the max-
imum path-tracking errors, root mean square (RMS) path-
tracking errors, and overall travel time vs. trial number. The
LB-NMPC algorithm reduced the lateral and heading errors
by roughly 50% over the course of the 20 trials, enabling a
significant reduction in travel time.

Figure 14 shows the learned model output vs. distance
along the path and commanded speed. Even though our
system collects discrete measurements of the underlying
disturbance function, it is able to continuously interpolate
and extrapolate from the data. In the second experiment,
the system had collected roughly 20,000 observations for
the learned model, retaining only 5,000 observations after

20 trials based on our experience management scheme. Note
that the system was unable to travel faster than 0.8 m/s at
40 m along the path due to the path’s curvature. As a re-
sult, the system was not able to collect experience above
0.8 m/s for this section of the path, and the resulting mod-
eled disturbance is close to zero with relatively high un-
certainty (Figure 15). Nonetheless, Figures 13 and 14 show
that our LB-NMPC algorithm is capable of effectively main-
taining a learned model for many operating conditions si-
multaneously, learning new disturbances as required while
maintaining a wealth of knowledge from previous experi-
ence.

5.5. Experiment 3: Learning to Follow a Path at
Increasing Speeds with an Ackermann-steered
Robot

In the third experiment, the 600 kg, Ackermann-steered
robot autonomously traveled the length of a 100-m-long

Journal of Field Robotics DOI 10.1002/rob

146 • Journal of Field Robotics—2016

0 10 20 30 40 50 60
0

50

100

c f
ea

tu
re

Distance Along Path (m)

Learning Enabled Learning Disabled

0 10 20 30 40 50 60
−5

0

5

10

Pa
th

R
ol

l
an

d
P
it
ch

(d
eg

)

Roll Pitch

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

Pa
th

C
ur

va
tu

re
(m

−1
)

Curvature

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

v s
ch

ed
(m

/s
)

Trial 1 Trial 2 Trial 3 Trial 4 Trials 5-14 Trial 15 Trials 16-20

Figure 12. The test path for experiment 2 was mainly on level ground, but it included path curvatures up to 0.5 m−1. Here we
also show the scheduled speeds, v

(j)
sched,i

, for trials 1 through 20, and the VT&R matched feature counts, c
(j)
feature,i

, for trial 15.

path demonstrating the ability of the disturbance model to
learn kinematics and dynamics of a significantly different
mass and robot design1 (Figure 16). Figure 17 shows plots
of path characteristics, scheduled speed, and path-tracking
errors vs. distance along the path. As in the second ex-
periment, the speed scheduler tried to minimize the over-
all travel time and determined where along the path the
system could tolerate higher speeds using experience from
previous traversals. Over the course of the 10 trials, the LB-
NMPC algorithm reduced the lateral and heading errors

1Associated video at http://tiny.cc/RoverLearnsDisturbances

significantly while learning disturbances at speeds ranging
from 0.5 to 1.2 m/s (Figure 18).

This last experiment highlighted the need for work
on experience management and controller robustness. Be-
tween 85 and 90 m along the path, in all trials of experiment
3, the results showed a sharp change in path-tracking errors.
For example, in trial 1, the VT&R state estimate produced
a step-change in the lateral path-tracking error of ∼25 cm
in a single time-step (Figure 17). In reality, the robot made
no such movement. This artificial motion estimate was trig-
gered by what Furgale and Barfoot (2010) called a “teach
pass failure,” resulting in a discontinuity in the state es-
timate during relocalization. In this case, the LB-NMPC

Journal of Field Robotics DOI 10.1002/rob

http://tiny.cc/RoverLearnsDisturbances

Ostafew et al.: Learning-based Nonlinear Model Predictive Control to Improve Vision-based Mobile Robot Path Tracking • 147

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Trial Number

e L
(m

)

1 5 10 15 20
0

5

10

15

Trial Number

e H
(d

eg
)

Learning Enabled: Max Learning Enabled: RMS Learning Disabled: Max Learning Disabled: RMS

1 5 10 15 20
0

50

100

150

200

Tr
ia

l
T

im
e

(s
)

Trial Number
−15 −10 −5 0 5 10

0

5

10

15

0 m
5 m

10 m

15 m

20 m
25 m30 m35 m

40 m

45 m

50 m

55 m

y d
(m

)
xd (m)

Speed scheduler disabled,
commanded speed set to
0.6 m/s for trials 16 - 20.

Figure 13. Here we show the reduction in maximum and root mean square (RMS) lateral and heading path-tracking errors vs.
trial. Unlike the first experiment, the scheduled speeds for each trial were adjusted throughout the second experiment, resulting in
a range of travel times when tracking the loop-shaped, 60-m-long path.

v c
m

d
(m

/s
)

Distance Along Path (m)

No data collected here due
to path curvature and lighting

0 10 20 30 40 50 60
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g(3)(·) (rad/s)
−0.4 −0.3 −0.2 −0.1 0 0.1

Figure 14. Here we show the learned values for the heading rate disturbance [i.e., the third element of g(·)] vs. commanded speed
and distance along the path. Above 0.8 m/s, 40 m along the path (blue ellipse), there was very little data and the model was
untrustworthy (Figure 15).

algorithm treated the side-step as a modeling error and
learned to turn in anticipation of the (artificial) distur-
bance, thereby causing subsequent (real) path-tracking er-
rors. While practical state estimation algorithms should
avoid providing faulty estimates, the stakes are higher with
learning algorithms that are capable of inadvertently incor-
porating such outlier measurements into the learned model
and then acting on incorrect data. This is one motivation for
our experience management scheme, which forgets experi-
ences over time.

Figure 18 shows plots of the maximum and RMS path-
tracking errors, and overall travel time vs. trial number.
The LB-NMPC algorithm reduced the lateral and head-
ing errors by more than 50% over the course of the
20 trials while learning disturbances at speeds ranging
from 0.5 to 1.2 m/s. The maximum path-tracking errors
(heading and lateral) in trials 5, 7, 9, and 10 occurred at
the aforementioned section of the path between 85 and
90 m, where the localization system indicated an (artificial)
disturbance.

Journal of Field Robotics DOI 10.1002/rob

148 • Journal of Field Robotics—2016

0 10 20 30 40 50 60
−0.4

−0.2

0

0.2

0.4
g (

1)
(·)

(m
/s

)

Modelled Disturbance Standard Deviation

0 10 20 30 40 50 60
−0.4

−0.2

0

0.2

0.4

g (
2)

(·)
(m

/s
)

0 10 20 30 40 50 60

−0.4

−0.2

0

0.2

0.4

0.6

g (
3)

(·)
(r

ad
/s

)

Distance Along Path (m)

Figure 15. Modeled disturbances, g(·) = (g(1)(·), g(2)(·), g(3)(·)), for vcmd = 0.9 m/s. With no experience above 0.8 m/s, 40 m along
the path, the modeled disturbance is zero and relatively uncertain.

Figure 16. In experiment 3, we tested with a 600 kg,
Ackermann-steered robot repeating a 100-m-long path. As in
the previous experiments, the nominal model used by the LB-
NMPC algorithm was a unicycle model, demonstrating the
algorithm’s ability to be applied to robots with significantly
different designs.

6. DISCUSSION

6.1. Controller Robustness

In general, our LB-NMPC algorithm is initialized with
a known nominal model and learns the discrepancies
between the known model and the actual robot behav-

ior. Therefore, by its very structure, the augmented process
model used by our NMPC algorithm has varying levels of
uncertainty while learning. Controller robustness, i.e., the
capability of a controller to stabilize a system in spite of
model uncertainty, is an open question for learning con-
trollers in general (Schaal et al., 2010). In this paper, we
do not explicitly consider the robustness of the controller
but focus on the practical application of LB-NMPC to mo-
bile robots. However, having established the effectiveness
of the LB-NMPC algorithm at reducing control errors with
few a priori assumptions, our future work will focus on tech-
niques to leverage the covariance estimates provided by our
GP-based model in a robust control framework. Ideally, the
controller will automatically choose between conservative-
ness, when the model is relatively uncertain, and optimality,
when the model is less uncertain.

6.2. Convergence Rates

Determination of convergence rates is also an open prob-
lem in model-based learning controllers (Nguyen-Tuong &
Peters, 2011). Unlike techniques such as Iterative Learning
Control (Ahn, Chen, & Moore, 2007; Bristow, Tharayil, &
Alleyne, 2006), which assume identical initial conditions
and desired trajectories for all trials in order to make claims
on convergence rates, model-based learning controllers,
such as the work illustrated in this paper, address a more

Journal of Field Robotics DOI 10.1002/rob

Ostafew et al.: Learning-based Nonlinear Model Predictive Control to Improve Vision-based Mobile Robot Path Tracking • 149

0 10 20 30 40 50 60 70 80 90 100

−0.4

−0.2

0

0.2

e L
(m

)

Trial 1 Trial 10

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

e H
(d

eg
)

Distance Along Path (m)

Trial 1 Trial 10

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20
Pa

th
R

ol
l
an

d
P
it
ch

(d
eg

)

Roll Pitch

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

Pa
th

C
ur

va
tu

re
(m

−1
)

Curvature

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

v s
ch

ed
(m

/s
)

Trial 1 Trial 2 Trial 3 Trial 4 Trials 5-9 Trial 10

Figure 17. The path for the third experiment formed a large loop with turns at 30, 45, and 75 m along the path (Figure 18). As in
experiment 2, the robot learned to drive the path at a range of speeds, from 0.5 to 1.2 m/s, generated by the speed scheduler. At
around 50 m along the path, it took three trials before path-tracking errors were reduced sufficiently such that the scheduled speed
could be increased.

general problem of trying to learn with arbitrary initial
conditions, paths, and speed schedules. This enables a more
flexible robot use since it is able to learn more than one
path at more than one speed. However, it also presents es-
sentially a sporadic approach to learning, in that it is not
guaranteed when or if a state will be revisited for continued
learning. Furthermore, convergence rates are complicated
by the evolution of the environment caused by the robot’s
activity. For example, repeating the same path caused ruts to
form, which resulted in a change in the disturbances affect-
ing the nominal process model. This was also a motivation
in using only the most recent observations (Section 4.3).

7. CONCLUSION

In summary, this paper presents a Learning-based Nonlin-
ear Model Predictive Control (LB-NMPC) algorithm for a
path-repeating, mobile robot negotiating large-scale, GPS-
denied outdoor environments. The goal is to reduce path-
tracking errors using real-world experience instead of pre-
programming accurate analytical models of wheel-terrain
interaction, terrain topology, or robot dynamics. The LB-
NMPC controller is based on a fixed, simple process model
and a learned disturbance model. Disturbances effectively
represent measured discrepancies between the given nomi-
nal model and the observed system behavior. Disturbances

Journal of Field Robotics DOI 10.1002/rob

150 • Journal of Field Robotics—2016

1 5 10
0

0.1

0.2

0.3

0.4

0.5

Trial Number

e L
(m

)

1 5 10
0

1

2

3

4

5

6

7

8

9

10

Trial Number

e H
(d

eg
)

Learning Enabled: Max
Learning Enabled: RMS

1 5 10
0

50

100

150

200

Tr
ia

l
ti
m

e
(s

)

Trial Number
−30 −20 −10 0 10 20 30

0

5

10

15

20

25

30

35

0 m

10 m

20 m

30 m

40 m50 m

60 m

70 m

80 m

90 m

100 m

y d
(m

)

xd (m)

Figure 18. Over the course of 10 trials in experiment 3, the LB-NMPC algorithm reduced the lateral and heading path-tracking
errors by over 50%, while simultaneously learning to drive at faster speeds around the loop-shaped, 100-m-long path. The desired
speeds were provided by the automated speed scheduler (Section 4.2).

are modeled as a Gaussian process (GP) based on obser-
vations as a function of relevant variables such as the sys-
tem state and input. Modeling the disturbances as a GP
enables the algorithm to learn complex nonlinear model
discrepancies and to generalize to novel situations. Local-
ization for the controller is provided by an onboard, Visual
Teach & Repeat mapping and navigation system. The pa-
per also presents an experience-based speed scheduler that
plans time-optimal schedules while guaranteeing low path-
tracking errors and reliable localization.

Three experiments on three significantly different
robots, including over 3 km of travel on challenging
paths, demonstrated the system’s ability to handle un-
modeled terrain and robot dynamics, and also to inter-
polate and extrapolate from learned disturbances. In the
second and third experiments, the experience-based speed
scheduler addressed the classic exploration vs. exploitation
tradeoff balancing speed, path-tracking errors, and local-
ization reliability. The LB-NMPC approach proved to be
flexible and effective at reducing path-tracking errors and
increasing the reliability of the localization system. Even
beginning with only the simple unicycle model, the algo-
rithm was capable of being seamlessly deployed to mul-
tiple platforms where it learned to reduce vehicle- and
trajectory-specific path-tracking errors using experience.
However, robust stability is a largely unanswered question

for state-of-the-art learning control algorithms. In this work,
we only make use of the predicted mean value of distur-
bances. However, in future work, we plan to investigate
robust learning control, leveraging the predicted distur-
bance uncertainty as well as the mean when making control
decisions.

ACKNOWLEDGMENTS

This research was funded by the Ontario Ministry of Re-
search and Innovations Early Researcher Award Program,
by the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) through the NSERC Canadian Field
Robotics Network (NCFRN), and by Clearpath Robotics.

APPENDIX: MULTIMEDIA DESCRIPTION

A multimedia extension has been prepared to accompany
this work. The extension shows the results from experiment
3, where the learning-based controller is tested on a
600 kg Ackermann-steered robot and learns to reduce
vehicle- and trajectory-specific path-tracking errors. The
extension also shows the experience-based speed scheduler
generating speed schedules for each trial. The video is
available as a Supporting Information file
in the online version of this article or at
http://tiny.cc/RoverLearnsDisturbances.

Journal of Field Robotics DOI 10.1002/rob

http://tiny.cc/RoverLearnsDisturbances

Ostafew et al.: Learning-based Nonlinear Model Predictive Control to Improve Vision-based Mobile Robot Path Tracking • 151

REFERENCES

Abbeel, P., Quigley, M., & Ng, A. (2006). Using inaccurate mod-
els in reinforcement learning. In Proceedings of the 23rd
International Conference on Machine Learning (pp. 1–8).
Omni Press.

Ahn, H.-S., Chen, Y., & Moore, K. L. (2007). Iterative learning
control: Brief survey and categorization. IEEE Transactions
on Systems, Man, and Cybernetics: Applications and Re-
views, 37(6), 1099–1121.

Angelova, A., Matthies, L., Helmick, D., & Perona, P. (2007).
Learning and prediction of slip from visual information.
Journal of Field Robotics, 24(3), 1205–231.

Aswani, A., Gonzalez, H., Shankar Sastry, S., & Tomlin, C.
(2013). Provably safe and robust learning-based model pre-
dictive control. Automatica, 49, 1216–1226.

Bristow, D. A., Tharayil, M., & Alleyne, A. G. (2006). A survey
of iterative learning control. IEEE Control Systems, 26(3),
96–114.

Cariou, C., Lenain, R., Thuilot, B., & Berducat, M. (2009). Auto-
matic guidance of a four-wheel-steering mobile robot for
accurate field operations. Journal of Field Robotics, 26(6-7),
504–518.

Deisenroth, M., Fox, D., & Rasmussen, C. (2014). Gaussian pro-
cesses for data-efficient learning in robotics and control.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 36(5), 1–20.

Diehl, M., Ferreau, H. J., & Haverbeke, N. (2009). Efficient nu-
merical methods for nonlinear MPC and moving horizon
estimation. In Lecture Notes in Control and Information
Sciences, Nonlinear Model Predictive Control (vol. 384,
pp. 391–417). Springer.

Furgale, P., & Barfoot, T. (2010). Visual teach and repeat for long-
range Rover autonomy. Journal of Field Robotics, 27(5),
534–560.

Guillet, A., Lenain, R., & Thuilot, B. (2013). Off-road path
tracking of a fleet of WMR with adaptive and predic-
tive control. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (pp. 2855–
2861).

Helmick, D., Angelova, A., & Matthies, L. (2009). Terrain adap-
tive navigation for planetary Rovers. Journal of Field
Robotics, 26(4), 391–410.

Helmick, D., Roumeliotis, S., Cheng, Y., Clouse, D., Bajracharya,
M., & Matthies, L. (2006). Slip-compensated path follow-
ing for planetary exploration rovers. Advanced Robotics,
20(11), 1257–1280.

Howard, T., Green, C., & Kelly, A. (2009). Receding horizon
model-predictive control for mobile robot navigation of in-
tricate paths. In Proceedings of the 7th Annual Conference
on Field and Service Robotics (pp. 69–78). Springer-Verlag
Berlin Heidelberg.

Iagnemma, K., Kang, S., Shibly, H., & Dubowsky,
S. (2004). Online terrain parameter estimation for
wheeled mobile robots with application to planetary
rovers. IEEE Transactions on Robotics, 20(5), 921–
927.

Ishigami, G., Nagatani, K., & Yoshida, K. (2009). Slope traversal
controls for planetary exploration rover on sandy terrain.
Journal of Field Robotics, 26(3), 264–286.

Klančar, G., & Škrjanc, I. (2007). Tracking-error model-based
predictive control for mobile robots in real time. Robotics
and Autonomous Systems, 55(6), 460–469.

Ko, J., Klein, D. J., Fox, D., & Haehnel, D. (2007). Gaussian pro-
cesses and reinforcement learning for identification and
control of an autonomous blimp. In Proceedings of the In-
ternational Conference on Robotics and Automation (pp.
742–747).

Kocijan, J., Murray-Smith, R., Rasmussen, C., & Girard, A.
(2004). Gaussian process model based predictive control.
In Proceedings of the American Control Conference (vol.
3, pp. 2214–2219).

Kühne, F., Lages, W. F., & Silva, J. (2005). Mobile robot trajectory
tracking using model predictive control. In Proceedings of
the IEEE Latin-American Robotics Symposium (pp. 1–7).

Langson, W., Chryssochoos, I., Raković, S., & Mayne, D. Q.
(2004). Robust model predictive control using tubes. Au-
tomatica, 40(1), 125–133.

Meier, F., Hennig, P., & Schaal, S. (2014). Efficient Bayesian local
model learning for control. In Proceedings of the IEEE
International Conference on Intelligent Robotics Systems
(pp. 2244–2249).

Nguyen-Tuong, D., & Peters, J. (2011). Model learning for
robot control: A survey. Cognitive Processing, 12(4), 319–
340.

Nguyen-Tuong, D., Peters, J., & Seeger, M. (2009). Local Gaus-
sian process regression for real time online model learning.
Advances in Neural Information Processing Systems, 22,
1193–1200.

Nocedal, J., & Wright, S. (1999). Numerical Optimization (vol.
2). New York: Springer.

Ostafew, C., Collier, J., Schoellig, A. P., & Barfoot, T. (2014a).
Speed Daemon: Experience-based mobile robot speed
scheduler. In Proceedings of the Conference on Computer
and Robot Vision (pp. 56–62). IEEE.

Ostafew, C., Schoellig, A. P., & Barfoot, T. (2013). Visual teach
and repeat, repeat, repeat: Iterative learning control to im-
prove mobile robot path tracking in challenging outdoor
environments. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (pp.
176–181).

Ostafew, C., Schoellig, A. P., & Barfoot, T. (2014b). Learning-
based nonlinear model predictive control to improve
vision-based mobile robot path-tracking in challenging
outdoor environments. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (pp. 4029–
4036).

Peters, S., & Iagnemma, K. (2008). Mobile robot path tracking
of aggressive maneuvers on sloped terrain. In Proceedings
of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (pp. 242–247).

Quinonero-Candela, J., & Rasmussen, C. E. (2005). A unifying
view of sparse approximate Gaussian process regression.
The Journal of Machine Learning Research, 6, 1939–1959.

Journal of Field Robotics DOI 10.1002/rob

152 • Journal of Field Robotics—2016

Rasmussen, C. E. (2006). Gaussian processes for machine learn-
ing. Cambridge, MA: MIT Press.

Rasmussen, C. E., & Ghahramani, Z. (2002). Infinite mixtures
of Gaussian process experts. Advances in Neural Informa-
tion Processing Systems, 2, 881–888.

Rawlings, J. B., & Mayne, D. Q. (2009). Model predictive control:
Theory and design. Nob Hill Publishing.

Schaal, S., & Atkeson, C. (2010). Learning control in robotics.
IEEE Robotics & Automation Magazine, 17(2), 20–29.

Schoellig, A. P., Mueller, F., & D’Andrea, R. (2012).
Optimization- based iterative learning for precise quadro-
copter trajectory tracking. Autonomous Robots, 33, 103–
127.

Seegmiller, N., Rogers-Marcovitz, F., Miller, G., & Kelly,
A. (2013). Vehicle model identification by integrated

prediction error minimization. The International Journal
of Robotics Research, 32(8), 912–931.

Snelson, E., & Ghahramani, Z. (2007). Local and global sparse
Gaussian process approximations. In Proceedings of the
International Conference on Artificial Intelligence and
Statistics (pp. 524–531). Journal of Machine Learning Re-
search – Proceedings Track.

Stenning, B., McManus, C., & Barfoot, T. (2013). Planning using
a network of reusable paths: A physical embodiment of a
rapidly exploring random tree. Journal of Field Robotics,
30(6), 916–950.

Xie, F., & Fierro, R. (2008). First-state contractive model
predictive control of nonholonomic mobile robots. In
Proceedings of the American Control Conference (pp.
3494–3499). IEEE.

Journal of Field Robotics DOI 10.1002/rob

