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Abstract— Robust control maintains stability and perfor-
mance for a fixed amount of model uncertainty but can be
conservative since the model is not updated online. Learning-
based control, on the other hand, uses data to improve the
model over time but is not typically guaranteed to be robust
throughout the process. This paper proposes a novel combina-
tion of both ideas: a robust Min-Max Learning-Based Nonlinear
Model Predictive Control (MM-LB-NMPC) algorithm. Based
on an existing LB-NMPC algorithm, we present an efficient
and robust extension, altering the NMPC performance objective
to optimize for the worst-case scenario. The algorithm uses a
simple a priori vehicle model and a learned disturbance model.
Disturbances are modelled as a Gaussian Process (GP) based
on experience collected during previous trials as a function of
system state, input, and other relevant variables. Nominal state
sequences are predicted using an Unscented Transform and
worst-case scenarios are defined as sequences bounding the 3σ
confidence region. Localization for the controller is provided
by an on-board, vision-based mapping and navigation system
enabling operation in large-scale, GPS-denied environments.
The paper presents experimental results from testing on a 50 kg
skid-steered robot executing a path-tracking task. The results
show reductions in maximum lateral and heading path-tracking
errors by up to 30% and a clear transition from robust control
when the model uncertainty is high to optimal control when
model uncertainty is reduced.

I. INTRODUCTION

High-performance, path-tracking controllers for outdoor
mobile robots require techniques to mitigate the effects of
unknown surface materials, terrain topography, and complex
robot dynamics. However, finding rich, accurate models
a priori is difficult because (i) the terrain is often not known
ahead of time, (ii) robot-terrain interaction models often do
not exist, and (iii) even if such models did exist, finding
corresponding model parameters is cumbersome.

Learning controllers alleviate the need for significant en-
gineering work identifying and modelling all disturbances
prior to operation by enabling the robot to acquire and apply
experience in situ [1, 2]. In previous work, we presented a
non-parametric, Learning-Based Nonlinear Model Predictive
Control (LB-NMPC) algorithm [3] to reduce path-tracking
errors within the context of an on-board, real-time, Visual
Teach and Repeat (VT&R) mapping and navigation system
[4]. In this work, we extend the algorithm by investigating
a robust Min-Max LB-NMPC (MM-LB-NMPC) algorithm.
The combined robust, learning controller merges the best
of both worlds: robust, conservative control during initial
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Fig. 1. A Clearpath Husky robot autonomously negotiating challenging
terrain with side slopes, inclines, and variable wheel traction. In practice,
simple vehicle models rarely represent reality and limit the performance and
stability of model-based, path-tracking controllers. In this work, we present
a robust learning-based controller that automatically transitions from robust
to optimal control throughout the process of learning to track a path.

trials when model uncertainty is high, converging to optimal
control during later trials when model uncertainty is reduced.

The learning algorithm is based on a process model com-
posed of two components: (i) a unicycle model representing
the kinematics of the robot, and (ii) a learned disturbance
model representing both unmodelled robot dynamics and
systematic environmental disturbances. We model distur-
bances as a Gaussian Process (GP) [5] based on observations
gathered during previous path traversals as a function of
system state, input, and other relevant system variables. By
modelling the disturbances as a GP, the algorithm is able
to predict both the mean and uncertainty of disturbances
affecting the a priori process model. We use an Unscented
Transform [6] to efficiently compute the mean and variance
of the nominal state sequence given the two-component,
learned, stochastic model. The MM-LB-NMPC cost func-
tion is optimized for the worst-case sequence bounding the
nominal 3σ confidence region. We demonstrate the robust,
learning control algorithm on a 50 kg Clearpath Husky robot
and show reductions of worst-case path-tracking errors by up
to 30% and a clear transition from robust towards optimal
control with only a 5% increase in computation time.

The key characteristics of this work are: (i) a path-
tracking, robust MM-LB-NMPC algorithm based on a fixed,
a priori known kinematic process model and a learned
GP disturbance model, (ii) efficient prediction of nominal
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and 3σ bounding sequences using an Unscented Transform,
(iii) navigation based on vision only, and (iv) experimental
results on a 50 kg robot. To our knowledge, this paper is the
first to demonstrate a robust MM-LB-NMPC algorithm that
automatically transitions from robust to optimal control as
model uncertainty varies with experience.

II. RELATED WORK

MPC is a framework in which the current control action
is obtained by solving, at each sampling instant, a finite-
horizon optimal control problem using the current state of
the plant as the initial state [7, 8]. Among a growing list of
examples, MPC has been demonstrated in several real-world
applications on ground robots [9–14]. However, in each of
these examples, the system model is fixed and assumed to
represent the system accurately. As a result, these controllers
achieve stability and good performance in operating regimes
limited in part by the a priori model and tuning parameters.
In contrast, our algorithm simultaneously includes the ability
to learn from experience and robustness to model uncertainty,
thus enabling reliable operation on robots of vastly different
masses and in a variety of terrains.

Learning-based control aims to improve performance over
time by correcting the system model using experience
(i.e., past measurements) [15–17]. Kocijan et al. [15] presents
a LB-MPC algorithm for a simulated pH neutralization
process. In addition to tracking errors and control input,
the cost function penalized model uncertainty resulting in
a controller that avoided uncertain states. In contrast, our
Min-Max approach uses the model uncertainty for robust
control, maintaining performance and stability despite model
uncertainty. Lehnert and Wyeth [16], and Park et al. [17]
present LB-MPC algorithms for an elastic joint manipula-
tor and an omni-directional mobile robot, respectively. In
each of these cases, the controllers considered only the
mean predicted disturbance. Our approach considers both
the learned mean and variance, enabling automatic shifts
between robust and optimal control as model uncertainty
varies. Finally, Tanaskovic et al. [18] present robust adaptive
MPC for constrained systems. While adaptive control is only
capable of reacting to modelling errors, our approach is
based on a learned disturbance model and can therefore act
in anticipation of repeatable disturbances.

Min-Max MPC maintains controller stability and perfor-
mance despite model uncertainty by optimizing the perfor-
mance objective for a worst-case scenario [19–24]. Scokaert
and Mayne [21] present a Min-Max algorithm for robust
performance of systems with bounded disturbances. In con-
trast, we assume normally-distributed disturbances and use
an Unscented Transform [6] to predict a nominal sequence,
3σ confidence region, and the associated boundary scenarios
for the Min-Max algorithm. Bemporad et al. [22] and Ker-
rigan and Maciejowski [23] present algorithms that reduce
the computation time of Min-Max MPC. In our work, we
derive worst-case scenarios from the 3σ confidence region
surrounding the predicted nominal sequence, representing a
small increase in computation relative to our original learning

algorithm [3]. Raimondo et al. [24] present a nonlinear
Min-Max algorithm that separates state-dependent and state-
independent disturbances to reduce conservativeness. In con-
trast, we reduce conservativeness over time by learning an
improved nominal process model. Effectively, our controller
naturally transitions to an optimal controller as model uncer-
tainty decreases. To our knowledge, our work is the first to
propose a MM-LB-NMPC algorithm.

Scenario MPC is a technique similar to Min-Max MPC
[25–27]. However, instead of identifying a relatively small
number of worst-case disturbance sequences, Scenario MPC
relies on a (typically) large number of randomly sampled
state sequences over the prediction horizon given the model
uncertainty. Unlike Scenario MPC, our algorithm relies on a
small number of worst-case scenarios bounding the nominal
3σ confidence region. This enables online operation and
integration into our existing LB-NMPC algorithm.

Otherwise, Berkenkamp and Schoellig [28] combine ro-
bust control with machine learning techniques to adapt the
model uncertainty over time. While they present a learning,
robust controller to stabilize an operating point, we derive
a controller for path-tracking. Aswani et al. [29] present
a robust, linear LB-MPC algorithm that guarantees perfor-
mance and stability by placing tube-shaped constraints on
predicted sequences. In this work, we use Min-Max MPC,
a less conservative approach to robust MPC, optimizing for
worst-case scenarios.

III. VISUAL TEACH & REPEAT

Localization for the controller is provided by an on-board
Visual Teach & Repeat (VT&R) mapping and navigation
algorithm developed by Furgale and Barfoot [4] where
the sole sensor is an on-board stereo camera. In the first
operational phase, the teach phase, the robot is piloted
along the desired path. Localization in this initial phase is
obtained relative to the robot’s starting position by visual
odometry (VO). In addition to the VO pipeline, path vertices
are defined at short and regular intervals along the path
while simultaneously storing key frames composed of local
feature descriptors and their 3D positions. During the repeat
phase, the VT&R algorithm estimates the pose of the robot
relative to the nearest path vertex by re-localizing against the
stored key frames. Re-localization is achieved by matching
feature descriptors to generate feature tracks between the
current robot view and the teach-pass robot view. As long
as sufficient correct feature matches are made, the system
generates consistent localization over trials and is able to
support a learning control algorithm.

IV. MATHEMATICAL FORMULATION

A. MM-LB-NMPC Overview

NMPC finds a sequence of control inputs that optimizes
the plant behavior over a prediction horizon based on the
current state. The first control input in the optimal sequence
is then applied to the system, resulting in a new system state.
The entire process is then repeated at the next sample time
for the new system state.
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Fig. 2. The controller is composed of two components: 1) the robust,
path-tracking, Min-Max NMPC algorithm, and 2) the GP-based Disturbance
Model, providing experience-based disturbance estimates.

In traditional NMPC implementations, the process model
is specified a priori and remains unchanged during opera-
tion. In our previous work on LB-NMPC, we augmented a
simple process model with the mean of an experience-based
disturbance model. Effectively, the controller used experience
to reduce path-tracking errors, compensating for effects not
captured by the simple process model. In this work, we in-
corporate both the disturbance mean and uncertainty into the
NMPC algorithm, resulting in an efficient robust extension
that reduces the worst-case errors (Fig. 2). We consider a
stochastic, learned process model,

xk+1 =

a priori model︷ ︸︸ ︷
f(xk,uk) +

learned model︷ ︸︸ ︷
g(ak) , (1)

with Gaussian system state, xk ∼ N (x̄k,Σk) ∈ Rn, distur-
bance dependency, ak ∈ Rp, and control input, uk ∈ Rm, all
at time k. The models f(·) and g(·) are nonlinear models: f(·)
is a simple, a priori vehicle model and g(·) is an (initially
unknown) disturbance model representing discrepancies be-
tween the nominal model and the actual system behavior.
Disturbances are modelled as a Gaussian Process (Sec. IV-C),
thus g(·) is normally distributed, g(·) ∼ N (µ(·),Σgp(·)).
In our previous work, we showed that g(·) could be used to
learn higher-order dynamics by including historic states in
the disturbance dependency [3]. However, for simplicity, we
assume for now that ak = (x̄k,uk).

As previously mentioned, the goal of NMPC is to find a
set of controls that optimizes the plant behavior over a given
prediction horizon. To this end, we define the cost function
to be minimized over the next K time-steps as

J(x̌,u) := (xd − x̌)T Q (xd − x̌) + uT R u, (2)

where Q is positive semi-definite, R is positive definite, u is
a sequence of inputs, u = (uk, . . . ,uk+K), xd is a sequence
of desired states, xd = (xd,k+1, . . . , xd,k+K+1), and x̌ is
a sequence of predicted states, x̌ = (x̌k+1, . . . , x̌k+K+1).
Previously, the objective was optimized for the mean of the
nominal sequence, x̌ = x̄, where xnom = {{x̄i+1,Σi+1}|i=
k, . . . , k+K}. In this work, the objective is optimized for
the worst-case sequence given the uncertainty in the learned
model. Specifically, the nominal sequence is predicted us-
ing an Unscented Transform and 2n worst-case scenarios,
x̌(l), l∈{1, . . . , 2n}, are defined in Sec. IV-B as sequences

Algorithm 1: MM-LB-NMPC
Data: xd, {x̄k,Σk}, and uinit

Result: uopt

1 initialization: ũ = uinit;
2 while ‖δu‖ > α do
3 Compute xnom given ũ and (1);
4 Compute boundary sequences (NEW, cf. [3]);
5 Find worst-case boundary sequence (NEW, cf. [3]);
6 Linearize (2) around worst-case sequence and solve

for δu;
7 Update control, ũ← ũ + δu;

bounding the nominal 3σ confidence region. Finally, the
optimal control sequence is given by

uopt = arg min
u

max
l
J(x̌(l),u). (3)

Since both our process model and disturbance model
are nonlinear, the optimal control sequence, uopt, is found
iteratively (Alg. 1) using a nonlinear optimization technique.
In this paper, we use unconstrained Gauss-Newton minimiza-
tion [30]. However, there are other nonlinear optimization
algorithms, such as the constrained Gauss-Newton algo-
rithm [31], that could be used to incorporate constraints on
states and control inputs.

At each time-step, we begin with the current system
state, {x̄k,Σk} = {x̂k, Σ̂k}, provided by the vision-based
localization system, and an initial guess for the optimal
control input sequence, ũ, such as the sequence of optimal
inputs computed in the previous time-step (Alg. 1, Step 1).
We compute the worst-case boundary sequence (Sec. IV-B,
Alg. 1, Steps 3-5) based on ũ, (1), and

l∗ = arg max
l∈L

J(x̌(l), ũ). (4)

We linearize (2) around the worst-case sequence with
u = ũ + δu, and x̌(l

∗) = x̃(l
∗) + δx(l

∗) (Alg. 1, Step 6). We
write a linearized equation for the state,

δx(l
∗) = H δu, (5)

where H is the block-Jacobian of (1) with respect to u.
Substituting (5), x̌(l

∗) = x̃(l∗) + δx(l∗), and u = ũ + δu
into (2) results in J(·) being quadratic in δu. We can easily
find the value of δu that minimizes J(x̌(l

∗),u), update our
control input (Alg. 1, Step 7),

ũ← ũ + δu, (6)

and iterate to convergence, ‖δu‖ < α, with tuned value, α. In
accordance with NMPC, we apply the resulting control input
for one time-step and start all over at the next time-step.

The addition of the ‘max’ in (3) is the extension from our
previous work [3]: the algorithm now takes into account the
worst-case boundary sequence, limiting the worst-case errors
and guaranteeing stability for large model uncertainties.
Moreover, there is an automatic transition as uncertainty
decreases, from robust control, with an uncertain model, to
optimal control, with a rich and accurate model.
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Fig. 3. Here we show the lateral 3σ boundaries of the mean sequence. Since
our model uncertainty is normally distributed, we use an Unscented Trans-
form to compute the mean and uncertainty of a predicted state sequence.
However, unlike Scenario MPC, where many scenarios are sampled in
order to find boundary sequences (red), the Unscented Transform efficiently
estimates the 3σ confidence region (dashed blue).

B. Computing Worst-Case Sequences

In our previous work, the cost function is optimized based
on the mean of the nominal state sequence. In this work,
the cost function is optimized for the worst-case sequence
bounding the nominal 3σ confidence region. Worst-case
sequences are computed in two steps. First, the nominal state
sequence is computed (Alg. 1, Step 3). Second, the worst-
case sequences are extracted from the nominal sequence
(Alg. 1, Step 4).

Since xk is normally-distributed and (1) is nonlinear, we
use an Unscented Transform [6] to iteratively predict the
nominal state sequence, xnom, given u, {x̄k,Σk}, and (1).
We define an initial state, zk := (x̄k,µ(ak)) ∈ R2n, with
uncertainty, Pk := diag(Σk,Σgp(ak)). We compute 4n+1
sigma points, Zk,i := (Xk,i,Mk,i), where Xk,i and Mk,i

are the sigma points of xk and µ(ak),

Zk,0 := zk (7)

Zk,i := zk +
√

2n+ γ coli Sk, i = 1 . . . 2n (8)

Zk,i+2n := zk −
√

2n+ γ coli Sk, i = 1 . . . 2n (9)

where SkST
k = Pk with Sk derived from the Cholesky

decomposition of Pk, coli Sk is the ith column of Sk, and
γ is a tuning parameter. The sigma points are then passed
through the nonlinear model,

Xk+1,i := f(Xk,i,uk) +Mk,i, i ∈ {0, . . . , 4n}, (10)

where f(·) is our a priori vehicle model. We combine the
sigma points into the predicted mean and uncertainty,

x̄k+1 :=
1

2n+ γ

(
γXk+1,0 +

1

2

4n∑
i=1

Xk+1,i

)
(11)

Σk+1 :=
1

2n+ γ

(
γ(Xk+1,0 − x̄k+1)(Xk+1,0 − x̄k+1)T

+
1

2

4n∑
i=1

(Xk+1,i − x̄k+1)(Xk+1,i − x̄k+1)T

)
. (12)

This process is repeated K times, until the complete nom-
inal sequence, xnom, is generated. Finally, we compute 2n

boundary sequences (Alg. 1, Step 4) based on xnom while

assuming 3σ noise (Fig. 3). Assuming for now n= 3, and
defining σk := (

√
Σk(1, 1), . . . ,

√
Σk(3, 3)), and

Γ
(1)
sign = diag(1, 1, 1), Γ

(5)
sign = diag(−1, 1, 1),

Γ
(2)
sign = diag(1, 1,−1), Γ

(6)
sign = diag(−1, 1,−1),

Γ
(3)
sign = diag(1,−1, 1), Γ

(7)
sign = diag(−1,−1, 1),

Γ
(4)
sign = diag(1,−1,−1), Γ

(8)
sign = diag(−1,−1,−1),

(13)

then x̌(l)i+1 = x̄i+1 + Γ
(l)
sign 3σi+1, i ∈ {k, . . . , k+K}.

C. Gaussian Process Disturbance Model

We model the disturbance, g(·), as a GP based on past
observations. Since we provided a detailed explanation of the
model in previous work [3], here we provide only a high-
level sketch. The learned model depends on observations
of disturbances collected during previous trials. At time k,
we use the estimated poses, x̂k and x̂k−1, from the VT&R
system (Sec. III), the disturbance dependency, ak−1, and the
control input, uk−1, to solve (1) for ĝ(ak−1),

ĝ(ak−1) = x̂k − f(x̂k−1,uk−1). (14)

The resulting data pair, {ak−1, ĝ(ak−1)}, represents an indi-
vidual experience. We collect all experiences into one large
dataset, D, with generally N observations, and drop the time-
step index on each data pair in D, so that when referring to
aD,i or ĝD,i, we mean the ith pair of data in the superset D.

In our work, we train a separate GP for each dimension in
g(·) ∈ Rn to model disturbances as the robot travels along a
path. For simplicity of discussion, we will assume for now
that n = 1 and denote ĝD,i by ĝD,i. The GP model assumes
a measured disturbance originates from a process model,

ĝ(aD,i) ∼ GP (0, k(aD,i, aD,i)) , (15)

with zero mean and kernel function, k(aD,i, aD,i), to
be defined. We assume that each disturbance measure-
ment is corrupted by zero-mean additive noise with vari-
ance, σ2

n, so that ĝD,i = gD,i + ε, ε ∼ N (0, σ2
n). Then a

modelled disturbance, g(ak), and the N observed distur-
bances, ĝ = (ĝD,1, . . . , ĝD,N ), are jointly Gaussian,[

ĝ
g(ak)

]
∼ N

(
0,
[

K k(ak)T

k(ak) k(ak, ak)

])
, (16)

where

(K)i,j = k(aD,i, aD,j), K ∈ RN×N , (17)

such that (K)i,j is the (i, j)th element of K, and

k(ak) =
[
k(ak, aD,1) . . . k(ak, aD,N )

]
.

In our case, we use the squared-exponential kernel func-
tion [5],

k(ai, aj) = σ2
f exp

(
− 1

2
(ai − aj)

T M−2(ai − aj)
)

+σ2
n δij ,

where δij is the Kronecker delta, that is 1 iff i = j
and 0 otherwise, and the constants M, σf , and σn are
hyperparameters. In our implementation with ak ∈ Rp, the
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Fig. 4. Definition of the robot velocities, vk and ωk , and the three pose
variables, xk , yk , and θk , calculated relative to the nearest path vertex by
Euclidean distance.

constant M is a diagonal matrix, M = diag(m), m ∈ Rp,
representating the relevance of each component in ak, while
the constants σ2

f and σ2
n, represent the process variation and

measurement noise, respectively. Finally, we have that the
prediction, g(ak), of the disturbance at an arbitrary state, ak,
is also normally distributed,

g(ak)|g ∼ N
(

k(ak)K−1ĝ , k(ak, ak)− k(ak)K−1k(ak)T
)
.

Unlike our previous work, which used only the predicted
mean of a disturbance in the model predictive controller,
here we make use of both the predicted mean and variance.
As detailed in Sec. IV-B, the variance of the disturbance
is used to produce worst-case sequences that the controller
should actively mitigate. During initial trials, when the model
uncertainty is high, the predicted variance is large and the
resulting control conservative. However, as the algorithm col-
lects more experience, the predicted variance decreases, and
the algorithm naturally transitions to an optimal controller.

V. IMPLEMENTATION

In our work, robots are modelled as unicycle-type vehicles
with position, xk = (xk, yk, θk), calculated relative to the
nearest path vertex by Euclidean distance, and velocity, vk =
(vact,k, ωact,k) (Fig. 4). The robots have two control inputs,
their linear and angular velocities, uk = (vcmd,k, ωcmd,k).
The commanded linear velocity is set to a desired, scheduled
speed at the nearest path vertex, leaving only the angular
velocity, ωcmd,k, for the NMPC algorithm to choose (i.e.,
we do not optimize the commanded linear velocity, leaving
it to be scheduled in advance [32]).

When the time between control signal updates is defined
as ∆t, the resulting a priori model used by the algorithm is

f(xk,uk) = xk+

 ∆t cos θk 0
∆t sin θk 0

0 ∆t

uk, (18)

which represents a simple kinematic model for our
robot; it does not account for dynamics or environmen-
tal disturbances. As described in our previous work [3],
we use an extended disturbance dependency in practice,
ak = (x̄k, v̄k−1,uk,uk−1), enabling the algorithm to learn

higher-order disturbances in addition to kinematics. Since our
robot is not equipped with velocity sensors, we approximate
vk according to

vact,k−1 =

√
(xk − xk−1)2 + (yk − yk−1)2

∆t
,

and

ωact,k−1 =
(θk − θk−1)

∆t
.

This is preferable to using wheel encoders because we want
the true speeds with respect to the ground and wheel encoders
are unable to measure slip. Because xk comes from our
vision-based localization system, we are able to measure
wheel slip in this way.

VI. EXPERIMENTAL RESULTS

A. Overview

We tested the MM-LB-NMPC algorithm on a 50 kg
Clearpath Husky robot traveling at 0.5 m/s. The controller
described in Sec. IV was implemented and run in addition to
the VT&R software on a Lenovo W530 laptop with an Intel
2.6 Ghz Core i7 processor with 16 GB of RAM. The camera
used for localization was a Point Grey Bumblebee XB3
stereo camera. The resulting real-time localization and path-
tracking control signals were generated at approximately
10 Hz. Since GPS was not available, the improvement due
to the MM-LB-NMPC algorithm was quantified by the
localization of the VT&R algorithm.

B. Tuning Parameters

The performance of the system was primarily adjusted
using the NMPC weighting matrices, Q and R. We selected
a 3:3:1 ratio balancing heading errors, position errors, and
control inputs. Otherwise, the prediction horizon, K = 10,
and the convergence criterion, α=0.001K, were selected to
enable online operation. The Sigma-Point scaling paramter,
γ = 2, was selected to enable accurate prediction of mean
and uncertainty. Hyperparameters were set automatically by
maximizing the log-likelihood of the measured disturbances
[3]. Finally, path vertices were defined after each 0.2 m of
travel or 3.5◦ of rotation during the VT&R teach phase to
reduce discontinuities in estimated and desired state.

C. Results

Over five trials, the algorithm successfully reduced the
maximum lateral and heading errors by up to 30%. Fig. 5
highlights the procession from robust control, when model
uncertainty was high, to optimal control, when the system
had acquired experience and model uncertainty was reduced.
In practice, the learned model uncertainty never goes to zero
due to measurement noise. As a result, the MM-LB-NMPC
algorithm shifted towards optimal control but ultimately
struck a balance between robust and optimal control over
time (Fig. 5).

In general, the Min-Max algorithm incurred an increase
in computation time of only 5-10%. This confirms our
selection of an Unscented Transform (Sec. IV-B) as an
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Fig. 5. Here we show the procession of model uncertainty (e.g, the maxi-
mum heading rate disturbance uncertainty), predicted costs, and maximum
lateral error over several trials. The plots show the automatic transition
between robust control, when uncertainty is high and maximum errors are
reduced significantly, to optimal control, when model uncertainty is low and
the controller finds a balance between errors and control inputs. Further, the
algorithm reduces errors due to non-repetitive noise, such as measurement
noise, that the learning algorithm is incapable of predicting.

efficient method of predicting the 3σ confidence region
without resorting to generating a large number of scenarios.

As shown in Fig. 6, we tested on a short path high-
lighting the effect of the Min-Max algorithm. On this path,
the measured disturbance affecting the heading rate of the
robot peaked at approximately 0.5 rad/s, representing nearly
50% of the commanded input 7 m along the path (Fig. 7).
The general trend observed is that path-tracking errors are
reduced over the entire path (Fig. 8). However, the errors
are not cancelled completely due to the optimality of the
NMPC algorithm, which finds a balance between path-
tracking errors and control inputs.

VII. CONCLUSION

In summary, this paper presents a novel, robust Min-Max
Learning-Based Nonlinear Model Predictive Control (MM-
LB-NMPC) algorithm. We derive an efficient and robust
extension to an existing LB-NMPC algorithm, altering the
performance objective to optimize for the worst-case sce-
nario. The algorithm uses a simple a priori vehicle model

2 4 6 8 10 12

−2

−1

0

1

2

Desired Path Based on Visual Odometry

0 m 2 m 4 m
6 m

8 m

10 m

12 m

y
 (

m
)

x (m)

 

 

Desired Path

Fig. 6. The test path for the MM-LB-NMPC algorithm. A short,
demonstrative path was selected to highlight the improvements due to the
Min-Max algorithm.
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Fig. 8. Path-tracking errors vs distance for trials 1 (dashed) and 5 (solid).
Reducing errors when model uncertainty is high (i.e., trial 1) is important
for controller stability and perspective-dependent, vision-based localization
algorithms. As model uncertainty decreases, the MM-LB-NMPC algorithm
naturally transitions towards an optimal control, balancing tracking errors
and control inputs.

and a learned disturbance model. Disturbances are modelled
as a Gaussian Process (GP) based on experience collected
during previous traversals as a function of system state,
input and other relevant variables. Nominal state sequences
are predicted using an Unscented Transform and worst-
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case scenarios are defined as sequences bounding the 3σ
confidence region.

Experimental results are provided from tests with a 50 kg
Clearpath Husky robot on a demonstrative path. The results
show reductions in maximum lateral and heading path-
tracking errors by up to 30% and a clear transition from
robust control reducing worst-case errors, when the model
uncertainty is high, to optimal control balancing tracking
errors and control inputs, when model uncertainty is reduced.
Furthermore, the algorithm requires only a 5-10% increase
in computation time relative to the learning algorithm.

In retrospect, the MM-LB-NMPC algorithm offers an
effective and efficient method of simultaneously exploiting
and decreasing model uncertainty to improve controller per-
formance and guarantee stability. Leveraging this work, our
future work focuses on using the 3σ confidence region to
provide safety guarantees and real-time speed scheduling.
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