
Iterative Learning of Feed-Forward Corrections for

High-Performance Tracking

Fabian L. Mueller, Angela P. Schoellig and Raffaello D’Andrea

Abstract— We revisit a recently developed iterative learning
algorithm that enables systems to learn from a repeated
operation with the goal of achieving high tracking performance
of a given trajectory. The learning scheme is based on a coarse
dynamics model of the system and uses past measurements to
iteratively adapt the feed-forward input signal to the system.
The novelty of this work is an identification routine that uses
a numerical simulation of the system dynamics to extract the
required model information. This allows the learning algorithm
to be applied to any dynamic system for which a dynamics
simulation is available (including systems with underlying
feedback loops). The proposed learning algorithm is applied to
a quadrocopter system that is guided by a trajectory-following
controller. With the identification routine, we are able to extend
our previous learning results to three-dimensional quadrocopter
motions and achieve significantly higher tracking accuracy due
to the underlying feedback control, which accounts for non-
repetitive noise.

I. INTRODUCTION

Current control systems usually regulate the behavior

of dynamic systems by reacting to noise and unexpected

disturbances. Typically, they are based on a mathematical

model of the system dynamics. The performance of this

approach is limited by the accuracy of the dynamics model

and the causality of the control action that is compensating

only for disturbances as they occur. Unfavorable effects of

these limitations are observed especially when operating

systems in regimes where feedback is not able to react

in time and the dynamic behavior is difficult to identify.

To achieve high tracking performance in such cases, we

propose data-based control approaches that are able to store

and interpret information from past executions, and infer the

correct actions for future experiments.

We build upon the iterative learning scheme previously

presented [1], [2], which relies on a coarse dynamics model

of the system under consideration when interpreting past

measurements and updating the feed-forward input after each

iteration. In contrast to [1], [2], where the system model

was derived analytically (e.g. from first principles), this work

introduces a numerical identification routine that extracts the

required model information from a dynamics simulation. The

novel identification routine allows us to apply the learning

algorithm to (complex) systems where no analytical model is

available, but where a numerical simulation is. This general-

ized approach comes at a slightly higher computational cost

This research was funded in part by the Swiss National Science Founda-
tion through the National Centre of Competence in Research Robotics.

F. L. Mueller, A. P. Schoellig and R. D’Andrea are with the Insti-
tute of Dynamic Systems and Control (IDSC), ETH Zurich, Switzerland.
(famuelle,aschoellig,rdandrea)@ethz.ch

due to the required numerical model extraction. The resulting

learning framework is conceptually simple and allows for an

acausal correction, which anticipates and compensates for

recurring disturbances before they occur. The latter distin-

guishes our approach from other iterative approaches, which

iteratively update the feedback law (cf. [3] and references

therein) or adapt the reference input online [4].

The proposed learning algorithm is applied to quadrotor

vehicles in the ETH Flying Machine Arena (FMA), cf. [5].

Quadrocopters offer exceptional agility, and complex effects

such as aero- and motor-dynamics have a significant impact

on the vehicle behavior. These effects are difficult to model

but can be compensated for by iterative learning.

The approach presented in this paper can be characterized

as an iterative learning control (ILC) technique. ILC became

a popular research topic beginning with [6], and has since

proven to be a powerful method for high-performance refer-

ence tracking. A recent overview of ILC is available in [7]

and [8]. Work in [7], [9]–[11] has shown that ILC can be

applied to systems with underlying feedback loops, and [12]

first applied ILC to quadrocopter trajectory tracking.

Below we present the learning algorithm, which is intro-

duced as a two-step process of first estimating the unknown

repetitive disturbance (Sec. II-B) and later compensating

for it (Sec. II-C). The numerical system identification rou-

tine is presented in Sec. III. In Sec. V, we apply the

derived learning framework to quadrocopters and present

the learning performance in actual experiments. A video of

the quadrocopter results is found at http://tiny.cc/

SlalomLearning. We conclude with a discussion of the

approach in Sec. VII and summarize the results in Sec. VIII.

II. ITERATIVE LEARNING

The goal of the proposed learning scheme is to use itera-

tive experiments to teach a dynamic system how to precisely

follow a desired trajectory, which is defined by a sequence

of output values y∗(k), k ∈ {1, 2, . . . , N}, with N < ∞
being the trial length in discrete time steps. To improve the

tracking performance over iterations, the learning algorithm

adapts the feed-forward input values after each experiment,

where uj(k), k ∈ {0, 1, . . . , N − 1}, denotes the input of the

jth experiment. Fig. 1 shows the basic setup. We use discrete-

time representations of signals, which may be obtained by

sampling the corresponding continuous-time signals.

The learning algorithm requires knowledge of the system’s

key dynamics around the desired trajectory, cf. Sec. II-A.

The algorithm builds upon this knowledge when exploiting

the data from past trials and updating the feed-forward

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1736-8/12/S31.00 ©2012 IEEE 3276

k ∈ {0, . . . , N -1}

ũj+1(k)

ũj(k)

ỹj(k)

uj(k) = unom(k) + ũj(k) yj(k) = ynom(k) + ỹj(k)

k ∈ {1, . . . , N}

Fig. 1. The general iterative learning framework considered in this paper:
A complete trial uj(k), k ∈ {0, 1, . . . , N − 1} is performed at iteration
j. Based on the output deviation ỹj(k), a new input uj+1(k) is calculated
and applied during the next trial.

input signal for the next trial. A Kalman filter interprets the

measurement of the last trial and incorporates it into the

current estimate of the modeling error (Sec. II-B). The input

update step takes the current estimate and returns a more

adequate input for the next trial by solving an optimization

problem (Sec. II-C).

The proposed learning scheme can be applied to dynamic

systems with underlying feedback loops. In Sec. IV we

show that the tracking accuracy of a quadrocopter guided

by a trajectory-following controller can be improved through

iterative experiments, cf. Fig. 3.

A. System Representation

Our learning scheme is a model-based approach in the

sense that it incorporates knowledge about the key dynamics

of the physical system under consideration. In particular, we

consider a mapping D,

D : U → (Y, C), (1)

that relates the input series u = (u(0), . . . , u(N − 1)) ∈
U ⊂ R

Nnu to the output sequence y = (y(1), . . . , y(N)) ∈
Y ⊂ R

Nny and to the constrained sequence c =
(c(1), . . . , c(N)) ∈ C ⊂ R

Nnc . The vector c(·) ∈ R
nc

includes all quantities that are subject to constraints. The

mapping (1) is not required to reproduce the real system’s

behavior in the minutest detail but is expected to approximate

the dominating dynamics to first order. In Sec. IV-C we show

that a first-principles model of the quadrocopter dynamics is

sufficient to derive the mapping (1).

The learning algorithm presupposes an initial guess for the

input, hereafter referred to as the nominal input unom ∈ U ,

yielding (ynom, cnom) = D(unom). We choose unom such that

the resulting ynom is close to the desired output sequence

y∗ = (y∗(1), . . . , y∗(N)). This is not required but represents

a good starting point for the learning process. Subsequently,

we consider deviations from the nominal trajectories,

ũ(k) = u(k)− unom(k) , ỹ(k) = y(k)− ynom(k)

c̃(k) = c(k)− cnom(k),
(2)

and introduce the lifted vector representation, cf. [13]:

u = [ũ(0), ũ(1), . . . , ũ(N − 1)]
T ∈ R

Nnu

y = [ỹ(1), . . . , ỹ(N)]
T ∈ R

Nny

c = [c̃(1), . . . , c̃(N)]
T ∈ R

Nnc .

(3)

Note that we use u, y, c (in contrast to u, y, c) to represent

deviations from the nominal input, output and constraint

sequence (namely, unom, ynom and cnom).

The key assumption of the learning algorithm is that static

linear mappings

y = F u , c = Lu , (4)

with F ∈ R
Nny×Nnu and L ∈ R

Nnc×Nnu can be derived

from (1), which capture the main dynamics of the real system

along the nominal trajectories (unom, ynom, cnom) by relating

the input deviation time series ũ(k), k ∈ {0, 1, . . . , N − 1},
to the corresponding time series of output and constrained

quantities deviations, ỹ(k), c̃(k), k ∈ {1, 2, . . . , N}.

The mapping (4) is motivated by the fact that any nonlinear

dynamics model of the form

ẋ(t) = f (x(t), u(t), t), y(t) = g (x(t), t), (5)

can be written as (4) when time-discretized and linearized

around the nominal trajectory, cf. [1]. In Sec. III we present

an algorithm that identifies the matrices F and L from a

dynamics simulation of (1). That is, we extract (4) from a

numerical simulation and do not require an explicit analytical

representation of (1).

The two steps of the proposed learning algorithm, the

disturbance estimation and the input update, fundamentally

rely on (4) and are explained in the following.

B. Disturbance Estimation

The purpose of the estimation step is to estimate a correc-

tion vector d ∈ R
Nny that is added to the first mapping in

(4) with the goal of improving the mapping’s accuracy. That

is, the input-output relation in (4) now reads as

y = F u + d. (6)

The evolution of the learning over a sequence of consecutive

trials is modeled by

dj+1 = dj + ωj

yj = F uj + dj + µj ,
(7)

where the subscript j indicates the jth execution of the de-

sired task, j ∈ {0, 1, . . . }. The vector dj can be interpreted as

repetitive disturbance along the trajectory, which is primarily

caused by unmodeled dynamics. The disturbance vector is

subject only to slight random changes ωj from iteration to

iteration. We account for process and measurement noise by

adding the random variable µj . Both stochastic variables,

ωj ∼ N (0, ǫjI) and µj ∼ N (0, ηjI), are trial-uncorrelated

sequences of zero-mean Gaussian white noise and, moreover,

assumed to be independent. The scalars µj , ηj represent the

corresponding variances and I denotes the identity matrix.

3277

We use an iteration-domain Kalman filter, which retains

all available information from previous trials (namely the

measured output deviations {y0, y1, . . . , yj}) and calculates

an updated estimate d̂j+1 of the disturbance vector after each

iteration based on the relationship (7). Given initial values for

the disturbance estimate and its covariance matrix, d̂0 and P0,

respectively, the disturbance estimate is updated according to

d̂j+1 = d̂j + Kj

(
yj − F uj − d̂j

)
, (8)

where Kj is the optimal Kalman gain, cf. [1].

C. Input Update

The learning algorithm is completed by the subsequent

input update step. Making use of the information provided by

the estimator, cf. Sec. II-B, we derive a model-based update

rule that calculates a new input sequence uj+1 ∈ R
Nnu in

response to the estimated disturbance d̂j+1. The goal of the

learning algorithm is to find an input deviation vector uj+1,

such that the system output of the next iteration yj+1 follows

the desired trajectory y∗ as closely as possible. In the context

of (2) and (3), this is equivalent to finding input corrections

uj+1 that minimize

‖ynom + yj+1 − y∗‖ = ‖y̌ + yj+1‖ , (9)

where y̌ is defined as y̌ = ynom−y∗. Since yj+1 is unknown,

we use its expected value instead,

E
[
yj+1

∣∣ y0, y1, . . . , yj
]
= F uj+1 + d̂j+1 . (10)

The complete optimization problem that constitutes the up-

date step is given as:

min
uj+1

∥∥∥S
(
y̌ + Fuj+1 + d̂j+1

)∥∥∥
ℓ
+ α

∥∥∥D uj+1

∥∥∥
ℓ

s.t. Luj+1 � cmax , (11)

where the first term accounts for (9) and α ≥ 0 weights an

additional penalty term that was included into the objective

function as a means of directly penalizing the input deviation

(D = I) or, depending on the choice of D, approximations

of its derivatives. The original error signal can be scaled and

weighted via the diagonal matrix S ∈ R
Nny×Nny . The vector

norm ℓ, ℓ ∈ {1, 2, ∞}, in (11) affects the convergence

behavior and the result of the learning algorithm. Further,

constraints are taken explicitly into account. The lifted vector

cmax denotes the maximum allowed deviations from nominal

values cnom.

The update law (11) is a convex optimization problem,

cf. [14], which can be solved very efficiently by existing

software tools such as [15]. Moreover, if the optimization

problem is feasible, then there exists a local minimum that

is globally optimal.

III. SYSTEM IDENTIFICATION

Both the estimation step (Sec. II-B) and the input update

step (Sec. II-C) rely on information about the system dyna-

mics provided by the mapping (4). The goal of the system

identification routine is to obtain the mapping matrices F

and L from a numerical simulation of D, cf. (1). Using the

nominal input unom, the simulation provides (ynom, cnom) =
D(unom). The idea of the proposed routine is to identify F
and L by running a sequence of simulations with inputs u

that differ from the nominal input in exactly one of their

(scalar) elements, that is

u = unom +∆u · e, ∆u≪ 1 , (12)

where e is a vector of the form (0, 0, . . . , 1, 0, 0, . . .) con-

taining exactly one non-zero element. We denote the ith
element of the lifted input vector by the superscript (i) and

write u(i) ∈ R. The identification routine is summarized in

Algorithm 1. By observing the changes in y and c caused

by the change in the input according to (12), the matrices F
and L are computed, allowing us to use (4) for predictions.

However, these predictions are valid only around the nominal

trajectory ynom. Thus, if ynom is far from y∗, it might be

necessary to re-identify the system after some iterations

around the current trajectories (uj , yj , cj), j > 0, in order to

ensure accurate predictions. Note that the mapping D must

be continuous in u to obtain useful approximations for F
and L.

Algorithm 1 Identification routine

Require: Nominal input unom and mapping D.

1: /∗ ∗ ∗ Preliminary Step ∗ ∗ ∗/

2: Compute (ynom, cnom) = D(unom).

3: /∗ ∗ ∗ Identification Loop ∗ ∗ ∗/

4: Allocate: F ∈ R
Nny×Nnu , L ∈ R

Nnc×Nnu

5: Choose input increment ∆u≪ 1, ∆u ∈ R.

6: for i = 1 : Nnu do

7: Define simulation inputs: u1 = u2 = unom

8: Change ith element: u
(i)
1 = u

(i)
1 +∆u

9: Change ith element: u
(i)
2 = u

(i)
2 −∆u

10: Simulation i.1: apply u1, store (y1, c1) = D(u1)
11: Simulation i.2: apply u2, store (y2, c2) = D(u2)

12: Compute ith column of F and L:

F (:, i) = (y2 − y1)/(2∆u)

L(:, i) = (c2 − c1)/(2∆u)
(13)

13: end for

14: return Lifted-domain mapping matrices F and L.

IV. EXPERIMENTAL SETUP

The iterative learning algorithm is applied to quadrocopter

vehicles with the objective of precisely tracking trajecto-

ries in the three-dimensional space. The quadrocopters are

operated in the ETH Flying Machine Arena (FMA), a

dedicated testbed for motion control research. Similar to

[16], [17], a motion capture system is used that provides

precise position and attitude measurements of the vehicles.

The localization data is sent to a PC that runs the control

algorithms (including the iterative learning algorithm) and

3278

ωx,cmd

ωy,cmd ωz,cmd

fcoll,cmd
fd,cmdfa,cmd

fb,cmd fc,cmd

Fig. 2. The control inputs of the quadrocopter are the body rates ωx,cmd,
ωy,cmd, and ωz,cmd and the collective thrust fcoll,cmd. These inputs are con-
verted by an onboard controller into motor forces fi,cmd, i ∈ {a, b, c, d}.

sends commands back to the quadrocopters. More details

about the test environment can be found in [18] and on the

FMA web page, cf. [5].

A. Quadrocopter Control

The quadrotor vehicles are controlled by an onboard

controller (OBC) and by a trajectory-following controller

(TFC) that runs off board. The OBC accepts four inputs,

the commanded collective thrust fcoll,cmd and rotational body

rates (ωx,cmd, ωy,cmd, ωz,cmd), and computes desired motor

forces fi,cmd i ∈ {a, b, c, d} using feedback from rate gyros,

cf. Fig. 2. The thrust and body rate commands are provided

by the TFC, which takes desired position and yaw angle (and,

optionally, corresponding derivatives) as an input, cf. Fig. 3.

The TFC closes the loop using position and attitude mea-

surements provided by the motion capture camera system.

Refer to [19] for a detailed description of the TFC design.

The TFC is commonly used for trajectory tracking in

the FMA. Applications include standard routines such as

take-off and landing, as well as research projects like the

‘Music in Motion’ project, which builds upon the TFC and

creates multi-vehicle performances that are designed and

synchronized to music (see [5] for more information). We

typically operate the TFC in two different modes: (C1)

using desired quadrocopter position and yaw angle as inputs

(later called no feed-forward), and (C2) additionally feeding

velocity and acceleration values as inputs (called with feed-

forward).

B. Applying ILC to Quadrocopters

The iterative learning scheme of Sec. II is applied to the

quadrocopter system on the level of position and yaw angle

input. That is, the input and output in the framework of (1)

are
u = [xcmd, ycmd, zcmd, ψcmd]

T (14)

y = [x, y, z, ẋ, ẏ, ż, φ, θ, ψ]T , (15)

where the quadrocopter’s position and velocity are denoted

by (x, y, z) and (ẋ, ẏ, ż), respectively, and (φ, θ, ψ) are the

vehicle’s roll, pitch and yaw angle.

The vehicles are subject to several constraints that result

from both limited actuator action and limited range of sensor

measurements. First, the thrust that each motor can provide

is limited by fmin ≤ fi ≤ fmax, i ∈ {a, b, c, d}. Second,

Fig. 3. We build the iterative learning scheme around a quadrocopter that
is controlled by a trajectory-following controller.

due to the motor dynamics, the rate of change of the thrust

is also limited:

∣∣∣ḟi
∣∣∣ ≤ ḟmax, i ∈ {a, b, c, d}. Furthermore,

the onboard rate gyroscopes have a limited measurement

range, |ωx| , |ωy| , |ωz| ≤ Ωmax. The constrained quanti-

ties are summarized by c(k) = (f(k),∆f(k),Ω(k)) with

f(k) = (fa(k), . . . , fd(k)), ∆f = (∆fa(k), . . . ,∆fd(k))
and Ω(k) = (ωx(k), ωy(k), ωz(k)), where ∆fi represents

a numerical approximation of the time derivative of fi.
The constraints are taken explicitly into account in the

optimization problem (11).

C. Quadrocopter Dynamics

The simulated quadrocopter dynamics that are at the

heart of the identification routine (cf. Sec. III) neglect all

aerodynamic effects, motor dynamics or battery behavior,

and aim to reproduce the fundamental dynamic effects only.

The continuous-time equations governing the

quadrocopter’s dynamics (first-principles model) are

described in [19], and the dynamic behavior of

Ω(t) = (ωx(t), ωy(t), ωz(t)) is modeled as a first-order

system. Given Ω and Ω̇ at each time step, the motor forces

(fa, fb, fc, fd) are obtained from the rotational quadrocopter

dynamics by solving a linear system of equations, see e.g.

[18]. Parameters such as the vehicle mass are found in [2].

V. RESULTS

This section presents experimental results of the proposed

learning scheme applied to quadrocopters. We focus on

a particular S-shaped trajectory, for which we show that

our learning algorithm significantly improves the tracking

performance. While demonstrating the key characteristics of

the approach for a single trajectory, the learning scheme

has proven to be equally effective for arbitrary 3D trajecto-

ries, see video at http://tiny.cc/SlalomLearning

where various slalom trajectories are learned.

A. Performance of Trajectory-Following Controller (TFC)

We first use the standard TFC described in Sec. IV-A

to track the desired S-shaped trajectory (see dashed line in

Fig. 4). The resulting tracking performance of the TFC is

depicted in Fig. 4 for both control modes, (C1) and (C2).

The input to the TFC is the desired trajectory itself (and

corresponding derivatives). The TFC’s tracking performance

is unsatisfactory for both modes. When repeatedly executing

the trajectory, we observe a large repetitive tracking error

3279

−1 −0.5 0 0.5

0

0.5

1

1.5

y [m]

z
[m

]

Length: 2.0m
Time: 2.48s
Max y−vel: 1.03m/s
Max z−vel: 1.34m/s

Fig. 4. Tracking an S-shaped trajectory with the trajectory-following
controller (TFC). The quadrocopter position in the yz-plane is depicted
for two different control modes: (C1) the TFC uses the desired position and
yaw angle as inputs (dark blue), and (C2) the TFC uses additional velocity
and acceleration feed-forward terms as inputs (light blue). The dashed black
line shows the desired trajectory. A repeated operation shows that a large
proportion of the tracking error is repetitive and only small non-repetitive
effects are visible.

−0.5 0 0.5

0

0.5

1

1.5

y [m]

z
[m

]

It 0

It 1 It 2

Fig. 5. Learning an S-shaped trajectory. The quadrocopter position in the
yz-plane is depicted for different iterations. The dashed black line shows the
desired trajectory. The trajectories of iterations 0–2 are drawn in different
colors, iterations 3–9 are shown in light blue color.

component and small variations between subsequent execu-

tions due to non-repetitive disturbances. Consequently, the

overall system behavior, including quadrocopter and TFC,

is highly repetitive: repeated executions with the same input

result in almost identical output trajectories. Iterative learning

schemes are well-suited for such systems, since they are able

to learn how to compensate for repetitive error components

and thus are able to significantly improve the tracking

accuracy. Note that we chose a particularly aggressive S-

shaped motion (see velocity values in Fig. 4) to highlight

the limitations of pure feedback control.

B. Tracking Performance Using Iterative Learning

Fig. 5 shows the output trajectories when applying the

proposed iterative learning algorithm. After two learning

steps, the quadrocopter follows the desired trajectory closely.

0 1 2 3 4 5 6 7 8 9

10
−1

10
0

10
1

Iteration

W
ei

g
h

te
d

 2
−

n
o

rm
 s

ta
te

 e
rr

o
r

TFC no feed−forward

TFC with feed−forward

State error std

Fig. 6. Error convergence for the S-shaped trajectory. The error is computed
according to (16). Ten independent learning experiments were performed.
The circles and bars show the average error and standard deviation,
respectively. The dashed blue and green lines show the average tracking
error of the trajectory-following controller (pure feedback control) with and
without feed-forward terms. The dashed red line represents the standard
deviation of the tracking error when applying the same input repeatedly. It
can be viewed as a measure of the noise level in the experimental setup.

The tracking error convergence is depicted in Fig. 6, where

we consider the weighted error

ew,j := ‖S (y̌ + yj)‖2 (16)

as a performance measure reflecting the learning objective

in (11). Starting from an initial performance determined

by the TFC performance, the learning scheme successfully

compensates for repetitive errors along the trajectory and, in

5 to 6 iterations, reduces the tracking error (16) to values

in the range of the stochastic (i.e. non-repetitive) noise level.

The dashed red line in Fig. 6 depicts the standard deviation of

the tracking error when applying the same input to the system

and observing the variations of the performed trajectories. It

can be viewed as a measure of the noise level in the system

and represents a lower bound of the achievable tracking

accuracy. For an intuitive interpretation, the average position

tracking error along the trajectory after successful learning

is in the range of 2–3 cm. This is also the accuracy that we

achieve when hovering the vehicle at a given point.

As discussed in Sec. II, the learning scheme iteratively

updates the reference input signal sent to the system. Fig. 7

depicts the y-position input signals of the initial trial and of

iteration 7–9. The input trajectories converge over iterations

until their variability is in the range of the stochastic noise

level. The final input trajectories, together with the estimated

disturbance vector, comprise the knowledge that we gain

from the iterative learning process. Fig. 7 shows that the

learned reference signal commands the left/right motion

sooner (compensating for the delay in the system) and

with larger amplitudes (counteracting the system’s inherent

attenuation).

VI. COMPUTATIONAL COMPLEXITY

Identification Routine. The number of simulations re-

quired to identify the mappings (4) is linear in N and nu.

3280

0 0.5 1 1.5 2 2.5
−1

0

1

Time [s]

In
p

u
t

y
−

p
o

s.
 [

m
]

Fig. 7. Learned y-position inputs for the S-shaped trajectory. The initial
input corresponds to the desired output trajectory and is drawn in dark blue.
The converged learning inputs (iterations 7–9) are shown in light blue color.

According to Algorithm 1, we need exactly 2Nnu simula-

tions. Obviously, the computation time of a single simulation

depends on the complexity and implementation of (1). The

identification of the trajectory of Sec. V takes 93 s on a

standard desktop PC (Windows 7, 64-bit; quad-core @ 2.8

GHz, 4 GB RAM).

Learning Algorithm. A detailed complexity analysis of

the learning algorithm can be found in [2]. The biggest

computational cost is associated with the solution of (11),

which takes 30 s in the example presented.

VII. ADVANTAGES & LIMITATIONS

The experimental results presented in the previous section

showed that the learning algorithm significantly improves the

system’s tracking performance. We achieve a high tracking

accuracy due to the fact that the learning scheme embraces

the quadrocopter including underlying feedback, cf. Fig. 3.

This setup results in a highly repetitive system, where

the feedback controller compensates for most of the non-

repetitive noise. The remaining non-repetitive noise acting

on the overall closed-loop system defines a lower bound on

the achievable tracking accuracy. Compared to our previous

work [2], this bound has been significantly reduced with this

setup.

The tracking error convergence speed depends on the

prediction quality of the mapping (6), which is based on

the identified system dynamics, cf. Sec. III. However, ex-

perimental results suggest that the learning algorithm is

very robust to inaccurate mappings. Moreover, after a few

executions of the learning step, the system may be re-

identified around (uj , xj , yj) for some j > 0 in order to

obtain a more accurate mapping (4). Further, an inaccurate

constraint mapping c = Lu, cf. (4), may corrupt the learning

by either allowing infeasible values or being too restrictive.

This can be overcome by estimating an additive correction

vector dc similar to d in (6); that is, c = Lu + dc.

VIII. CONCLUSION

This paper provided a conceptually simple and computa-

tionally efficient learning framework for trajectory tracking.

The approach is a generalization of our previous work. No

analytical system model is required; instead, the algorithm

is applicable to any dynamic system, for which a numerical

dynamics simulation is available. Because of the acausal

learning action that corrects for repetitive disturbances before

they occur, the final tracking performance of the proposed

learning scheme outperforms pure feedback control. By

basing the learning approach on a coarse dynamics model of

the system, we achieve fast convergence, usually in around

5 iterations. The novelty of this paper is that the dynamics

model was derived from a numerical simulation, and that this

identification routine, combined with the learning algorithm,

were experimentally evaluated on quadrotor vehicles guided

by an underlying trajectory-following controller.

REFERENCES

[1] A. P. Schoellig and R. D’Andrea, “Optimization-based iterative learn-
ing control for trajectory tracking,” in Proceedings of the European

Control Conference (ECC), 2009, pp. 1505–1510.
[2] A. P. Schoellig, F. L. Mueller, and R. D’Andrea, “Optimization-

based iterative learning for precise quadrocopter trajectory tracking,”
Autonomous Robots, vol. 33, pp. 103–127, 2012.

[3] E. Todorov and W. Li, “A generalized iterative LQG method for
locally-optimal feedback control of constrained nonlinear stochastic
systems,” in Proceedings of the American Control Conference (ACC),
vol. 1, 2005, pp. 300–306.

[4] M. Kawato, “Feedback-error-learning neural network for supervised
motor learning,” Advanced Neural Computers, vol. 6, no. 3, pp. 365–
372, 1990.

[5] “The Flying Machine Arena,” www.flyingmachinearena.org, last ac-
cessed March 07, 2012.

[6] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of
robots by learning,” Journal of Robotic Systems, vol. 1, no. 2, pp.
123–140, 1984.

[7] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems Magazine, vol. 26, no. 3, pp.
96–114, 2006.

[8] H.-S. Ahn, K. L. Moore, and Y. Chen, Iterative Learning Control:

Robustness and Monotonic Convergence for Interval Systems (Com-

munications and Control Engineering), 1st ed. Springer, 2007.
[9] I. Chin, S. J. Qin, K. S. Lee, and M. Cho, “A two-stage iterative

learning control technique combined with real-time feedback for
independent disturbance rejection,” Automatica, vol. 40, no. 11, pp.
1913–1922, 2004.

[10] M. Cho, Y. Lee, S. Joo, and K. S. Lee, “Semi-empirical model-
based multivariable iterative learning control of an RTP system,” IEEE

Transactions on Semiconductor Manufacturing, vol. 18, no. 3, pp.
430–439, 2005.

[11] K. Barton, S. Mishra, and E. Xargay, “Robust iterative learning
control: L1 adaptive feedback control in an ILC framework,” in
Proceedings of the American Control Conference (ACC), 2011, pp.
3663–3668.

[12] O. Purwin and R. D’Andrea, “Performing aggressive maneuvers using
iterative learning control,” in Proceeding of the IEEE International

Conference on Robotics and Automation (ICRA), 2009, pp. 1731–
1736.

[13] B. Bamieh, J. B. Pearson, B. A. Francis, and A. Tannenbaum, “A
lifting technique for linear periodic systems with applications to
sampled-data control,” Systems & Control Letters, vol. 17, no. 2, pp.
79–88, 1991.

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[15] “IBM ILOG CPLEX Optimizer,” http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/, last accessed February 08,
2012.

[16] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time
indoor autonomous vehicle test environment,” IEEE Control Systems

Magazine, vol. 28, no. 2, pp. 51–64, 2008.
[17] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP

multiple micro UAV testbed,” IEEE Robotics and Automation Maga-

zine, vol. 17, no. 3, pp. 56–65, 2010.
[18] S. Lupashin and R. D’Andrea, “Adaptive fast open-loop maneuvers

for quadrocopters,” Autonomous Robots, vol. 33, pp. 89–102, 2012.
[19] A. P. Schoellig, C. Wiltsche, and R. D’Andrea, “Feed-forward pa-

rameter identification for precise periodic quadrocopter motions,” in
Proceedings of the American Control Conference (ACC), 2012, pp.
4313–4318.

3281

