
Fusion of Machine Learning and MPC under Uncertainty:
What Advances Are on the Horizon?

Ali Mesbah, Kim P. Wabersich, Angela P. Schoellig, Melanie N. Zeilinger, Sergio Lucia, Thomas A. Badgwell,
and Joel A. Paulson

Abstract— This paper provides an overview of the recent
research efforts on the integration of machine learning and
model predictive control under uncertainty. The paper is
organized as a collection of four major categories: learning
models from system data and prior knowledge; learning control
policy parameters from closed-loop performance data; learning
efficient approximations of iterative online optimization from
policy data; and learning optimal cost-to-go representations
from closed-loop performance data. In addition to reviewing
the relevant literature, the paper also offers perspectives for
future research in each of these areas.

I. INTRODUCTION

Model predictive control (MPC) has become the prime
technology for optimization-based control of constrained,
multivariable systems [1], [2], with diverse applications
ranging from manufacturing and energy systems to auto-
motive systems and robotics [3]. A great deal of MPC
research in the past two decades has focused on model
uncertainty handling to realize safe and robust closed-loop
MPC performance in spite of, for example, inadequate data
for system identification, restrictive model classes, or pres-
ence of exogenous disturbances. While robust and stochastic
MPC strategies [4]–[6] enable a systematic treatment of
various sources of system uncertainty affecting the MPC
performance, mainly to ensure constraint satisfaction with
respect to certain disturbance or uncertainty classes, they
follow a strict separation between the offline MPC design and
closed-loop application during which the controller remains
largely unchanged. Such a paradigm for uncertainty handling
may severely limit the MPC performance and compromise
constraint satisfaction for complex dynamical systems with
hard-to-model and time-varying behavior, e.g., in situations
where a priori system knowledge and/or data is unavailable.

The proliferation of machine learning (ML) and artificial
intelligence (AI), combined with the availability of increased
computational and sensing capabilities in modern control
systems, has led to a rapidly growing interest in the use

AM is with the Department of Chemical and Biomolecular Engineering
at the University of California, Berkeley, CA 94720, USA.

KPW and MNZ are with the Institute for Dynamic Systems and Control,
ETH Zürich, Zürich, CH-8092, Switzerland.

APS is with the Institute for Aerospace Studies, University of Toronto,
Toronto, ON, M3H 5T6, Canada.

SL is with the Laboratory of Process Automation Systems, TU Dortmund,
Dortmund, Germany.

TAB is the Chief Technology Officer at Collaborative Systems Integra-
tion, Austin, TX 78704, USA.

JAP is with the Department of Chemical and Biomolecular Engineering
at The Ohio State University, Columbus, OH 43210, USA.

of learning and data-driven techniques for MPC [7]. While
most research in this area has focused on automatic and
data-driven adaptation of the prediction model or uncertainty
description, the opportunities for machine learning extend far
beyond model improvement and adaption.

In this paper, we give an overview of the recent research
efforts on the fusion of ML and MPC under uncertainty
and discuss perspectives for future research in this rapidly
evolving field. To this end, we first provide a broad overview
of MPC for uncertain systems in order to motivate and
frame these efforts. Consider the following representation of
a nominal (or certainty equivalence) MPC problem

min
Ut

Jf (xN |t, t+N) +

N−1∑
k=0

ℓ(xk|t, uk|t, t+ k), (1a)

s.t. xk+1|t = f(xk|t, uk|t, t+ k), (1b)
(xk|t, uk|t) ∈ Z, (1c)
xN |t ∈ Xf , (1d)
x0|t = xt, ∀k = 0, . . . , N − 1. (1e)

Here, (1a) defines the total cost function that is composed of
a sum of stage costs ℓ(·) over the prediction horizon N and
a terminal cost Jf (·). The recursive equation (1b) defines
the predicted dynamics of the system in which a (potentially
time-varying) model of the true system, denoted by f(·), is
used to predict the future system state xk|t given changes in
the control input uk|t. The subscript k|t on any variable is
used to denote the prediction of the variable k-steps ahead of
the current time index t. (1c) represents fairly general mixed
path constraints on the predicted states and inputs. The set
Z often decomposes into a form such as Z = X ×U , where
xk|t ∈ X denotes the state constraints and uk|t ∈ U denotes
the control input constraints. The terminal constraint (1d) can
be used to restrict the allowable values of the state at the end
of the prediction horizon; the set Xf can be used to ensure
constraint satisfaction is possible for time steps beyond the
prediction horizon when properly chosen (see, e.g., [8] for a
detailed discussion on set invariance in the context of MPC).
Lastly, (1e) specifies the initial state condition in terms of the
true state xt. Here, we assume the true system state can be
perfectly measured for simplicity of exposition, but there has
been significant work on the more general output feedback
MPC that requires an additional state estimation step.

The decision variables in the MPC problem (1) are the
control inputs over the prediction horizon, denoted by Ut =

{u0|t, u1|t, . . . , uN−1|t}. Let U⋆
t (xt, t) denote the optimal

control input sequence that solves (1) at the current time t.
The key idea in MPC is to implement only the first element
of this optimal input sequence, which will be re-planned once
a new state value is measured. This procedure implicitly
defines a feedback control law πMPC(xt, t) = u⋆

0|t(xt, t),
where u⋆

0|t(xt, t) is the first element of U⋆
t (xt, t). Although

πMPC provides some degree of inherent robustness to system
uncertainty due to feedback from xt, it may not be sufficient
to handle large uncertainties that may arise from errors in the
model structure and/or parameters, or significant exogenous
disturbances. Thus, as discussed above, there have been
significant efforts to develop MPC strategies that are by
design robust. Broadly speaking, these strategies modify the
formulation (1) to include prediction models that explicitly
incorporate uncertainty into the predictions.

A fairly general way to represent system uncertainties is in
the form of stochastic variables [6]. Accordingly, the MPC of
uncertain systems can take the general form of a closed-loop
stochastic MPC (CL-SMPC) problem as follows

min
Πt

E

{
Jf (xN |t, t+N) +

N−1∑
k=0

ℓ(xk|t, uk|t, t+ k)

}
,

(2a)
s.t. xk+1|t = f(xk|t, uk|t, t+ k,wk|t, θt), (2b)

uk|t = µk|t(x0|t, . . . , xk|t), (2c)

Pr
{
(xk|t, uk|t) ∈ Z

}
≥ β, (2d)

Pr
{
xN |t ∈ Xf

}
≥ βf , (2e)

wk|t ∼ Pwk|t(·|xk|t, uk|t, t+ k), θt ∼ Pθt , (2f)

x0|t = xt, ∀k = 1, . . . , N − 1, (2g)

where (2a) is similar to (1a), except we now must take an
expectation E{·} of the cost function with respect to the
random predicted disturbance sequence {w0|t, . . . , wN−t|t}
and the random variable θt that represents model parameter
uncertainty; (2b) is the stochastic prediction model that
defines the evolution of the random state over time; (2c)
specifies the current control input in terms of a control law
µk|t, which is generally a function that can make use of
all information in the form of state measurements up until
the current time step; (2d) and (2e) are analogous to (1c)
and (1d), respectively, but stated as chance constraints due
to the inclusion of stochastic uncertainties; (2f) specifies
the probability distributions of the predicted disturbance
sequence and model parameter uncertainty; and the initial
condition (2g) remains exactly the same as (1e).

The decision variables in the CL-SMPC problem are the
control policies over the prediction horizon, denoted by
Πt = {µ0|t, . . . , µN−1|t}. Let Π⋆

t (xt, t) denote the optimal
control policy sequence that solves (2) at the current time
index t. Similarly to nominal MPC, we look to implement
this implicitly defined feedback controller in a receding-
horizon fashion, which induces the CL-SMPC control law

πCL-SMPC(xt, t) = µ⋆
0|t(x0|t;xt, t), (3)

where µ⋆
0|t is the first element of the optimal control policy

sequence Π⋆
t (xt, t). Although CL-SMPC has the potential

to greatly improve robustness to system uncertainties when
compared to nominal MPC, it is not tractable to evaluate
πCL-SMPC by solving (2) at every time index t. The two
fundamental challenges in solving (2) are: (i) Πt is com-
posed of a sequence of functions that can arbitrarily map
the states to control inputs, which are infinite dimensional
objects that cannot be optimized over using readily available
methods; and (ii) the probabilistic operators that appear
in the cost and chance constraint functions involve high-
dimensional integrals over generally nonlinear functions and
support sets. In fact, robust and stochastic MPC strategies
look to approximate (2) in view of these challenges (e.g.,
[4]–[6]). Many of these strategies are capable of providing
robust or probabilistic stability and constraint satisfaction
guarantees under certain modifications to (2), though these
guarantees may be conservative due to the suboptimality of
the introduced approximations. There is typically a natural
tradeoff between the accuracy of the control policy approxi-
mation, as well as uncertainty propagation, and the resulting
computational cost. Yet, there has been limited research on
the relationship between the policy representation and the
corresponding uncertainty propagation technique.

The focus of this paper is on how ML techniques can be
effectively fused with MPC under uncertainty formulations
that in essence approximate the CL-SMPC problem (2).
ML can aid in the automated and data-driven adaptation or
generation of different elements of these MPC formulations
such that the closed-loop control performance with respect
to that of the desired theoretical performance attained by
exactly solving (2) is improved. The ways in which ML can
assist the design of MPC under uncertainty are diverse. This
paper is organized as a collection of contributions to discuss
four major categories in learning-assisted MPC design under
uncertainty:

1) Learning model and uncertainty descriptions from
system data (Section II): The MPC performance and
computational cost critically hinge on the availability
of a sufficiently accurate and suitable model of sys-
tem dynamics and its uncertainty descriptions for the
application at hand. System data can be used to auto-
matically adapt model descriptions during closed-loop
operation, or in between operation episodes. Section II
is led by Kim Wabersich, Angela Schoellig and Melanie
Zeilinger.

2) Learning control policy parameters from closed-
loop performance data (Section III): Approximate
parameterizations of the general control policy in (2)
typically involve several choices and parameters. These
control design choices, along with the typical MPC
tuning parameters, can be viewed as hyperparameters of
the MPC under uncertainty formulations, which can be
automatically selected using closed-loop performance
data. Section III is led by Joel Paulson.

3) Learning efficient approximations of iterative online

optimization methods from policy data (Section IV):
Approximations of the CL-SMPC control law (3) may
still be computationally expensive to evaluate in real-
time, particularly for fast-sampling systems. Further-
more, online optimization algorithms may have large
working memory requirements that prevent their use in
certain embedded control applications. Open- or closed-
loop data of the implicitly-defined MPC law, generated
offline, can be used to learn explicit and cheap-to-
evaluate control laws. Section IV is led by Sergio Lucia.

4) Learning optimal cost-to-go representations from
closed-loop performance data (Section V): The CL-
SMPC problem (2) itself is an approximation of an
underlying “true” stochastic optimal control problem,
whose optimality conditions can be expressed as a
stochastic dynamic program. Problem (2) has a close re-
lationship with Bellman’s optimality conditions, which
constitute the basis for a large family of reinforcement
learning (RL) methods. Not only can we interpret (2)
in terms of a specific class of RL methods, we can
actually combine MPC and RL together to potentially
improve closed-loop performance over time. One such
example would be using RL to determine a better cost-
to-go representation using performance data generated
in a closed-loop fashion. Section V is led by Thomas
Badgwell, Joel Paulson, and Ali Mesbah.

In the remainder of this paper, we discuss these categories.
We argue how the learning problem in each of these cate-
gories can be tackled using the “right” choice of data (e.g.,
system data or closed-loop performance data) and structure
of a learnable model that can range from parametric data-
driven representations to universal function approximators.

II. LEARNING SYSTEM MODEL AND UNCERTAINTY
DESCRIPTIONS

Improved sensing and computational capabilities have
led to a paradigm shift in model-based control from first-
principles approaches that require relatively few measure-
ments to fully data-enabled (grey-box) models. The cor-
responding developments extend the field of system iden-
tification [9] towards more complex model structures and
towards robust or probabilistic models. They have showcased
improved controller performance with reduced manual mod-
eling effort. In particular, MPC has seen significant success
in this regard as it provides systematic handling of constraints
and allows for a principled integration of data-driven models.
While we focus on models related to learning-based MPC
research [7, Section 3], simulation environments can equally
benefit from the presented methods for reliable tuning of
model-free controllers and closed-loop system verification.
An important aspect that we do not cover here is the design
of experiments to obtain information-rich data from a system
in a safe and efficient manner. While the application of
open-loop input signals can be sufficient in case of linear
systems [9], nonlinear systems typically require closed-loop
excitation mechanisms, which is an active field of research,
see, for example, [10], [11].

We consider discrete-time dynamical systems of the form

x(k + 1) = ftrue(x(k), u(k), k, w(k), θtrue), (4)

where x(k) ∈ Rnx is the system state and u(k) ∈ Rnu

is the applied input at time step k. The quantity w(k)
is a sequence of random variables with known bound or
distribution, typically describing the effects of external sys-
tems and the environment such as wind or temperature,
which can vary at every sampling time. The subscript ‘true’
in (4) highlights the true but often unknown quantities of the
control system, which we categorize into structural uncer-
tainties of the model ftrue and parametric uncertainties of
the parameters θtrue. Structural uncertainty can be induced,
for example, by simplifications made when deriving first-
principle models, such as linear friction models or neglected
complex aerodynamic effects. Parametric uncertainties θtrue
quantify uncertain system characteristics that are constant
for all times. Such parametric uncertainties often occur in
grey-box models, for example, in the form of mass or
spring constants, or due to manufacturing tolerances of a
system. Data-driven modeling techniques aim at reducing
these sources of uncertainties with little manual effort using
available measurements, as detailed in the following.

We assume access to a measured state and input sequence

X := [x(0), .., x(N − 1)], U := [u(0), .., u(N − 1)] (5)

of length N of system (4) in combination with some in-
formation about w(k), depending on the specific learning
technique. While we consider data in the form of (5) for
simplicity, all methods presented in this part can equally
handle episodic measurements, which include multiple resets
of the system state. Importantly, the amount of information
that (5) contains typically determines the resulting prediction
accuracy. In the case of approximate linear systems, it is, e.g.,
possible to characterize sufficient conditions on system data
for parameter identification through a so-called persistency
of excitation condition. Corresponding input signals can be
designed using, e.g., generalized binary noise or sum of
sinusoids [12, Section 3.3.2]. More general, the challenge
of gathering informative trajectories for model learning and
control, including nonlinear system models, is considered in
the field of dual control, see, e.g., [13] for an overview. In
addition to measurements (5), most techniques can efficiently
incorporate existing prior knowledge about the system in
various forms as discussed in the corresponding sections.

Prediction models of (4) are decomposed into

f(x, u, k, w) = fn(x, u, k, θn) + fl(x, u, k, w, θ), (6)

containing a nominal model fn with nominal parameters
θn and a learning-based model fl. In the following, we
present learning methods to infer models of the form (6)
from available data (5). While we briefly review so-called
nominal models in Section II-A, the main focus will be on
methods that allow for a principled treatment of the resulting
model uncertainty, which is critical for performance and
safety certificates. Thereby, we distinguish between model

learning schemes that have evolved from the extensively
studied field of robust control theory in Section II-B and
successful probabilistic learning formulations in Section II-
C, which are typically more challenging to exploit in control.

Remark 1: Here, we consider access to full state mea-
surements (5), whereas in practice often only output mea-
surements y(k) = g(x(k)), y(k) ∈ Rny with ny < nx are
available. One approach to recover models of the form (6)
is to define the system state as x(k) = [y(k), y(k −
1), .., y(k−my), u(k−1), u(k−2), .., u(k−mu)], yielding an
autoregressive model [9], [14], [15]. Furthermore, there is a
large body of literature considering the identification of state-
space models in combination with state estimators, see, for
example, [16] in case of parametric uncertainties, and [17]
addressing structural uncertainties. In addition, behavioral
approaches [18], as briefly mentioned in Section II-A, handle
output measurements naturally.

A. Nominal Models

Data-driven models, for which model uncertainty esti-
mates are difficult to obtain or to integrate into the controller
design explicitly, are often used as nominal models without
a rigorous error quantification. Such models can nevertheless
provide good predictive performance and are commonly
employed in practical applications. Noteworthy examples
include parametric models in the form of (recurrent) artificial
neural networks in combination with inverse control [19] and
MPC [20]. Nonparametric linear system descriptions based
on behavioral system analysis gained significant traction
in recent years for nominal data-driven trajectory predic-
tions [18], including recent extensions toward robust [21],
[22] and probabilistic [23] controller design.

B. Robust Models

Robust models are based on a bounded disturbance set
assumption, that is, w(k) ∈ W with W bounded, and provide
uncertainty estimates that include the true system dynamics
(4) with probability one. To obtain a robust model (6),
we distinguish between the case that fl is known, leading
to parametric set-membership estimation [24] of a possibly
small set Θ ⊆ Rnθ containing plausible system parameters
θ, and nonparametric techniques [25] that directly estimate
a set of functions F containing (4).

In the parametric uncertainty case, the goal is to compute
possible parameter values θ that are consistent with the
available system trajectories (5) according to

Ωk =

{
θ

∣∣∣∣ ∀j = 0, .., k − 1, ∃w(j) ∈ W s.t.:
x(j + 1) = f(x(j), u(j), j, w(j), θ).

}
. (7)

A corresponding nominal parameter value θn, which is often
used in MPC for cost predictions, can then be selected by
projecting a point estimate of θtrue, e.g., resulting from
a least mean squares filter, onto the set Ωk [26]. The
main computational challenge related to (7) is the growing
complexity of the set Ω with increasing k, which can
be limited using approximations, see, for example, [27].
Most commonly available techniques consider linear [26],

[28], [29] or nonlinear systems [30], [31] that are linear in
parameters; that is, models of the form

fl(x, u, k, w, θ) = Φ(x, u)θ + w, (8)

with Φ(x, u) = [x⊤, u⊤] in the case of linear systems.
In the presence of structural model uncertainty, nonpara-

metric approaches allow for building the system model (6)
directly based on available data (5). Thereby the idea is to
exploit continuity properties of ftrue w.r.t. x, u, and k such
as ∥∇ftrue∥ ≤ ϵ to infer a feasible set of system realizations

Fk =

{
f

∣∣∣∣∥∇f∥ ≤ ϵ,∀j = 0, .., k − 1, ∃w(j) ∈ W s.t.:
x(j + 1) = f(x(j), u(j), j, w(j), θ).

}
,

which contains ftrue with probability one. Methods for
obtaining strict uncertainty bounds on possible functions
belonging to Fk include Lipschitz interpolation [32] or kinky
inference [33]. A nominal function estimate fn can then be
selected to maximize the distance to the boundary of Fk

subject to additional smoothness properties [34], [35].

C. Probabilistic Models

Probabilistic models rely on distributional information to
mitigate the potential conservativeness of worst-case un-
certainty bounds considered in the previous section. While
being less conservative conceptually, most methods require
simplifying assumptions such as normally distributed distur-
bances and prior distributions on parameters [6]. Similarly,
as in the robust case, we distinguish between parametric and
nonparametric approaches in the following. In the parametric
case, we follow a Bayesian approach [36], [37], allowing
us to incorporate prior knowledge about the parameter θtrue
and disturbance w(k) in the form of probability distribu-
tions p(θtrue) and p(w(k)). Using the prior information, the
posterior distribution of p(θtrue|X,U) given system trajec-
tories (5) reads

p(θtrue|X,U) =
p(X|U, θtrue)p(θtrue)∫

p(X|U, θ̃true)p(θ̃true)dθ̃true
, (9)

with likelihood p(X|U, θtrue) depending on the noise dis-
tribution p(w(k)). While the computation of the posterior
distribution (9) is generally difficult and often requires nu-
merical approximations, see, for example, [38], a closed-
form solution can be obtained for systems that are linear
in their parameters (8) with Gaussian prior parameter dis-
tribution p(θ) = N (µθ,Σθ) and Gaussian noise p(w(k)) =
N (µw(k),Σw(k)) [36], [37]. MPC formulations that exploit
such models include [39]–[41].

Nonparametric probabilistic learning models are typically
based on Gaussian process (GP) regression [36], [37], [42]
due to their flexible yet computationally tractable properties.
Assuming i.i.d. Gaussian noise p(w(k)) = N (0,Σw(k)) and
system dynamics of the form x(k+1) = ftrue(x(k), u(k))+
w(k), a GP regression model builds on the assumption that
values of ftrue for different arguments x, u are jointly Gaus-
sian distributed according to a kernel function κ, expressing
the covariance between function values. Based on the avail-
able system data (5), the joint distribution of observed data

points X+ = [x(1), .., x(N)] and function values at a test
point x, u is[

X+

ftrue(x, u)

]
∼ N

(
0,

[
K + Iσ2

w Kx,u

K⊤
x,u κ([x, u], [x, u])

])
,

with Gram matrix K based on data X,U in (5) using the
kernel κ, where Kx,u denotes the corresponding entries
for the test point x, u. By conditioning the joint Gaussian
distribution on the observations X+ at X,U , we obtain a
closed-form solution for the Gaussian posterior distribution
p(ft(x, u)|X+). Examples of MPC formulations based on
GP regression include [14], [43]–[46].

It is important to note that closed-form solutions for
prediction models presented in this section only exist for
one-step-ahead predictions in the case of Gaussian distribu-
tions. One practical approach is to iteratively employ one-
step predictions [47] to predict entire trajectories efficiently.
However, as shown in [48]–[50], this can lead to severe
prediction errors since it neglects occurring correlations
across multiple time-steps. Tractable alternatives include
sampling and linearization-based approximations [49], as
well as memory [50] and multiple-step predictions [51].

D. Recent Developments and Future Research Directions

Motivated by the recent results in the field of data-
driven behavioral system theoretic methods, a promising
future direction is the consideration of input-output models
by extending these techniques towards addressing process
and measurement noise and nonlinear system classes, see,
e.g., [18, Section 5.3.6]. Aside from behavioral approaches,
robust and probabilistic system models primarily focus on
noise-free system measurements (5). While this simplified
setting is an essential first step, real-world applications com-
monly suffer from sensor noise and significant nonlinearities.
Promising developments towards this practically relevant
setting are outlined in [52], with critical open questions
including a principled selection of prior knowledge and an
automatic validation of probabilistic modeling assumptions.
While the methods outlined in this section of the paper can
be data efficient, they offer limited generalization properties
for varying operating conditions. To this end, so-called meta-
learning approaches have emerged, where the idea is to
perform a pre-training step using data from different tasks,
which enables fast adaptation to similar tasks and different
conditions of the system environment [53]–[55].

III. LEARNING CONTROL POLICY PARAMETERS

As described in Section I, the CL-SMPC problem (2) is
intractable in its general form and, thus, the ideal control law
(3) cannot be directly implemented. Thus, a variety of ap-
proximations have been proposed to improve the tractability
of (2), leading to various robust and stochastic MPC meth-
ods. Generally, these methods introduce additional “tuning”
parameters γ ∈ Γ ⊂ Rnγ into the controller. These tuning
parameters differ from the internal optimization variables Yt

(i.e., decision variables) that are adapted at each time step
via the solution to some optimization minYt∈Y L(Yt;xt, t, γ)

for some overall cost function L and constraint set Y . We
denote the approximate control laws as

π̂(xt, t; γ) = g(Y ⋆
t (xt, t, γ)), (10)

where g(·) is some function that maps the optimal value of
the internal optimization variables Y ⋆

t (xt, t, γ) to the current
control input action. The control law (10) can represent a
large class of nominal, robust, and stochastic MPC methods,
common examples of which are summarized below.
Certainty-equivalence MPC (CE-MPC):

• Internal variables: Yt represents the collection of the
predicted nominal state and control input trajectories
over the prediction horizon.

• Tuning parameters: γ could represent any set of pa-
rameters that appear in the cost function (e.g., weights
in the stage or terminal costs), the prediction model
(e.g., A and B matrices in a linear model xk+1|t =
Axk|t+Buk|t), or the constraints functions (e.g., back-
off parameters) [56].

Tube-based MPC [5], [57], [58]:
• Internal variables: Yt represents the collection of the

predicted central path of the states and control inputs
over the prediction horizon in addition to any adaptable
parameters that appear in the shape of the tube.

• Tuning parameters: In addition to the tuning parameters
for CE-MPC, γ could include parameters related to
the design of the predicted tube (e.g., the controller
gain matrix K used to control the evolution of the
disturbance away from the nominal path).

Scenario-based (or multi-stage) MPC [59], [60]:
• Internal variables: Yt represents the collection of the

predicted state and control input trajectories for every
disturbance sequence in the scenario tree.

• Tuning parameters: In addition to the tuning parameters
for CE-MPC, γ could include parameters related to the
definition of the scenario tree such as the number and
location of the considered disturbance scenarios.

Moment-based Stochastic MPC [61]–[63]:
• Internal variables: Yt represents the predicted moments

(usually the mean and covariance matrix) of the random
state and control input over the prediction horizon. It
is common to use a parametrized predicted feedback
control policy of the form µk|t(xk|t) = Kk|txk|t+uk|t;
if Kk|t is optimized online then it must be included in
Yt (otherwise it may be treated as fixed, or it may be
fully or partially included in the choice of γ).

• Tuning parameters: In addition to the tuning parameters
for CE-MPC, γ could include any adaptable parameters
that appear in the predicted control policy.

An important question in any MPC design is how to select
the tuning parameters γ in order to realize a desired closed-
loop performance under system uncertainties [64]. In this
section, we discuss the opportunities that Bayesian optimiza-
tion holds for automated tuning (or auto-tuning) of MPC
controllers using closed-loop performance data. We also

elucidate the connection between policy-based reinforcement
learning and the auto-tuning problem. Although our discus-
sion focuses on MPC, these approaches can be applied for the
design and tuning of generic controller structures (including
schemes that involve logic or hierarchical representations).

A. Closed-loop Performance Indicators

The tuning parameters γ generally have a significant
influence on the closed-loop performance. As opposed to
selecting γ heuristically, we can optimize them based on a
given performance metric in an automated fashion. For the
control law (10), we define the closed-loop system as

xt+1 = ftrue(xt, π̂(xt, t; γ), t, wt, θ), (11)

where ftrue represents the true system dynamics that may
not be known to us (available only in the form of a
simulator or experiment that can be queried) and wt and
θ are the true disturbances and parameters, respectively.
We represent the complete set of uncertain variables as
ω = {x0, θ, w0, w1, . . . , wT−1}; we treat ω ∼ Pω as being
generated from some underlying probability distribution Pω

that, similarly to the dynamics, may not be known. By
recursively applying the closed-loop dynamics (11) over
some (finite) number of time steps T , we can define a single
closed-loop trajectory fully in terms of the tuning parameters
γ and the complete set of uncertain variables ω

z(γ,ω) ={θ, x0, π̂(x0, 0; γ), w0, . . . , (12)
xT−1, π̂(xT−1, T − 1; γ), wT−1, xT }.

Accordingly, we can define a closed-loop performance mea-
sure to be any arbitrary function of the closed-loop history,
i.e., c(z(γ,ω)). Some common examples for the closed-
loop performance (for a given set of uncertainty realizations)
would be the average cost over time, the worst-case or
average constraint violation, an indicator cost for achieving
the desired outcome, or some combination of these different
measures. Since we do not have control and/or knowledge
of the uncertainties ω, we must modify our definition of the
overall control objective

J(γ) = Eω{c(z(γ,ω))}. (13)

Here, an expectation operator is applied to the closed-loop
performance measure (13) so that our cost is defined with
respect to the average level of performance. Note that this is a
general representation, as we can always convert expectations
to probabilities using the indicator function 1A(x), which is
equal to 1 if x ∈ A and 0 otherwise. It is important to analyze
the characteristics of the cost function (13) to determine
a good method for solving the optimization problem that
minimizes the cost

min
γ∈Γ

J(γ) := Eω{c(z(γ,ω))}. (14)

In particular, J(γ) is: (i) not known in closed-form and,
thus, its derivative information may not be available, (ii)
defined in terms of an expectation that cannot generally
be evaluated exactly, and (iii) expensive to evaluate (either

from a computation or experimentation point-of-view) since
one must perform a minimum of one complete closed-loop
evaluation to estimate J(γ). Based on these characteristics,
we refer to (14) as a stochastic “black-box” optimization
problem. Although a wide variety of derivative-free opti-
mization (DFO) methods have been proposed for tackling
such problems, many of them are not viable for expensive
objective functions since they require a large number of
function evaluations.

Surrogate-based DFO methods rely on a surrogate model
to more effectively guide the search process at every iter-
ation. These methods have been shown to be effective at
finding the near-global solution when an accurate surrogate
model can be constructed [65]. A key question is how to
select the “right” type of surrogate model when little is
known about J(γ). Recent work has focused on Gaussian
process (GP) models since they are probabilistic (i.e., they
provide an estimate of the uncertainty in the prediction) and
nonparametric (i.e., they do not assume the function belongs
to a space that can be finitely parametrized such as the space
of polynomial functions of finite degree) [42]. Given a set of
function evaluations, we can induce a GP model for J(γ) by
assuming it must follow a GP prior, which we can update
with the available data using Bayes’ rule. This results in
the Bayesian optimization (BO) framework [66], [67], which
can be thought of as a family of methods that combine a
probabilistic surrogate model of the objective function (such
as a GP) with an expected utility (or acquisition) function to
sequentially select the next evaluation point for γ. By prop-
erly designing the acquisition function, BO systematically
tradeoffs between exploration (i.e., evaluating the objective
in new regions that are most unknown) and exploitation (i.e.,
evaluating the objective near the known best points) of the
search space. Next, we provide an overview of how the BO
framework can be applied to auto-tuning.

B. Bayesian Optimization for Auto-Tuning

BO for auto-tuning relies on the ability to collect closed-
loop performance data for particular tuning parameter values.
Since the expectation in (14) cannot be evaluated exactly,
we must use some estimate of J(γ). When ω is high-
dimensional, Monte Carlo (MC) sampling can be applied

y =
1

K

K∑
i=1

c(z(γ,ω(i))), (15)

where W = {ω(1), . . . ,ω(K)} is a set of K independently
and identically distributed (i.i.d.) samples of the random
uncertainty vector ω. The estimator (15) is unbiased for
any positive integer value K, i.e., EW{y} = J(γ). We
assume that the noise in the measurements of closed-loop
performance is modeled as

y = J(γ) + ϵ, (16)

where ϵ ∼ N (0, σ2
ϵ) is a zero-mean normal random variable

with some variance σ2
ϵ that may not be known. Assume

that we have n noisy objective function evaluations from

(16), which we denote by y1:n = {y1, . . . , yn} computed at
corresponding tuning parameter values γ1:n = {γ1, . . . , γn}.
By placing a GP prior over the objective function J(·) ∼
GP(m(·), k(·, ·)), y1:n must be jointly Gaussian with any
predicted J(γ) at some test point γ[

y1:n
J(γ)

]
∼ N

([
m(γ1:n)
m(γ)

]
,

[
Kn k(γ1:n, γ)

k(γ, γ1:n) k(γ, γ)

])
,

(17)

where Kn = k(γ1:n, γ1:n) + Inσ
2
ϵ denotes the covariance

matrix evaluated at the input training data points; the func-
tions m(·) and k(·, ·) are overloaded to include element-wise
operations across their inputs. By conditioning on the data
{y1:n, γ1:n}, the posterior distribution of the predicted J(γ)
can be determined analytically as

J(γ)|y1:n, γ1:n ∼ N (µn(γ), σ
2
n(γ)), (18)

where

µn(γ) = m(γ) + k(γ, γ1:n)K
−1
n (y1:n −m(γ1:n)), (19a)

σ2
n(γ) = k(γ, γ)− k(γ, γ1:n)K

−1
n k(γ1:n, γ). (19b)

The mean function and covariance function are both typically
parametrized by a set of unknown hyperparameters that must
be calibrated to the available data {γ1:n, y1:n} (along with the
noise variance σ2

ϵ) using maximum likelihood or maximum
a posteriori estimation.

Given the predicted posterior distribution in (18), BO uses
an acquisition function αn : Γ → R that maps γ to a real
number that quantifies the expected utility of spending a
part of the exploration budget to evaluate J(γ). The BO
framework then repeats this process sequentially to decide
where to perform the next evaluation, as summarized in
Algorithm 1. Many different acquisition functions have been
proposed, with the majority of them being roughly sortable
into one of three categories: (i) improvement-based, (ii)
optimistic, and (iii) information-based.

Algorithm 1 The Bayesian optimization (BO) framework

1: Initialize: Input space Γ; GP prior m(·) and k(·, ·); and
maximum number of iterations Nb.

2: for n = 0 to Nb − 1 do
3: Construct GP surrogate model for J(γ) given avail-

able data {y1:n, γ1:n} via (18).
4: Maximize the acquisition function to find γn+1 =

argmaxγ∈Γ αn(γ).
5: Perform expensive closed-loop simulations to evalu-

ate objective yn+1 = J(γn+1) + ϵn+1 using (16).

The choice of αn can have a significant effect on the
performance of Algorithm 1 and, to the best of our knowl-
edge, there is no systematic procedure for a priori selecting
the “best” acquisition function. There have been several
recent applications of BO to controller auto-tuning that have
shown significant improvement over a variety of different
alternatives (see, e.g., [68]–[71]). These works mainly use

improvement-based acquisition functions, in particular ex-
pected improvement. Note that it is common practice in
the BO literature for a practitioner to pick their favorite
acquisition and keeps it fixed throughout the entire opti-
mization process. An interesting direction for future work is
to adaptively sample different acquisition functions at each
iteration. One simple approach for doing this is described
in [72] in which the performance of the randomly selected
αn is measured at each iteration and its probability of being
selected in the future is increased if it improved the objective.

C. Important Extensions of BO-based Auto-Tuning

There are many unique properties that arise in controller
auto-tuning that can be further exploited within the BO
framework. We briefly outline some of these ideas below.

1) Input-dependent noise: The simplified representation
of the noise model in (16) is only valid in the context of
large K in (15) in accordance with the central limit theorem

y − J(γ) ⇒ N
(
0,

σ2
J(γ)√
K

)
, (20)

where σ2
J(γ) denotes the variance of the objective function

estimator (15) for any fixed γ and ⇒ denotes convergence
in distribution. Therefore, we can only ensure the additive
normal assumption is satisfied for large K, which is typi-
cally not possible due to the expensiveness of closed-loop
experiments. Due to the flexibility in the GP representation
of the objective, we can incorporate more complicated noise
models (usually at the cost of more expensive training and/or
prediction steps). One such example are input-dependent
(also known as heteroscedastic) noise models. Although
multiple generalized GP models have been proposed in the
literature, such as most likely GPs [73] and variational
heteroscedastic GP [74], there has been limited discussion
on their application within the BO framework.

2) Robust auto-tuning: One strategy for ensuring that the
tuning parameters are robust with respect to the uncertainties
is to formulate a quantile-based objective function; however,
the MC estimate (15) is likely to have very high variance
for small K due to the non-smooth indicator function. Since
increasing K greatly increases the cost of a single function
evaluation, we look to keep K as small as possible in
practice. One approach that has recently been proposed for
solving this issue is adversarially robust BO (ARBO) [75],
which tackles a minimax problem of the form

min
γ∈Γ

max
ω∈Ω

c(z(γ,ω)), (21)

where Ω is a compact set of possible uncertainty realizations.
Notice that the main difference between (14) and (21)
is that the expectation operator Eω{·} is replaced with a
maximization operator maxω∈Ω{·}. The solution to (21)
ensures a stronger degree of robustness to the uncertainties
while the maximization problem can be easier to handle in
certain situations, especially when the distribution of ω is
unavailable. When the dimensionality of ω is relatively small
and we have control over the uncertainty sampling locations
(such as when we have access to a high-fidelity closed-loop

simulator), we can simultaneously sample {γ,ω} together,
i.e., only one full closed-loop simulation is required at every
iteration. Alternatively, when dealing with a large number
of uncertainties, the max can be defined with respect to the
most sensitive uncertainties while the others can be treated
as the noise term in (16), as in traditional BO.

3) Multi-fidelity evaluations: The quality of the identified
solution from BO is tied to the overall budget available Nb.
When Nb is small, we can only obtain a limited amount of
information about the objective function, which can severely
limit our sequential selection of points. An alternative way to
think about the auto-tuning problem is that we have access to
a family of information sources denoted by J(γ, s), where
s is a collection of “fidelity” parameters that controls the
accuracy of the objective. In the context of MPC auto-tuning,
s could be related to many different quantities, including
sampling time, tolerance of the numerical optimization rou-
tine, and accuracy of the model simulator. Increasing s
corresponds to increasing the accuracy of the estimate of the
objective; however, this increase in accuracy requires more
computational cost. Given a fixed computational budget,
we can adaptively select s and γ simultaneously to search
for the minimum value of the true objective. Multi-fidelity
BO has been considered in [76] and has been applied to
MPC tuning in [77]. These multi-fidelity methods tend to
outperform single fidelity BO, especially for problems with
limited budget. However, the quality of the search process
depends heavily on the selected low-fidelity representations
of the objective function (both their cost and accuracy).
Further research is needed to understand the impact of the
quality of the multi-fidelity representation on performance in
MPC auto-tuning.

4) Constraint handling and multi-objective problems:
The majority of work on auto-tuning via BO considers a
single objective. However, this is rarely the most natural
representation in practice, as one must simultaneously con-
sider multiple performance indicators (e.g., setpoint tracking
error, constraint violation, and economic costs). The most
straightforward way to deal with this problem is to lump all
effects into a single objective such that J(γ) is a weighted
combination of many components. However, it can be diffi-
cult to select such weighted combinations since the different
performance indicators are not on the same basis. One way
to address this issue is to directly formulate the auto-tuning
problem as a constrained BO problem [71], [78]. The main
idea in these methods is to model the objective and each con-
straint with a separate (independent) GP model, all of which
can be exploited in the search process. These approaches
are best-suited for problems that naturally break down into
a clear single objective with necessary constraints. However,
this can be more generally interpreted as a multi-objective
optimization (MOO) problem. The main goal of MOO is to
systematically study the tradeoff between different objective
functions of interest through the construction of an optimal
Pareto front. BO methods for MOO have been investigated
in the context of MPC auto-tuning, as discussed in [79].

D. Connecting Auto-tuning to Reinforcement Learning

The idea of using closed-loop performance data also
constitutes the basis of many methods developed within the
field of reinforcement learning (RL) [80]. As such, we can
view the aforementioned BO-based auto-tuning strategies
as a special case of the large family of policy-based RL
methods. Policy gradient is one of the most popular RL
methods for direct policy search with continuous control
input spaces [81]. The main idea behind policy gradient
algorithms is to adjust the control policy parameters γ in the
negative direction of the cost gradient ∇γJ(γ). Whenever
we implement a randomized control policy πγ(ut|xt), which
denotes the conditional probability of taking control input ut

given the current state xt and fixed policy parameters γ, we
can take advantage of the policy gradient theorem to obtain
an estimate of this gradient [82]

∇γJ(γ) =

∫
c(z)∇γpγ(z)dz, (22)

=

∫
c(z)

[
∇γpγ(z)

pγ(z)

]
pγ(z)dz,

= Ez {c(z)∇γ log pγ(z)} ,

where z denotes the random closed-loop trajectory or path
(12), whose distribution can be derived using the Markovian
nature of the system

pγ(z) = p(x0)
∏T

t=1 p(xt+1|xt, ut)πγ(ut|xt). (23)

In (22), unbiased estimates of the gradient of the cost J can
be obtained by sampling from z, which can be done in a
straightforward fashion for fixed γ. To see this, note that
∇γ log pγ(z) can be simplified using (23)

∇γ log pγ(z) =
∑T

t=1 ∇γ log πγ(ut|xt), (24)

implying stochastic gradient descent optimization methods
[83] can be readily applied as long as we can evaluate the
cost and the gradient of the policy for different randomly
drawn trajectories. Although the technical results above only
hold for stochastic control policies, it has been shown that
a similar idea holds for deterministic control policies such
as MPC [81]. In particular, we can convert a deterministic
policy to a stochastic one by adding a small amount of noise,
e.g., p̂i(xt; γ)+n where n ∼ N (0, σ2) with σ2 → 0. MPC-
based control policies, under suitable regularity conditions,
are almost everywhere differentiable with respect to some
tuning parameters and, thus, policy gradient RL methods can
be utilized for offline or online auto-tuning. See, e.g., [84]–
[86] for some recent works in this direction.

Although policy gradient methods are expected to be more
scalable than BO methods since they take advantage of
gradient information, they often require many more samples
to converge, especially when started from a poor initial guess.
BO methods, on the other hand, are capable of globally
searching the policy parameter space and can directly enforce
constraints so that they can provide strong safety guarantees
in an online setting. The latter is less straightforward when
using policy gradient methods. Since BO and policy gradient

have complementary strengths and weaknesses, there are
many opportunities to hybridize these approaches to achieve
significant boosts in online safety and performance.

IV. LEARNING EFFICIENT APPROXIMATIONS OF
ITERATIVE ONLINE OPTIMIZATION

The solution of the MPC problem, both the nominal
MPC formulation (1) or a tractable reformulation of the
CL-SMPC (2), is commonly computed using iterative op-
timization algorithms that search for a point that satisfies the
first-order necessary conditions of optimality. Most iterative
optimization algorithms for MPC can be divided between es-
pecially tailored for linear MPC and more general algorithms
that can be used for nonlinear MPC.

For linear MPC, the resulting optimization problem is
typically a convex quadratic program (QP), provided that the
cost is chosen as a quadratic function with a positive definite
Hessian and the model and constraints are linear. To this end,
many QP solvers have been developed. The most popular
choices are the use of active set solvers [87], [88] and interior
point algorithms [89], amongst others [90]. In addition, for
very fast optimization, especially under resource limitations,
it can be advantageous to use first-order optimization meth-
ods that do not need to compute nor store the Hessian of
the problem. A prominent algorithm is the fast gradient
method [91], which was used for embedded MPC in [92]. To
deal with constraints, fast gradient methods can be extended
with an outer loop in an augmented Lagrangian schemes
[93] [94], the alternating direction method of multipliers
[95] and its variations such as the operator splitting method
[96]. In addition, it is possible to significantly improve the
performance of the linear algebra used in these algorithms if
it is optimized at a very low level for the specific hardware,
as done, e.g., in [97]. In the nonlinear case, many algorithms
use the aforementioned ideas within sequential quadratic
programming [98] or nonlinear interior point methods [99]
especially tailored for embedded optimization, [100], [101].
An overview of algorithmic details can be found in [102].

An alternative approach to extending the application of
MPC to fast and embedded systems is usually called explicit
MPC. Explicit MPC takes advantage of the fact that the MPC
problem, both in linear and nonlinear MPC, is a parametric
optimization problem. This means that the optimal control
input that is applied to the system is only a function of some
parameters; in the case of the nominal MPC problem (1),
this is the initial condition xt. For a linear MPC problem
with quadratic cost function, the solution of the parametric
optimization problem is a piecewise affine function of the
current state of the system, as shown in [103]. Explicit MPC
precomputes the piecewise affine function that completely
defines the MPC law, which can be written as

K(xinit) =

K1xinit + g1 if xinit ∈ R1,

...
Knrxinit + gnr if xinit ∈ Rnr ,

(25)

with nr regions, Ki ∈ RNnu×nx and gi ∈ RNnu . Each
region Ri is described by a polyhedron

Ri = {x ∈ Rnx | Zix ≤ zi} ∀i = 1, . . . , nr, (26)

where Zi ∈ Rci×nx , zi ∈ Rci describes the ci halfspaces
ai,jxinit ≤ bi,j of the i-th region with j = 1, . . . , ci,
ai,j ∈ R1×nx and bi,j ∈ R. Then, instead of solving the
optimization problem online, one divides the task in two
steps. In the first step, the piecewise affine function (25)
is computed offline and stored. In the second step, a point
location problem is solved to find the region Ri in which
the current state xinit lies. The same idea can also be used
for certain robust MPC formulations [104].

The main drawback of explicit MPC is that the number
of regions on which the control law is defined grows ex-
ponentially with the prediction horizon and the number of
constraints. This can complicate the first step as it might not
be possible to compute or store all the regions on which
the MPC law is defined. In addition, this could make the
point location problem too slow for embedded applications.
There has been a significant research effort to alleviate
such problems through the elimination of redundant regions
[105], or using a smaller number of regions to describe the
MPC law [106]. Yet, explicit MPC is typically used for
small systems and short prediction horizons, especially in
embedded applications with limited storage capabilities and
computational power. These limitations become even more
evident when system uncertainty must be considered in any
tractable reformulation of the CL-SMPC problem (2). In such
a case, it is generally necessary to resort to approximate
solutions of the optimization, or the explicit MPC problem.
While some approximate explicit MPC schemes have been
proposed, including, e.g., the use of simplicial partitions
[107], radial basis functions [108], machine learning and in
particular deep neural networks have recently emerged as a
powerful method for the deployment of complex stochastic
and robust MPC algorithms on resource-limited hardware.

A. Approximate MPC via Machine Learning

Leveraging the fact that the MPC problem is a parametric
program, it seems reasonable to use function approximation
tools, as those used in modern machine learning, to effi-
ciently approximate the implicit control law that results from
the MPC problem. The idea is very simple: if, given an
initial state xinit, it is possible to solve the MPC problem
and obtain the optimal input u∗

0, will it be possible to
generate many of these solutions offline in order to obtain
an accurate approximation of the solution using standard
supervised learning techniques?

This notion was already proposed in 1995 for nonlinear
MPC by [109]. Recently, there has been a renewed interest
in pursuing this idea. The main difference in recent works is
the use of deep neural networks, instead of shallow neural
networks. Recent successes of the machine learning commu-
nity, especially in image recognition, as well as advances in
the theoretical description of the representation capabilities
of deep neural networks [110], [111], have motivated the use

of deep neural networks to perform efficient approximation
of very complex functions, as those defined by the MPC
problem.

A standard feedforward neural network is defined as a
sequence of layers of neurons, which determines a function
N : Rnx → Rnu of the form

N (x; θ,M,L) = fL+1 ◦ gL ◦ fL ◦ · · · ◦ g1 ◦ f1(x), (27)

where the input to the network is x ∈ Rnx and the output
of the network is u ∈ Rnu . We denote the input with x
and the output with u because the network will be used
to approximate the solution of the MPC problem. Thus,
a network computes, for each input (i.e., current state of
the system), a corresponding output of the network (i.e.,
approximate solution of the MPC problem). M is the number
of neurons in each hidden layer and L is the number of
hidden layers. If L ≥ 2, N is described as a deep neural
network and, if L = 1, as a shallow neural network. Each
hidden layer consists of an affine function

fl(ξl−1) = Wlξl−1 + bl, (28)

where ξl−1 ∈ RM is the output of the previous layer with
ξ0 = x. The second element of the neural network is a non-
linear activation function gl. Common activation functions
include the hyperbolic tangent (tanh) or the rectifier linear
units (ReLU), which computes the element-wise maximum
between zero and the affine function of the current layer l

gl(fl) = max(0, fl). (29)

The parameter θ = {θ1, . . . , θL+1} contains all the weights
and biases of the affine functions of each layer

θl = {Wl, bl} ∀l = 1, . . . , L+ 1, (30)

where the weights are

Wl ∈

RM×nx if l = 1,

RM×M if l = 2, . . . , L,

Rnu×M if l = L+ 1,

(31)

and the biases are

bl ∈

{
RM if l = 1, . . . , L,

Rnu if l = L+ 1.
(32)

When a feedforward neural network only includes ReLU
activation functions, which are piecewise affine, the network
(27) describes a piecewise affine function and, thus, can
describe the exact solution of the MPC problem in the linear
case (25). The number of linear regions that can be described
by a neural network with ReLU activation functions grows
exponentially with the number of layers of the network
(the depth of the network) [112]. The improved accuracy
of neural networks with several layers, when compared to
traditional one-layer networks with the same number of
weights, has been shown, e.g., in [113].

To approximate the MPC law using neural networks, one
needs to perform three main steps. The first one is data
generation. In order to train a neural network, it is necessary

to obtain pairs of an initial condition xinit and the corre-
sponding optimal control action u∗

0, yielding a training set
D = {(xinit,1, u

∗
0,1), (xinit,2, u

∗
0,2), . . . , (xinit,ntr , u

∗
0,ntr

)} with a
total of ntr data points. For high-dimensional systems, good
strategies for sampling the state-space are very important to
achieve a good accuracy with a reasonable number of data
points. While one can generate new points by repeatedly
solving the MPC problem for different initial conditions,
obtaining a high approximation accuracy in high dimensions
may require a prohibitively large number of data points.
Random sampling of the state-space, or using a uniform grid,
are usually effective in low-dimensional state-spaces. For
more efficient sampling, one can use quasi-random sampling
strategies [114], as well as sampling around closed-loop
simulations of the system controlled by the MPC [115]–
[117] to allow better approximation of the neighborhood of
optimal trajectories, leading to reduced approximation errors
in regions of interest. An alternative useful strategy includes
the generation of additional data points based on sensitivities
of the optimization problem [118].

The second step is the training of the neural network using
the data generated in the first step. The training consists in
finding the weights θ that minimize the approximation error.
Typically, this is achieved by minimizing the mean squared
error over the training points, that is,

min
θ

1

ntr

ntr∑
i=1

||N (xinit,i; θ,M,L)− u∗
0,i||2. (33)

The unconstrained minimization problem (33) is usually
solved using stochastic gradient descent, or its variations.
There are several tools available for simple and efficient for-
mulation and training of neural networks, such as Tensorflow
[119] or Pytorch [120].

The third step is the deployment of the approximate
MPC law on suitable hardware. The choice of hardware
architecture often involves a trade-off between cost, energy
consumption, and required performance. A key advantage of
the above-discussed approximations is that they are straight-
forward to deploy on many different platforms since their im-
plementation only relies on matrix-vector multiplications and
a simple nonlinear operation (i.e., the activation function).
This facilitates application of fast MPC strategies on differ-
ent embedded devices, including low-cost microcontrollers
[113], [121] and field programmable gate arrays (FPGAs)
[115], [122], [123].

B. Closed-loop Guarantees and Verification Strategies

Approximating the solution of an iterative online opti-
mization introduces an additional approximation error into
the closed-loop, beyond model uncertainty and disturbances
considered in MPC of uncertain systems. The approxima-
tion error leads to asymptotic performance losses. Neu-
ral network-based approximate MPC strategies have been
proposed that can realize offset-free tracking, despite the
approximation error, via online solution of a small-scale
target tracking optimization problem [123], using an online
adaptive correction scheme [116], or adapting the weights of

the last layer [124]. Furthermore, the guarantees on constraint
satisfaction, stability or closed-loop performance that are
typically established for MPC of uncertain systems no longer
hold for neural network-based MPC laws defined by the
optimal parameters (33). Nevertheless, it is possible to deal
with the approximation error in different ways. For example,
one can consider the approximation error as an additional
uncertainty, with assumed bounds or distributions, in a robust
or stochastic MPC formulation in the first place [125].
After training the approximate controller, the assumptions
about the approximation error should be verified (e.g., if the
actual maximum approximation error is smaller than initially
assumed) for the guarantees to hold.

There are several approaches to verifying if the closed-
loop guarantees are satisfied. One can use probabilistic
verification methods [126], [127], as used in [125], [128],
[129]. Similar ideas can be used to achieve guarantees about
the suboptimality caused by the approximation error [130],
or any other closed-loop performance indicator [121]. Alter-
natively, if deterministic guarantees are desired, it is possible
to correct the approximate input given by the network using
a projection onto a safe set [129], [131]–[133]. In the linear
case, the neural network-based controller, as well as the
closed-loop that includes the linear dynamic system and
the controller, can be represented as a mixed-integer linear
program. This idea, often referred to as output-range analysis
[134], can be used to perform a priori verification of the
safety and stability of the closed-loop [124], or to compute
rigorous approximation error upper bounds [135].

C. Future Research Directions

While the online computation time required for approx-
imate controllers is very low, the amount of data needed
to train a controller with small approximation error grows
rapidly with the system dimension. Recent works show that
the limitations are likely to be less severe than for explicit
MPC [114]. Still, millions of valid data points might be nec-
essary for systems of dimension larger than 20 states. Further
research is needed to extend even more the possibilities of the
approach, for example, by combining with efficient sampling
strategies, or efficient solvers that can make use of very good
initial guesses provided by the approximate controllers.

An additional open challenge is how to achieve efficient
approximate controllers that can readily adapt to changing
situations. If large amounts of data are necessary to train a
good controller, one might want to avoid the regeneration
and retraining of the controller once some changes occur in
the system, or in the expected disturbances that affect the
system. Combinations of ideas from the field of reinforce-
ment learning, as proposed in [136], may be a promising
future area of research.

V. LEARNING OPTIMAL COST-TO-GO
REPRESENTATIONS: HOW CAN REINFORCEMENT

LEARNING HELP?

Reinforcement learning (RL) is a semi-supervised learning
method in which an agent tries to learn the best way to

accomplish a task through trial and error. Sutton and Barto
[137] provide an excellent introduction to RL. Two inde-
pendent research threads contributed to the development of
RL: the psychology of animal learning and the mathematics
of optimal control [137]. From animal psychology came
insights into how animals learn to solve problems, and
from optimal control came a test to determine when the
best possible solution has been reached. From the control
point-of-view, RL can be viewed as a solution approach to
(stochastic) optimal control problems when the true system
dynamics are unknown [80].

There are two main classes of RL methods: model-based
and model-free. In model-based RL, previously observed
data are used to learn a dynamic model, which can then
be used to approximate the solution of the true underlying
stochastic optimal control problem. This leads to strong
parallels with the model learning discussion in Section II, as
well as the use of receding- or rolling-horizon methods for
deploying the controller (which are closely related to the no-
tion of MPC). Model-free RL methods, on the other hand, are
able to eliminate the model building step and, instead, learn
a mapping from measurements (or observations) to control
inputs (or actions). Model-free RL methods are commonly
divided into two major categories: policy search and approx-
imate dynamic programming (ADP). In Section III-D, we
provided a brief overview of policy search methods, which
look to directly optimize control policy parameters using
data from previous closed-loop episodes. Although powerful,
these methods may suffer from some degree of (unknown)
sub-optimality since we are optimizing over parametrized
policies that may not match the complex structure of the true
optimal policy. ADP methods look to overcome this issue by
directly approximating the optimality conditions for the true
stochastic optimal control problem, which can be derived
using Bellman’s principle of optimality [138]–[140]. Below,
we provide an overview of ADP methods and discuss how
they can be useful in the context of MPC.

Let us distinguish the true system from the model using
the following notation

xt+1 = ftrue(xt, ut, wt), t = 0, 1, 2, . . . , (34)

where the random uncertainty follows some true probability
distribution Ptrue(·|xt, ut). To simplify notation regarding
constraints, we assume that control inputs can only take
values in a given subset Utrue(xt) ⊂ U that can generally
depend on the current state xt; this allows us to implicitly
consider, e.g., conditional chance constraints. Similarly to
Section III, a cost function is defined over T time steps.
However, the cost is broken down into the sum of stage
costs and a terminal cost. As such, we look to optimize the
following problem

min
µ0,...,µT−1

E

{
Jf,true(xT) +

T−1∑
t=0

ℓtrue(xt, ut)

}
, (35)

s.t. xt+1 = ftrue(xt, ut, wt),

ut = µt(xt) ∈ Utrue(xt).

There are some important differences between (35) and the
CL-SMPC problem (2). Although both optimize over control
policies, (35) is meant to operate over the full time horizon
of interest T that is typically much greater than the finite-
horizon N considered in (2) for computational tractability.
Furthermore, (35) is expressed in terms of the true dynamics,
cost, and constraint functions, which are never known ex-
actly, whereas (2) is posed in terms of more computationally
tractable models. It is also important to note that the true
system is assumed to behave as a Markov process, which is
an important assumption that must be satisfied to apply the
principle of optimality. A system can always be represented
as a Markov process through appropriate transformations,
though this might be difficult to do in practice (e.g., time-
invariant parameter uncertainties in a system can be handled
by treating them as additional states [141]). The fact that
the Markov process assumption need not be satisfied by the
policy search methods discussed in Section III-D is often an
overlooked advantage of those methods.

Starting with J⋆
T (x) = Jf,true(x), we can recursively define

the optimal cost-to-go functions as

J⋆
t (x) = min

u∈Utrue(x)
E
{
ℓtrue(x, u) + J⋆

t+1(ftrue(x, u, w))
}
,

(36)

for t = T −1, . . . , 0, where J⋆
t (x) is the optimal cost for the

subproblem when starting at state x at time t and following
an optimal control policy for all future steps t, . . . , T − 1.
The optimal cost J⋆(x0) that solves (35) is then obtained as
the final step of the recursion (36), i.e., J⋆(x0) = J⋆

0 (x0).
In the RL literature, it is common to express the right-hand
side of (36) in terms of the so-called optimal Q-factors

Q⋆
t (x, u) = ℓtrue(x, u) + E

{
J⋆
t+1(ftrue(x, u, w))

}
, (37)

which represents the optimal cost for the subproblem when
starting at state x and taking control action u at time t and
following an optimal control policy for all remaining steps
t+1, . . . , T−1. From the definitions in (36) and (37), we can
derive a simple relationship between the cost-to-go functions
and the Q-factors

J⋆
t (x) = min

u∈Utrue(x)
Q⋆

t (x, u). (38)

The main advantage of the Q-factor is that the optimal policy
can be trivially recovered at any point in time

µ⋆
t (xt) ∈ argmin

u∈Utrue(xt)

Q⋆
t (xt, u), (39)

which only depends on the current state value. This sum-
marizes the main idea of dynamic programming: recursively
define the cost-to-go functions (or equivalently the Q-factors)
by passing backward in time and then using these functions
to evaluate an optimal policy according to (39).

If xk is a discrete, scalar variable, then it may be pos-
sible to enumerate all states xk ∈ X when solving (36).
However, if X is continuous (as is typically the case in
most MPC applications), we cannot solve (36) exactly. ADP
methods generally look to compute the Q-factors from data

by assuming that the Q-factor is stationary, i.e., Qt(x, u) =
Q(x, u) for all t and for some static function Q. Such
stationarity does indeed arise in the case that the time horizon
is infinite. Unfortunately, we cannot directly take the limit
T → ∞ in (35) without introducing further technicalities, so
it is common practice in RL to consider a discounted cost
problem

min
µ0,µ1,...

E

{ ∞∑
t=0

αtℓtrue(xt, ut)

}
, (40)

s.t. xt+1 = ftrue(xt, ut, wt),

ut = µt(xt) ∈ Utrue(xt),

where α ∈ (0, 1) is a scalar called the discount factor. For
α close to 1, the discounted cost is approximately equal to
the average reward limT→∞ E

{
1
T

∑T
t=0 ℓtrue(xt, ut)

}
. Let

Q⋆
α(x, u) denote the Q-factor for (40), we can then derive an

infinite-horizon discounted version of dynamic programming
that results in the same Q-factor on both sides

Q⋆
α(x, u) = ℓtrue(x, u) + αE

{
min
u′

Q⋆
α(ftrue(x, u, w), u

′)
}
.

(41)

The optimal policy is now stationary and can be derived for
all times using the following simple formula

π⋆(xt) ∈ argmin
u∈Utrue(xt)

Q⋆
α(xt, u). (42)

The simplicity of the true optimal control policy representa-
tion is what makes Q-learning methods attractive; we only
need to learn a “good” approximation of Q⋆

α to derive a
“good” policy. However, as one might expect, it is not easy
to learn the Q-factor, especially when a good system model
is not available. The main idea behind Q-learning methods
is to use sample trajectories to update an initial guess for the
Q-factor as follows

Q̃(new)
α (xt, ut) = (1− η)Q̃(old)

α (xt, ut) (43)

+ η
[
ℓtrue(xt, ut) + αmin

u′
Q̃(old)

α (xt+1, u
′)
]
,

where Q̃
(old)
α is an initial guess for the Q-factor, Q̃(new)

α is
an updated version of the Q-factor given a sample starting
from state xt with control input ut ∈ argminu Q̃

(old)
α (xt, u)

that is selected optimally from the guessed Q-factor, xt+1 =
f(xt, ut, wt) is a realization of the successor state, and η
is a step size or learning rate. The update rule in (43)
forms the basis of most Q-learning algorithms [142], [143].
ADP methods that rely on estimating the cost-to-go func-
tions are also widely used in RL. In particular, temporal
difference learning algorithms are based on bootstrapping
from a current estimate of the cost-to-go function [144]–
[146]. We note that a distinct feature of ADP, not discussed
here, is its ability to systematically trade-off between system
exploration and exploitation via the so-called dual control
mechanism (see [13] and the references therein). This can
make ADP especially useful for adaptive control of time-
varying systems.

We can connect ADP back to the CL-SMPC (2) through
the optimal cost-to-go function. In particular, we can see that
the optimal policy (39) is equal to the CL-SMPC law (3)
whenever N ≥ 1, α = 1, Jf (x) = J⋆

α(x), and the assumed
model, stage cost, constraints, and uncertainty perfectly
match their true descriptions. These are obviously unrealistic
assumptions that cannot be satisfied in practice. However, it
can still be useful to take advantage of approximate cost-
to-go functions Jf (x) ≈ J⋆

α(x) when solving (2). Interested
readers are referred to [147] for a more detailed discussion
on the impact of cost-to-go approximations on the stability
and feasibility of controllers derived using MPC principles.
Various ways in which MPC and ADP can be integrated are
also discussed in [148].

A practical algorithm for ADP, which has become increas-
ingly popular, is deep RL (DRL) [149]. In essence, DRL uses
deep neural networks to parameterize the policy and value
functions and, thus, is particularly suitable for dealing with
continuous state and action spaces. Although the amount
of data required to train DRL algorithms and the ability
to handle constraints are generally important considerations,
it has been demonstrated that combining aspects of MPC
with RL can improve the data efficiency, constraint handling
and performance of RL (e.g., [150]–[152]). As argued in
[153], a major research direction is how to systematically
take advantage of offline approximation in value space and
rollout in combination with online decision-making using
(learning-based) MPC. Such a paradigm has been central to
major successes of RL, such as AlphaGO [110], and has the
potential to take advantage of the strengths of each method in
a synergistic fashion. Additional research is needed to better
understand the theoretical properties of such a hybrid control
strategy and to develop improved algorithms that allow faster
training of policy and value function representations.

VI. CONCLUSIONS

This paper discussed the recent advances and provided
perspectives for further research in four major directions
in which machine learning can aid in the design of model
predictive control (MPC) under uncertainty. These directions
included data-driven adaptation of the prediction model
and/or uncertainty description in MPC; learning parameters
of MPC laws in an automated manner (i.e., auto-tuning);
approximating MPC laws with explicit, cheap-to-evaluate
surrogates that are especially useful for embedded control
applications; and the synergy between reinforcement learning
and MPC, which can be central to the design of more practi-
cal reinforcement learning algorithms and providing insights
into the theoretical properties of MPC. We emphasize that
this is a rapidly evolving field and, thus, giving an exhaustive
account of the literature was beyond the scope of this paper.

REFERENCES

[1] M. Morari and J. H. Lee, “Model predictive control: Past, present
and future,” Computers & Chemical Engineering, vol. 23, no. 4-5,
pp. 667–682, 1999.

[2] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control:
theory, computation, and design. Nob Hill Publishing Madison,
2017, vol. 2.

[3] J. H. Lee, “Model predictive control: Review of the three decades
of development,” International Journal of Control, Automation and
Systems, vol. 9, no. 3, pp. 415–424, 2011.

[4] D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[5] B. Kouvaritakis and M. Cannon, Model Predictive Control: Classical,
Robust and Stochastic. Springer International Publishing Switzer-
land, 2016.

[6] A. Mesbah, “Stochastic model predictive control: An overview and
perspectives for future research,” IEEE Control Systems, vol. 36,
no. 6, pp. 30–44, 2016.

[7] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger,
“Learning-based model predictive control: Toward safe learning in
control,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 3, pp. 269–296, 2020.

[8] E. C. Kerrigan, “Robust constraint satisfaction: Invariant sets and
predictive control,” Ph.D. dissertation, University of Cambridge,
2001.

[9] L. Ljung, “System identification,” in Signal analysis and prediction.
Springer, 1998, pp. 163–173.

[10] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and
A. P. Schoellig, “Safe learning in robotics: From learning-based con-
trol to safe reinforcement learning,” arXiv preprint arXiv:2108.06266,
2021.

[11] H. Mania, M. I. Jordan, and B. Recht, “Active learning for
nonlinear system identification with guarantees,” arXiv preprint
arXiv:2006.10277, 2020.

[12] Y. Zhu, Multivariable system identification for process control. El-
sevier, 2001.

[13] A. Mesbah, “Stochastic model predictive control with active uncer-
tainty learning: A survey on dual control,” Annual Reviews in Control,
vol. 45, pp. 107–117, 2018.

[14] M. Maiworm, D. Limon, J. M. Manzano, and R. Findeisen, “Stability
of Gaussian process learning based output feedback model predictive
control,” in Proceedings of the IFAC Conference on Nonlinear Model
Predictive Control, 2018, pp. 455–461.

[15] M. Lauricella and L. Fagiano, “Set membership identification of lin-
ear systems with guaranteed simulation accuracy,” IEEE Transactions
on Automatic Control, vol. 65, pp. 5189–5204, 2020.

[16] T. B. Schön, A. Wills, and B. Ninness, “System identification of
nonlinear state-space models,” Automatica, vol. 47, no. 1, pp. 39–49,
2011.

[17] A. Doerr, C. Daniel, M. Schiegg, N.-T. Duy, S. Schaal, M. Toussaint,
and T. Sebastian, “Probabilistic recurrent state-space models,” in
Proceedings of Machine Learning Research, 2018, pp. 1280–1289.

[18] I. Markovsky and F. Dörfler, “Behavioral systems theory in data-
driven analysis, signal processing, and control,” Annual Reviews in
Control, vol. 52, pp. 42–64, 2021.

[19] S. Zhou, M. K. Helwa, and A. P. Schoellig, “Deep neural networks
as add-on modules for enhancing robot performance in impromptu
trajectory tracking,” International Journal of Robotics Research,
vol. 39, pp. 1397–1418, 2020.

[20] A. Draeger, S. Engell, and H. Ranke, “Model predictive control using
neural networks,” IEEE Control Systems Magazine, vol. 15, no. 5,
pp. 61–66, 1995.

[21] J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Data-driven
model predictive control with stability and robustness guarantees,”
IEEE Transactions on Automatic Control, vol. 66, pp. 1702–1717,
2020.

[22] L. Xu, M. S. Turan, B. Guo, and G. Ferrari-Trecate, “A data-
driven convex programming approach to worst-case robust tracking
controller design,” arXiv preprint arXiv:2102.11918, 2021.

[23] J. Coulson, J. Lygeros, and F. Dörfler, “Distributionally robust chance
constrained data-enabled predictive control,” IEEE Transactions on
Automatic Control, 2021, In Press.

[24] M. Milanese and A. Vicino, “Optimal estimation theory for dynamic
systems with set membership uncertainty: An overview,” Automatica,
vol. 27, no. 6, pp. 997–1009, 1991.

[25] M. Milanese and C. Novara, “Set membership identification of
nonlinear systems,” Automatica, vol. 40, no. 6, pp. 957–975, 2004.

[26] M. Lorenzen, M. Cannon, and F. Allgöwer, “Robust MPC with
recursive model update,” Automatica, vol. 103, pp. 461–471, 2019.

[27] S. M. Veres, H. Messaoud, and J. P. Norton, “Limited-complexity
model-unfalsifying adaptive tracking-control,” International Journal
of Control, vol. 72, pp. 1417–1426, 1999.

[28] M. Tanaskovic, L. Fagiano, R. Smith, and M. Morari, “Adaptive re-
ceding horizon control for constrained MIMO systems,” Automatica,
vol. 50, no. 12, pp. 3019–3029, 2014.

[29] E. Terzi, L. Fagiano, M. Farina, and R. Scattolini, “Learning multi-
step prediction models for receding horizon control,” in Proceedings
of the European Control Conference, 2018, pp. 1335–1340.

[30] V. Adetola, D. DeHaan, and M. Guay, “Adaptive model predictive
control for constrained nonlinear systems,” Systems & Control Let-
ters, vol. 58, no. 5, pp. 320–326, 2009.

[31] G. A. A. Gonçalves and M. Guay, “Robust discrete-time set-based
adaptive predictive control for nonlinear systems,” Journal of Process
Control, vol. 39, pp. 111–122, 2016.

[32] G. Beliakov, “Interpolation of Lipschitz functions,” Journal of Com-
putational and Applied Mathematics, vol. 196, pp. 20–44, 2006.

[33] J.-P. Calliess, “Conservative decision-making and inference in uncer-
tain dynamical systems,” Ph.D. dissertation, University of Oxford,
2014.

[34] J. M. Manzano, D. Limón, D. M. de la Peña, and J. Calliess, “Output
feedback MPC based on smoothed projected kinky inference,” IET
Control Theory & Applications, vol. 13, pp. 795–805, 2019.

[35] E. T. Maddalena and C. N. Jones, “Learning non-parametric models
with guarantees: A smooth Lipschitz regression approach,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 965–970, 2020.

[36] C. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[37] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[38] B. P. Carlin and T. A. Louis, Bayesian methods for data analysis.
CRC Press, 2008.

[39] M. Lorenzen, F. Dabbene, R. Tempo, and F. Allgöwer, “Stochastic
MPC with offline uncertainty sampling,” Automatica, vol. 81, pp.
176–183, 2017.

[40] C. D. McKinnon and A. P. Schoellig, “Experience-based model
selection to enable long-term, safe control for repetitive tasks under
changing conditions,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Oct 2018, pp. 2977–
2984.

[41] K. P. Wabersich, L. Hewing, A. Carron, and M. N. Zeilinger,
“Probabilistic model predictive safety certification for learning-based
control,” IEEE Transactions on Automatic Control, vol. 67, no. 1,
pp. 176–188, 2021.

[42] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for
machine learning. The MIT Press, 2006.

[43] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees,” in
Advances in Neural Information Processing Systems, 2017, pp. 908–
918.

[44] L. Hewing, A. Liniger, and M. N. Zeilinger, “Cautious NMPC with
Gaussian process dynamics for miniature race cars,” Proceedings of
the European Control Conference, pp. 1341–1348, 2018.

[45] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-
based model predictive control for safe exploration,” in Proceedings
of the IEEE Conference on Decision and Control, Miami, 2018, pp.
6059–6066.

[46] A. D. Bonzanini, D. B. Graves, and A. Mesbah, “Learning-based
SMPC for reference tracking under state-dependent uncertainty: An
application to atmospheric pressure plasma jets for plasma medicine,”
IEEE Transactions on Control Systems Technology, vol. 30, pp. 611
– 624, 2022.

[47] A. Girard, C. E. Rasmussen, J. Quinonero-Candela, R. Murray-
Smith, O. Winther, and J. Larsen, “Multiple-step ahead prediction
for non linear dynamic systems–a Gaussian process treatment with
propagation of the uncertainty,” Advances in Neural Information
Processing Systems, vol. 15, pp. 529–536, 2002.

[48] J. Umlauft, T. Beckers, and S. Hirche, “Scenario-based optimal
control for Gaussian process state space models,” in Proceedings
of the European Control Conference, Limassol, Cyprus, 2018, pp.
1386–1392.

[49] L. Hewing, E. Arcari, L. P. Fröhlich, and M. N. Zeilinger, “On sim-
ulation and trajectory prediction with Gaussian process dynamics,”
in Proceedings of Learning for Dynamics and Control, 2020, pp.
424–434.

[50] T. Beckers and S. Hirche, “Prediction with approximated gaussian
process dynamical models,” IEEE Transactions on Automatic Con-
trol, 2021, In Press.

[51] N. Lambert, A. Wilcox, H. Zhang, K. S. Pister, and R. Calandra,
“Learning accurate long-term dynamics for model-based reinforce-
ment learning,” in Proceedings of the IEEE Conference on Decision
and Control, Austin, 2021, pp. 2880–2887.

[52] A. Wigren, J. Wågberg, F. Lindsten, A. G. Wills, and T. B. Schön,
“Nonlinear system identification: Learning while respecting physical
models using a sequential monte carlo method,” IEEE Control
Systems Magazine, vol. 42, no. 1, pp. 75–102, 2022.

[53] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel,
S. Levine, and C. Finn, “Learning to adapt in dynamic, real-world
environments through meta-reinforcement learning,” arXiv preprint
arXiv:1803.11347, 2018.

[54] S. Saemundsson, K. Hofmann, and M. P. Deisenroth, “Meta rein-
forcement learning with latent variable Gaussian processes,” in Pro-
ceedings of the Conference on Uncertainty in Artificial Intelligence,
2018.

[55] E. Arcari, A. Carron, and M. N. Zeilinger, “Meta learning MPC using
finite-dimensional gaussian process approximations,” arXiv preprint
arXiv:2008.05984, 2020.

[56] J. A. Paulson and A. Mesbah, “Nonlinear model predictive control
with explicit backoffs for stochastic systems under arbitrary uncer-
tainty,” IFAC-PapersOnLine, vol. 51, pp. 523–534, 2018.

[57] L. Chisci, J. A. Rossiter, and G. Zappa, “Systems with persistent dis-
turbances: predictive control with restricted constraints,” Automatica,
vol. 37, pp. 1019–1028, 2001.

[58] D. Q. Mayne, M. M. Seron, and S. Raković, “Robust model predictive
control of constrained linear systems with bounded disturbances,”
Automatica, vol. 41, pp. 219–224, 2005.

[59] D. Bernardini and A. Bemporad, “Scenario-based model predictive
control of stochastic constrained linear systems,” in Proceedings of
the IEEE Conference on Decision and Control, Shanghai, 2009, pp.
6333–6338.

[60] S. Lucia, T. Finkler, and S. Engell, “Multi-stage nonlinear model
predictive control applied to a semi-batch polymerization reactor
under uncertainty,” Journal of Process Control, vol. 23, pp. 1306–
1319, 2013.

[61] P. Hokayem, E. Cinquemani, D. Chatterjee, F. Ramponi, and
J. Lygeros, “Stochastic receding horizon control with output feedback
and bounded controls,” Automatica, vol. 48, pp. 77–88, 2012.

[62] J. A. Paulson and A. Mesbah, “An efficient method for stochastic
optimal control with joint chance constraints for nonlinear systems,”
International Journal of Robust and Nonlinear Control, vol. 29, pp.
5017–5037, 2019.

[63] J. A. Paulson, E. A. Buehler, R. D. Braatz, and A. Mesbah,
“Stochastic model predictive control with joint chance constraints,”
International Journal of Control, vol. 93, pp. 126–139, 2020.

[64] J. A. Paulson and A. Mesbah, “Shaping the closed-loop behavior
of nonlinear systems under probabilistic uncertainty using arbitrary
polynomial chaos,” in Proceedings of the IEEE Conference on
Decision and Control, Miami, 2018, pp. 6307–6313.

[65] A. I. Forrester and A. J. Keane, “Recent advances in surrogate-based
optimization,” Progress in Aerospace Sciences, vol. 45, pp. 50–79,
2009.

[66] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of Bayesian optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[67] P. I. Frazier, “A tutorial on Bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

[68] D. Piga, M. Forgione, S. Formentin, and A. Bemporad,
“Performance-oriented model learning for data-driven MPC design,”
IEEE Control Systems Letters, vol. 3, pp. 577–582, 2019.

[69] J. A. Paulson and A. Mesbah, “Data-driven scenario optimization for
automated controller tuning with probabilistic performance guaran-
tees,” IEEE Control Systems Letters, vol. 5, pp. 1477–1482, 2020.

[70] M. Khosravi, V. N. Behrunani, P. Myszkorowski, R. S. Smith,
A. Rupenyan, and J. Lygeros, “Performance-driven cascade controller
tuning with Bayesian optimization,” IEEE Transactions on Industrial
Electronics, vol. 69, pp. 1032–1042, 2021.

[71] F. Sorourifar, G. Makrygirgos, A. Mesbah, and J. A. Paulson, “A data-
driven automatic tuning method for MPC under uncertainty using
constrained Bayesian optimization,” IFAC-PapersOnLine, vol. 54, pp.
243–250, 2021.

[72] K. Kandasamy, K. R. Vysyaraju, W. Neiswanger, B. Paria, C. R.
Collins, J. Schneider, B. Poczos, and E. P. Xing, “Tuning hyperpa-
rameters without grad students: Scalable and robust Bayesian opti-

misation with Dragonfly.” Journal of Machine Learning Research,
vol. 21, no. 81, pp. 1–27, 2020.

[73] K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard, “Most likely
heteroscedastic Gaussian process regression,” in Proceedings of the
International Conference on Machine Learning, 2007, pp. 393–400.

[74] M. Lázaro-Gredilla and M. K. Titsias, “Variational heteroscedastic
Gaussian process regression,” in Proceedings of the International
Conference on Machine Learning, 2011, pp. 841–848.

[75] J. A. Paulson, G. Makrygiorgos, and A. Mesbah, “Adversarially
robust Bayesian optimization for efficient auto-tuning of generic
control structures under uncertainty,” AIChE Journal, p. e17591,
2022.

[76] K. Kandasamy, G. Dasarathy, J. Oliva, J. Schneider, and B. Poczos,
“Multi-fidelity Gaussian process bandit optimisation,” Journal of
Artificial Intelligence Research, vol. 66, pp. 151–196, 2019.

[77] F. Sorourifar, N. Choksi, and J. A. Paulson, “Computationally effi-
cient integrated design and predictive control of flexible energy sys-
tems using multi-fidelity simulation-based Bayesian optimization,”
Optimal Control Applications and Methods, 2021, In Press.

[78] J. A. Paulson, K. Shao, and A. Mesbah, “Probabilistically robust
Bayesian optimization for data-driven design of arbitrary controllers
with Gaussian process emulators,” in Proceedings of the IEEE
Conference on Decision and Control, Austin, 2021, pp. 3633–3639.

[79] G. Makrygiorgos, A. D. Bonzanini, V. Miller, and A. Mesbah,
“Performance-oriented model learning for control via multi- objective
Bayesian optimization,” Computers & Chemical Engineering, 2022,
In Press.

[80] B. Recht, “A tour of reinforcement learning: The view from contin-
uous control,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 2, pp. 253–279, 2019.

[81] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in Proceedings of
the International Conference on Machine Learning, 2014, pp. 387–
395.

[82] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in Neural Information Processing Systems, vol. 12, 1999.

[83] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[84] S. Gros and M. Zanon, “Reinforcement learning for mixed-integer
problems based on MPC,” IFAC-PapersOnLine, vol. 53, no. 2, pp.
5219–5224, 2020.

[85] M. Zanon and S. Gros, “Safe reinforcement learning using robust
MPC,” IEEE Transactions on Automatic Control, vol. 66, no. 8, pp.
3638–3652, 2020.

[86] S. Gros and M. Zanon, “Reinforcement learning based on MPC
and the stochastic policy gradient method,” in Proceedings of the
American Control Conference, New Orleans, 2021, pp. 1947–1952.

[87] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpOASES: A parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, pp.
327–363, 2014.

[88] R. Quirynen and S. Di Cairano, “PRESAS: Block-structured pre-
conditioning of iterative solvers within a primal active-set method
for fast model predictive control,” Optimal Control Applications and
Methods, vol. 41, no. 6, pp. 2282–2307, 2020.

[89] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver
for embedded systems,” in Proceedings of the European Control
Conference, Zurich, 2013, pp. 3071–3076.

[90] A. Bemporad, “A quadratic programming algorithm based on nonneg-
ative least squares with applications to embedded model predictive
control,” IEEE Transactions on Automatic Control, vol. 61, no. 4,
pp. 1111–1116, 2016.

[91] Y. E. Nesterov, “A method for solving the convex programming
problem with convergence rate O(1/kˆ2),” in Dokl. akad. nauk Sssr,
vol. 269, 1983, pp. 543–547.

[92] S. Richter, C. N. Jones, and M. Morari, “Computational complexity
certification for real-time MPC with input constraints based on the
fast gradient method,” IEEE Transactions on Automatic Control,
vol. 57, no. 6, pp. 1391–1403, 2011.

[93] V. Nedelcu, I. Necoara, and Q. Tran-Dinh, “Computational complex-
ity of inexact gradient augmented lagrangian methods: application
to constrained MPC,” SIAM Journal on Control and Optimization,
vol. 52, no. 5, pp. 3109–3134, 2014.

[94] P. Zometa, M. Kögel, T. Faulwasser, and R. Findeisen, “Implemen-
tation aspects of model predictive control for embedded systems,” in
Proceedings of the American Control Conference, Montréal, 2012,
pp. 1205–1210.

[95] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and
statistical learning via the alternating direction method of multipliers.
Now Publishers Inc, 2011.

[96] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd,
“OSQP: An operator splitting solver for quadratic programs,” in
Proceedings of the UKACC International Conference on Control,
2018, pp. 339–339.

[97] G. Frison, D. Kouzoupis, T. Sartor, A. Zanelli, and M. Diehl, “BLAS-
FEO: Basic linear algebra subroutines for embedded optimization,”
ACM Transactions on Mathematical Software, vol. 44, no. 4, pp.
1–30, 2018.

[98] R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating
microsecond solvers for nonlinear MPC: a tutorial using ACADO
integrators,” Optimal Control Applications and Methods, vol. 36,
no. 5, pp. 685–704, 2015.

[99] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[100] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari, “FORCES NLP:
an efficient implementation of interior-point methods for multistage
nonlinear nonconvex programs,” International Journal of Control,
vol. 93, no. 1, pp. 13–29, 2020.

[101] T. Englert, A. Völz, F. Mesmer, S. Rhein, and K. Graichen, “A
software framework for embedded nonlinear model predictive control
using a gradient-based augmented lagrangian approach (GRAMPC),”
Optimization and Engineering, vol. 20, no. 3, pp. 769–809, 2019.

[102] H. J. Ferreau, S. Almér, R. Verschueren, M. Diehl, D. Frick,
A. Domahidi, J. L. Jerez, G. Stathopoulos, and C. Jones, “Embed-
ded optimization methods for industrial automatic control,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 13 194–13 209, 2017.

[103] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3 – 20, 2002.

[104] E. N. Pistikopoulos, N. P. Faı́sca, K. I. Kouramas, and C. Panos, “Ex-
plicit robust model predictive control,” IFAC Proceedings Volumes,
vol. 42, no. 11, pp. 243–248, 2009.

[105] T. Geyer, F. D. Torrisi, and M. Morari, “Optimal complexity reduction
of polyhedral piecewise affine systems,” Automatica, vol. 44, no. 7,
pp. 1728–1740, 2008.

[106] J. Holaza, B. Takács, and M. Kvasnica, “Synthesis of simple explicit
MPC optimizers by function approximation,” in Proceedings of
the International Conference on Process Control, Strbske Pleso,
Slovakia, 2013, pp. 377–382.

[107] A. Bemporad, A. Oliveri, T. Poggi, and M. Storace, “Ultra-fast
stabilizing model predictive control via canonical piecewise affine
approximations,” IEEE Transactions on Automatic Control, vol. 56,
no. 12, pp. 2883–2897, 2011.

[108] L. Csko, M. Kvasnica, and B. Lantos, “Explicit MPC-based RBF
neural network controller design with discrete-time actual Kalman
filter for semiactive suspension,” IEEE Transactions on Control
Systems Technology, vol. 23, no. 5, pp. 1736–1753, 2015.

[109] T. Parisini and R. Zoppoli, “A receding-horizon regulator for nonlin-
ear systems and a neural approximation,” Automatica, vol. 31, no. 10,
pp. 1443–1451, 1995.

[110] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of GO with deep neural networks
and tree search,” Nature, vol. 529, pp. 484–489, 2016.

[111] I. Safran and O. Shamir, “Depth-width tradeoffs in approximating
natural functions with neural networks,” in International Conference
on Machine Learning, 2017, pp. 2979–2987.

[112] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number
of linear regions of deep neural networks,” in Advances in Neural
Information Processing Systems, 2014, pp. 2924–2932.

[113] B. Karg and S. Lucia, “Deep learning-based embedded mixed-integer
model predictive control,” in Proceedings of the European Control
Conference, 2018, pp. 2075–2080.

[114] S. W. Chen, T. Wang, N. Atanasov, V. Kumar, and M. Morari, “Large

scale model predictive control with neural networks and primal active
sets,” Automatica, vol. 135, p. 109947, 2022.

[115] S. Lucia, D. Navarro, B. Karg, H. Sarnago, and O. Lucia, “Deep
learning-based model predictive control for resonant power convert-
ers,” IEEE Transactions on Industrial Informatics, vol. 17, no. 1, pp.
409–420, 2020.

[116] D. Krishnamoorthy, A. Mesbah, and J. A. Paulson, “An adaptive
correction scheme for offset-free asymptotic performance in deep
learning-based economic MPC,” IFAC-PapersOnLine, vol. 54, pp.
584–589, 2021.

[117] B. Karg and S. Lucia, “Approximate moving horizon estimation
and robust nonlinear model predictive control via deep learning,”
Computers & Chemical Engineering, vol. 148, p. 107266, 2021.

[118] D. Krishnamoorthy, “A sensitivity-based data augmentation frame-
work for model predictive control policy approximation,” IEEE
Transactions on Automatic Control, 2021, In Press.

[119] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-
sorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org.

[120] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative
style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32, 2019, pp. 8024–8035.

[121] B. Karg, T. Alamo, and S. Lucia, “Probabilistic performance valida-
tion of deep learning-based robust NMPC controllers,” International
Journal of Robust and Nonlinear Control, vol. 31, no. 18, pp. 8855–
8876, 2021.

[122] J. Chen, Y. Chen, L. Tong, L. Peng, and Y. Kang, “A backpropagation
neural network-based explicit model predictive control for DC–DC
converters with high switching frequency,” IEEE Journal of Emerging
and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2124–
2142, 2020.

[123] K. J. Chan, J. A. Paulson, and A. Mesbah, “Deep learning-based
approximate nonlinear model predictive control with offset-free
tracking for embedded applications,” in Proceedings of the American
Control Conference, New Orleans, 2021, pp. 3475–3481.

[124] B. Karg and S. Lucia, “Stability and feasibility of neural network-
based controllers via output range analysis,” in Proceedings of the
IEEE Conference on Decision and Control, Nice, 2020, pp. 4947–
4954.

[125] M. Hertneck, J. Köhler, S. Trimpe, and F. Allgöwer, “Learning
an approximate model predictive controller with guarantees,” IEEE
Control Systems Letters, vol. 2, pp. 543–548, 2018.

[126] T. Alamo, R. Tempo, A. Luque, and D. Ramirez, “Randomized
methods for design of uncertain systems: sample complexity and
sequential algorithms,” Automatica, vol. 52, pp. 160–172, 2015.

[127] R. Tempo, E. Bai, and F. Dabbene, “Probabilistic robustness analysis:
explicit bounds for the minimum number of samples,” Systems &
Control Letters, vol. 30, pp. 237–242, 1997.

[128] M. Fazlyab, M. Morari, and G. J. Pappas, “Probabilistic verification
and reachability analysis of neural networks via semidefinite pro-
gramming,” in Proceedings of the IEEE Conference on Decision and
Control, Nice, 2019, pp. 2726–2731.

[129] B. Karg and S. Lucia, “Efficient representation and approximation of
model predictive control laws via deep learning,” IEEE Transactions
on Cybernetics, vol. 50, no. 9, pp. 3866–3878, 2020.

[130] X. Zhang, M. Bujarbaruah, and F. Borrelli, “Safe and near-optimal
policy learning for model predictive control using primal-dual neural
networks,” in Proceedings of the American Control Conference,
Philadelphia, 2019, pp. 354–359.

[131] S. Chen, K. Saulnier, N. Atanasov, D. D. Lee, V. Kumar, G. J.
Pappas, and M. Morari, “Approximating explicit model predictive
control using constrained neural networks,” in Proceedings of the
American Control Conference, Milwaukee, 2018, pp. 1520–1527.

[132] J. A. Paulson and A. Mesbah, “Approximate closed-loop robust
model predictive control with guaranteed stability and constraint

satisfaction,” IEEE Control Systems Letters, vol. 4, no. 3, pp. 719–
724, 2020.

[133] A. D. Bonzanini, J. A. Paulson, D. B. Graves, and A. Mesbah,
“Toward safe dose delivery in plasma medicine using projected neural
network-based fast approximate nmpc,” IFAC-PapersOnLine, vol. 53,
no. 2, pp. 5279–5285, 2020.

[134] S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Output range
analysis for deep feedforward neural networks,” in NASA Formal
Methods Symposium. Springer, 2018, pp. 121–138.

[135] F. Fabiani and P. J. Goulart, “Reliably-stabilizing piecewise-affine
neural network controllers,” arXiv preprint arXiv:2111.07183, 2021.

[136] B. Karg and S. Lucia, “Reinforced approximate robust nonlinear
model predictive control,” in Proceedings of the International Confer-
ence on Process Control, Strbske Pleso, Slovakia, 2021, pp. 149–156.

[137] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduc-
tion. MIT press, 2018.

[138] W. B. Powell, Approximate Dynamic Programming: Solving the
curses of dimensionality. John Wiley & Sons, 2007, vol. 703.

[139] D. P. Bertsekas, “Approximate dynamic programming,” 2008.
[140] J.-M. Lee and J. H. Lee, “Approximate dynamic programming

strategies and their applicability for process control: A review and
future directions,” International Journal of Control, Automation, and
Systems, vol. 2, no. 3, pp. 263–278, 2004.

[141] J. Skaf, S. Boyd, and A. Zeevi, “Shrinking-horizon dynamic pro-
gramming,” International Journal of Robust and Nonlinear Control,
vol. 20, no. 17, pp. 1993–2002, 2010.

[142] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,
no. 3, pp. 279–292, 1992.

[143] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-
learning,” Machine Learning, vol. 16, no. 3, pp. 185–202, 1994.

[144] R. S. Sutton, “Learning to predict by the methods of temporal
differences,” Machine Learning, vol. 3, no. 1, pp. 9–44, 1988.

[145] S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms for
temporal difference learning,” Machine Learning, vol. 22, no. 1, pp.
33–57, 1996.

[146] D. P. Bertsekas and S. Ioffe, “Temporal differences-based policy
iteration and applications in neuro-dynamic programming,” Lab. for
Info. and Decision Systems Report LIDS-P-2349, MIT, Cambridge,
MA, 1996.

[147] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert,
“Constrained model predictive control: Stability and optimality,”
Automatica, vol. 36, no. 6, pp. 789–814, 2000.

[148] J. H. Lee and W. Wong, “Approximate dynamic programming
approach for process control,” Journal of Process Control, vol. 20,
no. 9, pp. 1038–1048, 2010.

[149] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process-
ing Magazine, vol. 34, pp. 26–38, 2017.

[150] S. Kamthe and M. Deisenroth, “Data-efficient reinforcement learning
with probabilistic model predictive control,” in Proceedings of the
International Conference on Artificial Intelligence and Statistics,
2018, pp. 1701–1710.

[151] J. Arroyo, C. Manna, F. Spiessens, and L. Helsen, “Reinforced model
predictive control (RL-MPC) for building energy management,”
Applied Energy, vol. 309, p. 118346, 2022.

[152] T. H. Oh, H. M. Park, J. W. Kim, and J. M. Lee, “Integration
of reinforcement learning and model predictive control to optimize
semi-batch bioreactor,” AIChE Journal, p. e17658, 2022.

[153] D. P. Bertsekas, “Newton’s method for reinforcement learning and
model predictive control,” 2022.

