
1. INTRODUCTION 

A rock mass has naturally occurring joints, characterized 

by orientation, persistence, frequency and surface 

geometry (Grenon et al., 1998). The intersections of these 

joints create blocks of intact rock within the rock mass 

which determine the in-situ block size distribution (IBSD) 

(Elmouttie and Poropat, 2011). It is possible to obtain 

many of these joint properties using mapping; however, 

the three-dimensional nature of joint geometry poses a 

challenge (Dershowitz and Einstein, 1988). Another 

limitation includes manual mapping of inaccessible areas, 

particularly for open pit mines where once a bench has 

been fully excavated, there is no further access for wall 

mapping of that bench. As observed by Francioni et al., 

2015, relatively few published papers have addressed the 

application of Unmanned Aerial Vehicles (UAVs) for 

joint mapping; however, they are becoming an 

increasingly popular method for overcoming this 

limitation. The additional data made available by UAVs 

is used to complement the information gathered through 

manual wall mapping techniques, thus providing a more 

extensive dataset. This translates to more reliable 

statistics for generating a 3D Discrete Fracture Network 

(DFN), a stochastic model for fractures within a rock 

mass, which can be used to estimate the IBSD. 

DFNs have been used in wide variety of applications that 

have brought value to both surface and underground 

mining operations. In underground operations, DFNs 

have been used for optimizing stope design to reduce 

dilution (Urli and Esmaieli, 2016) and in caving 

operations for fragmentation analysis (Rogers et al., 2015 

and Brzovic et al., 2015). In surface operations, DFNs 

have been useful for assessing blast parameters and 

viability of quarries for desired dimensions of stone 

(Latham et al., 2006b, and Yarahmadi et al., 2018). The 

aforementioned studies use some form of IBSD 

assessment based on DFN modeling.  

The objective of blasting is to reduce the IBSD to a target 

blasted block size distribution (BBSD), therefore, 

fragmentation and blast performance are directly affected 

by the IBSD and jointing. Rock masses with a smaller 

IBSD and more naturally occurring blocks require less 

blast energy to obtain the BBSD (Scott, 1996). Figure 1 

describes the typical blasting process for rock 

fragmentation.  

            

DFNE 18– 0151_0228_000600 

                                                               
Pre- and Post-Blast Rock Block Size Analysis Using UAV-based  

Data and Discrete Fracture Network 

Medinac, F., Bamford, T. and Esmaieli, K. 

Lassonde Institute of Mining, University of Toronto, ON, Canada 

Schoellig, A. P. 

University of Toronto Institute for Aerospace Studies (UTIAS), Toronto, ON, Canada 
 

Copyright 2018 ARMA, American Rock Mechanics Association 

This paper was prepared for presentation at the 2nd International Discrete Fracture Network Engineering Conference held in Seattle, Washington, 
USA, 20–22 June 2018. This paper was selected for presentation at the symposium by an ARMA Technical Program Committee based on a 
technical and critical review of the paper by a minimum of two technical reviewers. The material, as presented, does not necessarily reflect any 
position of ARMA, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without 
the written consent of ARMA is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 200 words; illustrations may 
not be copied. The abstract must contain conspicuous acknowledgement of where and by whom the paper was presented.   

 

 

 ABSTRACT: Drilling and blasting is one of the key processes in open pit mining, required to reduce in-situ rock block size to rock 

fragments that can be handled by mine equipment. It is a significant cost driver of any mining operation which can influence the 

downstream mining processes. In-situ rock block size influences the muck pile size distribution after blast, and the amount of drilling 

and explosive required to achieve a desired distribution. Thus, continuous measurement of pre- and post-blast rock block size 

distribution is essential for the optimization of the rock fragmentation process. 

This paper presents the results of a case study in an open pit mine where an Unmanned Aerial Vehicle (UAV) was used for mapping 

of the pit walls before blast. Pit wall mapping and aerial data was used as input to generate a 3D Discrete Fracture Network (DFN) 

model of the rock mass and to estimate the in-situ block size distribution. Data collected by the UAV was also used to estimate the 

post-blast rock fragment size distribution. The knowledge of in-situ and blasted rock size distributions can be related to assess blast 

performance. This knowledge will provide feedback to production engineers to adjust the blast design. 

 

 

 

 

 

 

 



 

Fig. 1. Fragmentation process after Scott, 1996. 

This paper presents a case study conducted at the 

McEwen mining’s El Gallo mine in Sinaloa, Mexico. The 

study presents the application of a UAV system for pit 

wall mapping, development of a DFN model to estimate 

the ISBD, using a UAV system for estimation of BBSD, 

and comparison of the ISBD and BBSD to estimate the 

blast energy used for block size reduction. The focus of 

this study was the analysis of the north eastern wall of the 

Lupita pit. This area was identified by site personnel as an 

area of geotechnical concern. Remote sensing of the pit 

wall and a blasted muck pile was done using the UAV 

platforms, DJI Matrice 600 Pro and DJI Phantom 4 Pro. 

Both photogrammetry and Lidar remote sensing 

techniques were performed in the field. The pit wall data 

collected remotely was used to supplement the field 

mapping done by geotechnical consultants, Call and 

Nicholas Inc. (CNI), (2016). Using the joint mapping 

data, a DFN model was generated to obtain the ISBD. The 

fragmentation analysis based on photogrammetry was 

conducted to obtain the BBSD. Finally, the IBSD and 

BBSD were compared and the results presented. 

 

  

2. METHODOLOGY 

The following section describes the method used for 

collecting data during field testing and the data used for 

the generation of a DFN model. 

2.1. Equipment Used 
As mentioned previously, the DJI Matrice 600 Pro and the 

DJI Phantom 4 Pro were selected as the UAVs to carry 

out the experiments. The DJI Matrice 600 Pro was 

selected due to high payload capacity and ability to be 

integrated with LiDAR equipment. The DJI Ronin MX 

was used for mounting and as a power source for a 

Velodyne Puck LITE LiDAR. The DJI Phantom 4 Pro 

was used due to its high resolution camera and its 

availability as a spare UAV for data collection. Figure 2 

shows the UAV configurations for LiDAR and 

photogrammetry data collection methods. The initial 

objective was to collect both LiDAR and photogrammetry 

data of the pit wall. However, the limitations discussed in 

Section 4 precluded the use of LiDAR data for the joint 

set analysis. Figure 3 shows an orthophoto of the pit wall 

generated by aerial photogrammetry.  

2.2. Pit Wall Mapping Data 
CNI mapped 46 windows during December 2016 for 

geotechnical purposes. The original mapping data was 

obtained, and of these 46 windows, 29 windows were 

located on the north eastern wall of the Lupita Pit of 

interest. The locations of the mapping conducted is shown 

in Figure 4 as red crosses and the UAV flight area is 

shown in the red box. It should be noted that window 

mapping was done in December 2016, and the pit has 

progressed since then. However, windows numbered 50-

62 and 20-28 have remained, because they were done on 

the main ramp walls. The remaining data used represents 

the same geotechnical domain. The collected data 

includes: 
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Fig. 2 DJI Matrice 600 Pro with LiDAR setup (left) and DJI Phantom 4 Pro (right). 



• Size of the window mapped 

• Face dip direction (DipDir) and dip 

• Discontinuity type 

• Discontinuity DipDir and dip 

• Roughness of discontinuity 

• Maximum length of discontinuity within a set 

• Mean length of discontinuities for each set within 

window 

• Mean spacing of sets within window 

• Number of fractures within a window for each 

individual set 

  

Fig. 4. Location of window mapping and UAV flight area at 

Lupita Pit. 

A coloured 3D point cloud was developed for the area of 

study using the aerial photogrammetry data (Fig. 5). This 

allowed identifying joints and major structures on the 

surveyed pit wall. The geometrical characteristics of the 

exposed discontinuities were measured. The results of 

aerial mapping confirmed the window mapping data in 

terms of geometrical characteristics of discontinuity sets 

and allowed identifying an additional major structure (a 

fault zone) in the area of study to be included in the 

analysis.  

The aerial and manual joint data were presented in a 

stereonet program to identify the joint sets as shown in 

Figure 6. Table 1 illustrates the orientation of the 

identified joint sets and the major structures. The K value 

presents the dispersion coefficient of each joint set. This 

information was used as input data for DFN generation. 

  

 

Fig. 6. Stereonet of the joint sets on North Eastern wall. 

 

 

UAV flight area 

Fig. 3 Orthophoto of the north-eastern pit wall looking north.  



 

 

Table 1. Orientation of discontinuity data. 

Joint Set DipDir (o) Dip (o) Fisher’s K 

1 180 56 21.7 

2 276 24 19.0 

3 275 86 36.7 

4 245 76 52.4 

5 68 57 38.6 

6 325 67 24.5 

Fault 1 250 75 - 

Fault 2 260 07 - 

2.3. DFN Generation 
The commercially available software FracMan v.7.6 

(Golder 2018) was used to build the DFN model. The 

reliability of a DFN model greatly depends on the quality 

of the input data and ensuring the correct joint properties 

are collected (Elmo et al., 2015). The joint set data 

identified in Table 1 was used for development of a DFN 

model.  Using the mapping data, it was possible to 

determin distributions for the trace length of fracture sets 

and the maximum length of the joints.  

Using the trace length of the joints exposed on the bench 

windows it was possible to calculate the total length of 

discontinuities for each joint set and calculate the areal 

fracture intensity (P21) of the set. The DFN model 

generation was done through an iterative process using 

the mean trace length and an initial arbitrary volumetric 

fracture intensity (P32) for each set. Volumetric fracture 

intensity (P32) cannot be measured directly in the field, 

however; it’s value can be inferred through P21 or P10 

(Esmaieli et al. 2010). Each joint set was generated 

separately in a large model of 100 m x 100 m x 100 m. A 

trace plane was introduced into the DFN model, parallel 

to the orientation of the surveyed pit wall and with the 

same height as the mine bench. Each generated joint set 

was then intersected with the trace plane to produce a 

tracemap of the joints on the wall. The tracemap was used 

to calculate the P21 in the model, and was subsequently 

compared to the field P21. The input P32 was adjusted 

according to this comparison. This iterative process 

allowed generation and calibration of the DFN model.   

As noted above in Table 1 there were 6 joint sets 

identified, with two major faults running through the area 

of interest. The faults were modeled as discrete fractures 

with persistent lengths in the DFN model. Table 2 

presents a comparison between the field data and DFN 

data in terms of areal fracture intensity (P21) and mean 

fracture trace length. The results show a good agreement 

between the field and the simulated data. It is important 

to note that due to the stochastic nature of a DFN model, 

a joint set generated with the same parameters may not 

yield exactly the same results in new iterations.  

The resulting stereonet of the joints along the traceplane 

is presented in Figure 7. Overall the orientation data 

seems to replicate the results found in the field.  

 

Table 2. Comparison of the field and the DFN results. 

Joint 

Set 

Field Data DFN Data 

P21 (m-1) 
Trace 

Length (m) 
P21 (m-1) 

Trace 

Length (m) 

1 0.11 2.8 0.14 2.5 

2 0.14 2.5 0.16 2.3 

3 0.13 3.3 0.12 3.5 

4 0.27 3.1 0.24 2.5 

5 0.10 3.8 0.11 4.1 

6 0.07 1.4 0.06 1.3 

Fig. 5. Coloured 3D point cloud generated by aerial photogrammetry for wall maping. 



 

Fig. 7. Stereonet of the joint sets generated by the DFN model 

on a window map of 15m H x 25m W equivalent to a full bench 

face. 

Fig. 8 shows the generated 1003 m3 DFN model. The large 

blue and cream discrete fracture planes present the major 

faults in the model. The model was used to estimate the 

IBSD.  

 

Fig. 8. Developed 3D DFN Model. 

2.4. Muckpile Fragmentation Measurement 
Many methods have been developed to estimate the 

BBSD. These methods include visual observation, sieve 

analysis, and photo (2D) and 3D image analysis. Image 

analysis techniques for measuring BBSD are commonly 

used in mining operations because they provide practical, 

fast, and relatively accurate measurements (Sanchidrián 

et al., 2009). Thus far, the most common technique to 

collect images has been to capture photos of the muckpile 

from the ground using a camera and physical scale objects 

to measure image scale. This technique has several 

limitations, as discussed by Sanchidrián et al., 2009. Of 

these limitations, the imaging system resolution and 

image segmentation are very important, since both can 

lead to an inaccurate measurement of BBSD. While 

application of 3D imaging and analysis methods has 

eliminated the need for the placement of scale objects and 

has reduced the error that is created by the uneven shape 

of the muckpile surface (Onederra et al., 2015, and 

Campbell and Thurley, 2017), some limitations still exist. 

These limitations include a significant amount of 

capturing time for detailed scans, and, in the use of 

ground-based stations, having fixed capturing locations to 

avoid smoothing the 3D data. 

UAV technology has become a routine tool in many mine 

operations for aerial surveying and volume calculations. 

To automate the measurement of BBSD of muckpiles, 

UAV systems has been developed (Bamford, et al. 2017). 

This improves the temporal and spatial resolution of the 

data used to estimate the resulting BBSD after blasting.  

In this study, the DJI Phantom 4 Pro was used to collect 

images for estimating the BBSD. During the study, the 

DJI Matrice 600 Pro was also used to collect LiDAR data 

for estimating the BBSD. Results of processing the 

LiDAR data collected will be presented in future studies. 

A muckpile created by the bench blast in the north eastern 

wall of the Lupita pit was chosen for the BBSD 

estimation. This is the same area where the aerial pit wall 

mapping was conducted. Figure 9 shows an orthophoto of 

the muckpile chosen for the BBSD estimation. To collect 

images for carrying out photogrammetry in 

OpenDroneMap, 2018, software, a flight mission was 

created and flown using the DJI Ground Station Pro 

application. The flight mission was flown to capture the 

whole area of the pile at a 10 m altitude and used a gimbal 

pitch angle stabilized at 45° down. This gimbal pitch 

angle was chosen so that the UAV would be further from 

the pit wall while covering the rock pile area, which 

significantly reduced the risk of collision while in flight.  

Once images were collected by the UAV, they were used 

to produce geographic data in OpenDroneMap. This 

geographic data includes a 3D coloured point cloud, a 

digital surface model, and an orthophoto. To georeference 

the geographic data, GPS data logged by the UAV or 

ground control points with their location in the set of 

images can be used. Deploying and maintaining a set of 

visible ground control points on an active muckpile is 

expensive, logistically complex, and may not be feasible. 

Due to this complexity, the GPS data recorded in each 

photo by the UAV was used to georeference the 

geographic data produced. 

The orthophoto produced by the OpenDroneMap was 

used in image analysis for BBSD estimation because it is 

a composite of the collected images corrected to have a 

fixed scale (See Figure 10). This fixed scale, results in the 

same lack of distortion, as a map of the muckpile. Thus, 

to only analyze the area of the muckpile in the orthophoto, 

the orthophoto was cropped to the boundary shown in 

Figure 9. For BBSD estimation using image analysis, 

Split-Desktop by Split Engineering LLC., (2018), was 

used. This software takes an image and delineates rock 

fragments using image segmentation. To measure the 

rock sizes, the fixed orthophoto scale are input into the 

software. Manual editing was used to improve the rock 



delineation process. In future work, custom image 

segmentation algorithms will be implemented to 

eliminate the manual editing step and to help automate 

fragmentation measurement. 

3. RESULTS 

The following section outlines the results of the 

comparison between the IBSD and BBSD. With these 

results, it is possible to back-calculate the theoretical 

required mass of explosive used per volume of rock 

blasted, known as the powder factor. This can be 

compared to the powder factor used in the field for an 

estimate of the efficiency of the blasting parameters. 

3.1. IBSD 
The IBSD was obtain using the DFN generated as 

discussed in Section 2.3. For computational ease, first a 

smaller region (253 m3) within the original DFN model 

was analyzed for the IBSD calculation (IBSD1). This was 

followed by calculating the ISBD for the original 1003 m3 

DFN model (IBSD 2). The results of these are shown in 

Figure 11. The algorithm run to obtain the block size in 

FracMan was Ray Cast Volume (Dershowitz, 1987). 

Fig. 9. Orthophoto produced by OpenDroneMap using a set of images captured by the UAV of the muckpile in the Lupita pit. 

The boundary of the muckpile is represented by the red polygon. 

 

(a) Orthophoto produced by OpenDroneMap. 

 

(b) Delineated orthophoto. 

 Fig. 10: Image analysis of the muckpile using the orthophoto created by OpenDroneMap. In 8b, blue regions represent rock 

fragment boundaries, light blue regions are masked, and red regions represent fines. 



Using this algorithm, random points within the DFN 

model are used as the origins of rays that are cast out un 

till they hit a fracture surface. The length of these various 

rays is sampled a specified number of times and the mean 

length is used to estimate the volume of the blocks. This 

algorithm was used due to its simplicity and as it requires 

the least computation power and time to obtain the results. 

The IBSD has an 80% passing size of approximately 6.5 

m. Additionally, as can be seen from the results there was 

a minimal difference between the smaller and larger DFN 

regions for the IBSD calculation, with almost no 

discernable difference in passing. The spread of the data 

is relatively large as well, with most of the block sizes 

falling between 1.0 m and 10.0 m. This data supports 

observations in the field that the rock mass is massive and 

was not blocky as shown in Figure 3. 

3.2. BBSD 
To measure the BBSD of the muckpile chosen in the north 

eastern wall of the Lupita pit, an orthophoto was 

generated by OpenDroneMap from the images collected 

by the UAV. This orthophoto was generated at a 

resolution of 80 pixels per meter. Once the orthophoto 

was cropped, it was imported into Split-Desktop for 

delineation of rock fragments using image segmentation 

algorithms and manual editing. Some of the rock 

fragments in the orthophoto were distorted and had to be 

manually masked so that they did not introduce error into 

the resulting BBSD. Figure 10 illustrates the delineation 

of rock fragments using image segmentation for the 

chosen muckpile. Figure 11 plots the measured BBSD 

produced by image analysis for the muckpile. 

3.3. Size Distribution Analysis 
Comparing the estimated size distributions for IBSD and 

BBSD it is possible to identify the following: 

• Blasting was able to reduce all of the block size 

within the rock, the largest blasted block is 

approximately the same size as the smallest in-

situ block size (~ 1 m). 

• The BBSD represents a larger range of block 

sizes than the IBSD. 

• The 80% passing of the BBSD is approximately 

0.37 m compared to 6.5 m in the IBSD. 

• At 50% passing – the blasted block size is 2.8% 

of the in-situ block size and the block size was 

reduced from 4.5 m to 0.13 m.  

At the El Gallo mine the ore rock is mainly composed of 

quartz stockwork, veins and breccias. Whereas the barren 

host rocks are propylitically altered andesitic rocks of 

various grades (CNI, 2016). The typical density of the 

rock is 2.5 t/m3. The blast analyzed was a production and 

pre-shear shot. 40 production holes with 156 mm in 

diameter were loaded to blast 5,970 tonnes of rock (2,370 

m3 of rock). The holes were loaded using ANFO with a 

density of 820 kg/m3. The bench height was 

approximately 5 m and the holes are sub-drilled 1 m. The 

loaded length of hole was 3 m and approximately 3 m of 

stemming was used. The resulting blast had a powder 

factor of ~0.78 kg/m3. These values were obtained from 

the on-site blasting engineers. Latham et al., (2006a) 

discuss the various relationships between powder factor, 

the in-situ and blasted block sizes in detail. A recent 
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update by Kahriman et al., 2013 was done on the 

estimation of the powder factor based on the Bond work 

index. This work relates the powder factor (qB) through 

the relationship in equation 1.  

𝑞𝐵 = 10 𝑊𝑖 {(
1

√𝐷𝑏80

) − (
1

√𝐷𝑖80

)} 𝐾 (1) 

Where Wi is the Bond’s work index calibrated, Db80 and 

Di80 are 80% passing for BBSD and IBSD respectively (in 

micrometer). K is a conversion constant relating the 

energy in used in Bond’s work index to the energy in 

ANFO and the specific gravity of the rock.  

K = (860/912) x ρr.     (2) 

A Wi of 16.3 was obtained from the resource estimate 

report for the El Gallo Complex, (2013), by McEwen 

Mining. Using this model, the expected powder factor for 

the investigated blast is 0.47kg/m3. This is 40% lower 

than the actual powder factor used in the blast. This 

indicates that significant amount of blast energy was lost. 

This energy could have resulted in additional ground 

vibrations, gas, over-break into the catch benches, and 

damage of the final wall. This was observed in the field 

where the catch benches were narrower than design, and 

blast damage was identified in the final pit walls. 

Information such as this can lead to optimization of the 

blasting process, or at least bring about useful site 

discussions on potential improvements for operations.  

4. DISCUSSION 

Using the DFN approach it is possible to gain a better 

understanding of the in-situ rock mass block size. 

However, similar to other types of models, a DFN has to 

be calibrated to reflect the actual field conditions. A 

strong understanding of the input parameters in a DFN 

could act as a guide for features that are important for field 

mapping, thereby increasing the accuracy of the DFN 

(Elmo et al., 2014). Using aerial mapping techniques with 

UAV allows covering a large area of pit slope and thus 

improves the statistics of the input parameters in 

developing a DFN model. This can increase the reliability 

of the results obtained from the DFN model. Moreover, 

once the DFN was generated, it can be leveraged for a 

kinematic analysis of the pit to identify areas of risk.  

It should be noted that the original objective of the case 

study was to use both LiDAR and photogrammetry data 

collected by the UAV for the analysis of the joint sets. 

However, some limitations of the experimental design 

and equipment reliability prevented the successful 

completion of this objective. The LiDAR scanning was 

ineffective because of noise related to GPS positioning, 

sudden maneuvers in the flight plans of the UAV, and the 

speed and orientation of the LiDAR scan. These issues 

will be addressed in future work by reducing the speed 

and optimizing flight plans to eliminate any rotations or 

sudden maneuvers. 

5. CONCLUSION 

The use of UAVs can aid with real-time mining data 

collection and mine monitoring while decreasing 

personnel exposure to hazards. This increased access to 

data can be beneficial in the timely relay of field data to 

mine site personnel and allows for detailed tracking of 

performance without significantly impacting the time 

required to do so.  It is possible to fly a UAV over a 

muckpile while the shovel is digging, thereby avoid work 

interruption. In this regard, the case study used a UAV to 

effectively map a blasted muck pile while minimizing 

exposure and time in the field. It also enabled the remote 

sensing of a larger pile from a better angle than traditional 

ground-based techniques. The use of UAV allowed a 

significant area to be mapped for the photogrammetry, 

increasing the availability of the data for digital 

discontinuity mapping. This was used to supplement field 

mapping done. The photogrammetry allowed for the 

analysis and visual inspection of areas of the pit wall that 

were previously inaccessible. This advantage is 

particularly valuable in areas where potential failures 

have been identified and the pit mining progresses deeper, 

eliminating access to these areas. 

Overall, the case study demonstrates the potential for use 

of a DFN along with the UAV technology for integration 

of remotely sensed data into an operating mine. The 

generation of the block size distributions obtained in the 

case study can assist with the improvement of blasting 

processes in the mine. The blasted rock size data was fully 

obtained through the use of remote sensing which was 

executed in the field in less than an hour. Similarly, the 

photogrammetry was conducted in a single morning. 

While the field component was relatively quick, the post-

processing required more time and was relatively manual 

due to some of the limitations discussed in the paper. This 

is the focus of our future work, to increase the post-

processing speed and increase the automation of these 

process. These improvements would enable on-site 

personnel to focus on more important aspects; data 

interpretation and using the data correctly, rather than 

collecting the data itself. 
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