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Meta Learning With Paired Forward and Inverse
Models for Efficient Receding Horizon Control

Christopher D. McKinnon and Angela P. Schoellig

Abstract—This paper presents a model-learning method for
Stochastic Model Predictive Control (SMPC) that is both accurate
and computationally efficient. We assume that the control input
affects the robot dynamics through an unknown (but invertable)
nonlinear function. By learning this unknown function and its
inverse, we can use the value of the function as a new control
input (which we call the input feature) that is optimised by SMPC
in place of the original control input. This removes the need to
evaluate a function approximator for the unknown function during
optimisation in SMPC (where it would be evaluated many times),
reducing the computational cost. The learned inverse is evaluated
only once at each sampling time to convert the optimal input
feature from SMPC to a control input to apply to the system. We
assume that the remaining unknown dynamics can be accurately
represented as a model that is linear in a set of coefficients, which
enables fast adaptation to new conditions. We demonstrate our
approach in experiments on a large ground robot using a stereo
camera for localisation.

Index Terms—Field robots, model learning for control,
robust/adaptive control.

I. INTRODUCTION

ROBUST and Stochastic Model Predictive Control (SMPC)
are effective tools for controlling mobile robots such as

quadrotors [1], race cars [2], [3], and offroad vehicles [4], [5] in
the presence of model uncertainty. Both methods rely on a for-
ward dynamics model that predicts how a control input changes
the state, including an estimate of uncertainty in this change.
Although this model can be learned from data to improve its
accuracy, a key challenge is the trade-off between the accuracy
of the model and its computational efficiency since the model
is evaluated many times for each control input applied to the
system. In this paper, we present a method for leveraging expres-
sive models for robot dynamics while incurring only a marginal
increase in computational cost during trajectory optimisation in
SMPC. Our approach is based on using a combination of forward
and inverse models (trained offline) for part of the dynamics
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and Bayesian linear regression to adapt to changes in dynamics
online. The proposed architecture is shown in Fig. 1.

The most popular approach to improve SMPC is to learn the
forward model for the robot dynamics directly. To increase the
accuracy of this model, researchers leverage various function
approximators, such as Gaussian process regression [6]–[8],
local linear regression [9]–[11], and neural networks [12], [13]
to learn an unknown function in the forward dynamics model.
However, since SMPC requires these models to be evaluated
many times to compute each control input (since each control
input is based on multi-step predictions of the state), there is
a trade-off between the computational cost of these function
approximators and their expressiveness. In our approach, we
partition the model such that the computationally expensive
component of the learned model is only evaluated once for each
control input, mitigating this problem. Additionaly, we adapt a
simple model for robot dynamics online to adapt to changes in
operating conditions online and use this model to optimise the
control input in SMPC. Partitioning the model into an expressive
component learned offline and a simple component learned
online to adapt to changes is inspired by a recent trend known
as meta learning.

In meta learning, algorithms leverage large amounts of data
available ahead of time to learn functions that can be adapted
to new scenarios with a small amount of data and computation.
An expressive model, such as a neural network, generates fea-
tures [14], [15] or an initial guess [16] that can be adapted to
changes using linear regression [14], [15] or a small number
of gradient descent steps [16]. Functions learned using these
methods adapt to changes efficiently because linear regression
or a small number of gradient steps require a relatively small
amount of data and computing power. These algorithms have
been applied to reinforcement learning on real robotic platforms,
used to learn forward models, and these forward models have
been combined with robust control [15] and SMPC [17]. The
main difference in our approach is that in addition to partitioning
the model, we learn an inverse for part of the model so we do
not have to use the full forward model during optimisation in
SMPC.

While a forward model predicts the motion of a robot given
the current state and control input, an inverse model predicts
the control input that will produce the desired motion given the
current state. Inverse models have long been used for controlling
platforms such as robotic manipulators [18]. These models can
be derived from physics [18], learned [19]–[22], or some combi-
nation [23]–[25]. The advantage is that they simplify complex,
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Fig. 1. A block diagram of the proposed approach. The forward and inverse input-feature models are learned offline and Bayesian Linear Regression is used
to adapt to changes online and estimate model uncertainty. The input feature is the value of an unknown function in the dynamics for which we have learned an
approximate forward input-feature model. The value of this unknown function is optimised in SMPC and then converted into a control input that can be applied
to the system using the learned inverse input-feature model. The main benefits of this approach are that (i) the expressive but computationally expensive forward
input-feature map does not have to be evaluated during optimisation in SMPC, and (ii), multiple forward and inverse input-feature maps from different sources can
be considered simultaneously. A detailed version of this block diagram that includes online model selection is shown in Fig. 2.

nonlinear dynamics into a simple, linear system. However, they
typically do not combine this model with an MPC framework,
which requires a forward model, and they adapt the inverse term
(a complex, nonlinear function) directly to adapt to changing
conditions. In contrast, by learning both a forward and inverse
model offline and combining this with online linear regression,
we simplify the online learning process to linear regression–
which keeps the potentially challenging step of learning the
inverse as an offline process where it can be validated before
deployment–and leverage an SMPC framework.

Finally, as an alternative to learning one model that adapts
efficiently to new scenarios, several models can be trained
ahead of time. The one that performs the best in the robot’s
current operating conditions is selected at runtime [26]. This
simplifies the training process since the training for each model
is de-coupled and can be combined with online learning to
adapt further to specific operating conditions [27]–[29]. While
multiple paired forward and inverse models have been used for
control before [30], our approach is, to the best of our knowledge,
the first that combines this capability with probabilistic, online
model learning and SMPC.

Notation: We denote matrices with boldface uppercase letters,
column vectors with boldface lowercase letters, and scalars with
non-boldface letters. The mean of a Gaussian random variable v
is v̄. The time derivative of variable v is v̇. Functions are followed
by round brackets; e.g. v(·), if the output is a vector, and v(·)
if the output is a scalar. A probability density function (pdf) of
v given parameters ∗ will be denoted by p(v | ∗). v ∼ N (μ, σ2)
means that samples of v are distributed according to a Gaussian
distribution with mean μ and variance σ2.

II. PROBLEM STATEMENT

The goal of this work is to learn a model for the robot
dynamics where the robot is performing a path following task in
changing conditions and the control approach is SMPC. The key
requirements for the model are: (i) high accuracy predictions of
the robot motion given the current state and control input, (ii)
realistic bounds on modelling error to maintain safety, and (iii)
computational efficiency to allow for long prediction horizons
in SMPC. We assume that a geometric path and input and state
constraints (e.g. maximum speed and lateral error) are given.

We consider the robot dynamics to be of the form where part
of the state s evolves according to known dynamics h(s, ξ) and
part of the state ξ evolves according unknown dynamics. We
assume the unknown dynamics are a linear combination of a

known set of features φ(s, ξ) and an unknown but smooth and
invertible function f(s, ξ, u), the output of which we call the
input feature, that depends on the states and the control input u:

ṡ = h(s, ξ) (1)

ξ̇ = [f(u, s, ξ), φT (s, ξ)]w + η, (2)

where w is a vector of unknown weights, and η ∼ N (0, σ2)
where σ2 is unknown and slowly changing. The reason for
includingφ(·) in addition tof(·) is to allow parts of the dynamics
that depend on each element in φ(·) and f(·) to vary indepen-
dently through the associated weight in w (facilitating online
adaptation). That is,φ(·) represents prior knowledge about ways
that the dynamics can change in new operating conditions and
f(·) allows us to leverage prior data to learn unknown dynamics
in a particular set of operating conditions. In the case where we
have no prior knowledge, φ(·) can be omitted. There may be
multiple states with unknown dynamics (i.e. ξ may be a vector),
however we assume that each one depends on a separate input u.
In this case, there would be one independent instance of (2) for
each input. To further motivate this problem set-up, we present
a simple example.

Simple Example: Consider a cart on a rail with forward
velocity v, massm, viscous drag with drag coefficient b, input u,
which is related to a force through an unknown function f ′(u),
and a disturbance with units of force which takes the form of
zero-mean Gaussian noise η0 ∼ N (0, σ2

0):

mv̇ = f ′(u)− bv + η0. (3)

Let f(u, v) = f ′(u)− bv. Then the dynamics of a cart with any
mass and drag coefficient can be expressed as:

v̇ = [f(u, v), v]w + η. (4)

This is of the form (2) with ξ = v. Here, including v in addition
to f(·) enables changes in both m and b to be captured by w
rather than just changes in m. Learning the entire right-hand
side of (3) as f(·) offline means that we do not have to know the
initial value of b.

This can be extended to a unicycle using (1) as follows. Let
ω be the turn rate and assume that it is constant in this example.
Let x and y be the position of the robot and θ be its heading.
Then:

(1)

⎧⎨
⎩

ẋ = v cos(θ),
ẏ = v sin(θ),

θ̇ = ω,
(5)

Authorized licensed use limited to: The University of Toronto. Downloaded on April 27,2021 at 20:40:34 UTC from IEEE Xplore.  Restrictions apply. 



3242 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

Fig. 2. Block diagram of the proposed approach with multiple models. Curly braces indicate a discrete set of functions or values. Dashed lines indicate functions
or parameters, and solid lines indicate scalar or vector quantities. The orange blocks are relevant for our model learning approach. The subscript i on fi(·) and
f−1
i (·) indicates the mode. Equations relevant to each block are referenced in round braces.

(2)
{
v̇ = [f(u, v), v]w + η. (6)

which is of the form (1) and (2) with s = [x, y, θ]T and ξ = v.
For this example, changes in m and b only affect w and σ2. As
a result, it is sufficient to learn w and σ2 online.

Additional examples of systems with dynamics that can be
factored such that model parameters appear linearly include
serial manipulators, pendulums, cartpoles [31], and quadrotors
with unknown mass and inertia properties [32] or which have
nested control loops that have dynamics close to first order sys-
tems [33]. The nonlinearity f ′(·) could come from, for example,
a DC motor with a nonlinear saturation curve [34] (see Section
8, Fig 4).

III. METHODOLOGY

Our method partitions model learning into two phases: an
offline phase, where a forward and inverse model for the input
feature are learned; and an online phase, where a simple model
uses the input feature to adapt to changes in the robot dynamics
and estimate model uncertainty. From a model-learning perspec-
tive, partitioning of the model in this way enables us to match the
complexity of each part of the model to the availability of data
and computational power before and during deployment. We
use expressive forward and inverse input-feature models that
have large data capacity and are trained offline, and a model
that is linear in coefficients that is data efficient and trained
online. From a computational perspective for SMPC at runtime,
trajectory optimisation (which requires many queries to the full
model for robot dynamics) relies on the simple model, which
is computationally inexpensive, and only optimises the value
of the input feature. The optimal value of the input feature
is then converted back into a control input using the inverse
input-feature model, which is more computationally expensive,
but this is done only once for each control input applied to the
robot. Fig. 2 shows a detailed block diagram of the proposed
approach.

A. Approach

To present our approach, we focus on the unknown dynamics
and assume ξ ∈ R for clarity of presentation. Our method can
be applied to systems with ξ ∈ Rnξ so long as each element
depends on a separate input which allows them to be treated
independently using our approach.

1) Forward Input-Feature Model (Trained Offline): We as-
sume that we are given a dataset D = {ui, si, ξi, ξ̇i}nD

i=1 of
samples of the states, input, and time derivative of ξ at nD

different sampling times. Suppose that we have a system where
the unknown dynamics are:

ξ̇ = [f ′(u, s, ξ) + φT (s, ξ)]w0 + η0. (7)

where η0 ∼ N (0, σ2
0), f

′(u, s, ξ) is an unknown function, and
w0 is unknown but fixed. We can use D to fit a function
f(u, s, ξ) ≈ [f ′(u, s, ξ) + φT (ξ, s)]w0, which we assume to be
invertible. Learning the mean of the right hand side of (7) means
that we don’t have to know the value of w0 and the dynamics
can be expressed as:

ξ̇ = [f(u, s, ξ), φT (s, ξ)]w + η (8)

for any changes to the weight and the variance of the additive,
Gaussian noise.

2) Inverse Input-Feature Model (Trained Offline): Let ξ̇f ≡
f(u, s, ξ). At a given time instant, ξ and s are fixed so the only
parameter that we can change to influence ξ̇f is u. Therefore,
we can define:

u = f−1(s, ξ, ξ̇f ). (9)

which generates u that results in a desired ξ̇f for a given s and
ξ. To fit this function, we can use f(·) from the previous section
to generate ξ̇f for each sample in D yielding a new dataset
Df = {ui, si, ξi, ξ̇

f
i }nD

i=1. This dataset can be used to fit f−1(·)
using standard regression techniques. Since Df is generated
using a deterministic function, this dataset is noise-free which
facilitates learning f−1(·). In cases where the inverse is not
unique, approaches such as the distal-teacher approach can be
employed to learn a particular inverse [35].

3) Simple Forward Model (Trained Online): Given f(·)
from the previous section, a tuple (ui, si, ξi, ξ̇i), and φ(·), we
can generate a corresponding tuple (ξ̇fi ,φi, ξ̇i), where ξ̇fi =
f(ui, si, ξi) and φi = φ(si, ξi). Now, subbing into (2), we get:

ξ̇i = [ξ̇fi , φ
T
i ]w + ηi (10)

which is linear in coefficients w with additive, Gaussian noise
ηi ∼ N (0, σ2). Functions of this form can be learned efficiently
using Bayesian linear regression, which estimates the distribu-
tion of w and σ2. See [11], section III b). These estimates can be
updated recursively, which we leverage for adapting our estimate
for w and σ2 online using the live stream of data generated by
the robot. Now, in combination with h(·) from (1), we have
all the components necessary to do trajectory optimisation in
SMPC.

4) Stochastic MPC: We build on the SMPC formulation
presented in [11]. Here, we give a brief overview. We consider
a receding horizon control problem with H timesteps where
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the robot states s and ξ evolve according to dynamics of the
form (1) and (2) given input u. Using the method proposed in
this paper, we use the mean value of ξ̇f as a decision variable
instead of u. Let �(s, ξ, ξ̇, ξ̈) be the non-negative scalar cost of
the state and its derivatives with respect to time at a particular
time instant and �f (s, ξ) be the non-negative scalar cost of the
final states in the horizon. Let s and ξ be constrained to be
within the sets S and Ξ with a small acceptable probability ε
of violating these constraints. The resulting receding horizon
control problem solved at each sampling time k is then the
following:

min
˙̄ξfk:k+H−1

�f (s̄H , ξ̄H) +
∑
i

�(s̄k+i, ξ̄k+i,
˙̄ξk+i,

¨̄ξk+i) (11)

s.t. ṡk+i = h(sk+i, ξk+i) (12)

ξ̇k+i = [ξ̇fk+i, φ(sk+i, ξk+i)
T ]wk + ηk+i (13)

ηk+i ∼ N (0, ση
k+i) (14)

p(sk+i+1 ∈ S) ≥ 1− ε, (15)

p(ξk+i+1 ∈ Ξ) ≥ 1− ε, (16)

for i = 0. . .H − 1, where (̄·) indicates the mean. Noisy mea-
surements of s and ξ at time k are assumed to be given and
have additive, Gaussian uncertainty with known covariances. We
integrate s and ξ using Eulers method and propagate uncertainty
by linearising the dynamics model about the mean states and
input. See [2] for a discussion of methods for uncertainty prop-
agation for SMPC. For clarity of presentation, we have omitted
path-reference values for s and ξ that appear in �(·) and �f (·) and
variables related to contouring control (see [36]), which is how
we compute the reference for each timestep along the horizon.

In our approach, we include a penalty on ξ̇ and ξ̈, which, for
the example in Section II, is the forward acceleration and jerk
of the unicycle. Penalising ξ̇ and ξ̈ rather than the input ξ̇f and
its time derivative means that the cost function encourages the
same motions regardless of the input feature. This is useful if
we consider a set of input-feature model pairs, which we show
next, in Section III-B.

B. Multi-Modal Learning

When a robot may be deployed in a wide range of environ-
ments, there may be changes in the parameters of the linear
model as well as the nonlinear term f(·). Changes in f(·) cannot
be captured using Bayesian linear regression. A key advantage
of our approach is that multiple models, each using a different
input-feature model pair, can be simultaneously adapted to the
robots current environment given a stream of s, ξ, ξ̇, and u. This
allows us to train a set of input-feature model pairs ahead of time
and choose the best pair for the current operating conditions.

Let c be a discrete index where each value corresponds to
a different forward and inverse input-feature model pair and
its associated linear model. At sampling time k, the posterior
probability of each model is calculated using a sliding window
of nw recent measurements D− = {ξi, ξ̇i, si}k−1

i=k−1−nw
and a

Fig. 3. The Clearpath Grizzly with mast-mounted stereo camera used for the
experiments in this paper.

prior p(c):

p(c = j|D−) ∝ med(p(ξ̇i|ui, si, ξi, c = j))p(c = j) (17)

for i = k − 1− nw. . .k − 1, where p(ξ̇i|ui, si, ξi, c = j) is the
probability of model j generating ξ̇i given ui, ξi, and si. The
model is switched if p(c = j|D−) for the most likely model is
more likely than the previously most likely model by at least
a pre-defined threshold. This prevents rapid switching between
two or more models that have similar probability. Using the
median med(·) instead of the product is a departure from the
more common assumption that each recent measurement is
independent but we found it produced more reliable results in
experiment. We estimate the probability of each model using
the model for the unknown dynamics only (i.e. (2) for a given
input-feature model pair, set of weights, and noise variance)
assuming that all models share a common h(·). If this is not the
case, the full dynamics model would be used. Model selection
is done asynchronously from the control loop. When the best
model changes, a new linear model and inverse input-feature
model are passed to the controller and used to compute the
control at the next sampling time.

IV. APPLICATION TO A GROUND ROBOT

In this section, we describe how to apply our method to
the Clearpath Grizzly shown in Fig. 3. The controller receives
estimates of its pose and velocity from a localisation system that
relies solely on a stereo camera (c.f. [37]).

A. Dynamics Model

The full dynamics model we use for the Clearpath Grizzly is
the unicycle where we learn the speed and turn rate dynamics.
Let x and y be the position of the vehicle, θ its heading, ω its
turn rate, and v its forward speed. The model for robot dynamics
is then: ⎡

⎢⎣ẋẏ
θ̇

⎤
⎥⎦ =

⎡
⎢⎣v cos θv sin θ

ω

⎤
⎥⎦ (18)
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Fig. 4. Measured values for the acceleration and the control commands applied
to the vehicle are shown in blue. Single step predictions from forward 4(a)
and inverse 4(b) input-feature models are shown in red. In this special case
since, the training and test environments were the same, the forward input-
feature is analogous to acceleration. The dashed black line shows the value
of the input feature recovered using the control commands predicted by the
inverse input-feature model (e.g., fv(v, ω, f−1

v (v,w, ξ̇f,v))). Since the error
induced by the approximate, learned inverse input-feature model was an order
of magnitude smaller than the error in the forward model, we assumed that the
inverse input-feature models were exact for our experiments.

[
v̇

ω̇

]
=

[
[ξ̇f,v, v]wv + ηv

[ξ̇f,ω, ω]wω + ηω

]
(19)

where ξ̇f,v and ξ̇f,ω are the input features for speed and turn-
rate, respectively, ηv ∼ N (0, σ2

v), and ηω ∼ N (0, σ2
ω). Equa-

tion (18) is analogous to (1) with s = [x, y, θ]T and ξ = [v, ω]T ,
and each row of (19) is analogous to (2).

The learned forward input-feature models have the form:

ξ̇f,v = fv(v, ω, vcmd), (20)

ξ̇f,w = fω(v, ω, ωcmd), (21)

where vcmd and ωcmd are the original speed and turn rate
commands that are sent directly to the vehicle. The inverse
models have the form:

vcmd = f−1
v (v, ω, ξ̇f,v), (22)

ωcmd = f−1
ω (v, ω, ξ̇f,w). (23)

Each model f∗(·) and f−1
∗ (·) is parametrised as a neural network.

The network architecture we used in all cases was a fully
connected network with three hidden layers, 20 hidden units
in each layer, and ReLU activation functions. We trained all
networks using 25, 042 samples gathered in the UTIAS Mars
Dome (sand and gravel terrain) with 20% of the samples used
for validation and an L1 loss function.

B. Input-Feature Model Accuracy

In the special case when the dynamics model is tested in the
same environment as it was trained, the input feature should di-
rectly predict the associated motion in the robot (e.g., v̇ ≈ ξ̇f,v).
In Fig. 4(a), we show that the forward input-feature model
predicts a smoothed version of the acceleration of the vehicle.
For eight runs of the vehicle driving in the UTIAS Mars Dome,

the (50th, 75th, and 95th) percentiles of error between the input-
feature (red in Fig. 4(a)) and the measured acceleration (blue in
Fig. 4(a)) are (0.074, 0.14, 0.29) m/s2 for forward acceleration
and (0.064, 0.12, 0.23) rad/s2 for turning acceleration. We can
now use the input-feature value and the state at each sampling
time to predict the control input using the inverse input-feature
model. In Fig. 4(b), we show that it accurately recovers the
control input with error percentiles (0.014, 0.017, 0.045)m/s for
vcmd and (0.003, 0.005, 0.011) rad/s for ωcmd. Furthermore, we
can feed these control inputs back into the forward input-feature
model to see how much the input-feature changes when using
the recovered control input (black in Fig. 4(a)) compared to
the original control input. The percentiles of the change in
the input-feature using the recovered vs. actual control inputs
are (0.007, 0.017, 0.036) m/s2 for forward acceleration and
(0.003, 0.006, 0.011) rad/s2 for turning acceleration. Since these
errors are approximately an order of magnitude smaller than
the difference between the input-feature and the acceleration,
we neglect error in the inverse input-feature models for our
experiments.

The difference in accuracy between the forward and inverse
input-feature models may result, in part, from the fact that
the forward input-feature model is trained to model a physical
process with an unknown dependence (the robot dynamics in
the training environment). In contrast, the inverse input-feature
model is trained to model a deterministic function with a known
dependence (the inverse of the forward input-feature model).
For example, in our case, the robot dynamics may be affected
by local terrain properties, which may change from one run to
the next as the vehicle displaces sand and gravel by driving over
it. Since the forward input-feature model does not include local
terrain properties as input, it cannot model the impact of these
factors on the robot dynamics resulting in prediction errors. In
addition, the output of the forward input-feature model is mea-
sured using sensors, which may introduce measurement noise.
These problems do not exist for learning the inverse input-feature
model since it is trained to invert the forward input-feature
model, which is deterministic, has a known dependence, and
is assumed to be invertible.

C. Cost Function

As mentioned in Section III-A4, the cost function should
depend on the state and its derivatives and not the value of the
input feature so that the optimal trajectory is consistent when the
input-feature changes. Let sk = [xk, yk, θk]

T , ξk = [vk, ωk]
T ,

�lc(·) be a quadratic penalty on the position and heading error,
�vω(·) be a quadratic penalty for the speed and turn rate error,
and Rξ̇ and Rξ̈ be diagonal and positive semi-definite penalty
matrices for acceleration and jerk. The cost function we used in
SMPC is then:

k+H∑
i=k+1

�lc(s̄i) +
k+H∑
i=k+1

�vω(ξ̄i)+ (24)

k+H−1∑
i=k

1

2
˙̄ξTi Rξ̇

˙̄ξi +

k+H−1∑
i=k

1

2
¨̄ξTi Rξ̈

¨̄ξi (25)
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TABLE I
SUMMARY OF DIFFERENCES BETWEEN THE METHODS COMPARED IN THIS

SECTION. LEARNED INPUT FEATURE IS WHEN A LEARNED INPUT-FEATURE

MODEL PAIR IS USED (SECTION III-A1 AND III-A2). ONLINE ADAPTATION

IS WHEN THE LINEAR MODEL PARAMETERS ARE UPDATED ONLINE

(SECTION III-A3). ONLINE MODEL SELECTION IS WHEN MULTIPLE

INPUT-FEATURE MODEL PAIRS ARE CONSIDERED AT RUNTIME (SECTION III-B)

We have omitted the terms of the cost function for contouring
control (see [36] for details on contouring control) and the
reference values for s and ξ for brevity. Values for ˙̄ξ and ¨̄ξ
are calculated by differentiating ξ̄ using finite difference.

D. Computational Advantage

A key advantage of our approach is that a simple model is
used in SMPC and the forward and inverse input-feature models
are evaluated only once per sampling time. This is important
because the mean, uncertainty, and Jacobian of the model used
in SMPC are queried 30 timesteps in the prediction horizon × 3
re-linearizations × 10 Hz = 900 times per second whereas only
the scalar output of the forward and inverse input-feature models
are evaluated at 10 Hz= 10 times per second. This means that the
forward and inverse blocks can be much more computationally
expensive (and therefore potentially more expressive) than any
model used in SMPC. In our case, the linear model has 14
independent parameters and the forward and inverse models
have a combined 3764 parameters which reflects the required
computational requirements of each component. In addition,
the linear model can provide a quantitative estimate of model
uncertainty for SMPC. This allowed us to implement the forward
and inverse model learning in Python on the CPU adding only
4.1 ms to 6.5 ms (50th to 95th percentile) to the run-time of the
controller (small compared to the 100 ms sampling period of the
controller).

V. EXPERIMENTS

We compare four variants of the proposed method which are
summarised in Table I. These variants all use the unicycle model
(18) but differ in whether or not a model is learned for the
input features, whether the linear model parameters are updated
online, and the number of input-feature model pairs considered
at runtime. Initial values for the linear model parameters are
calculated using the dataset used to train the input-feature model
pairs.

First, to assess controller performance without using an input-
feature model pair, we compare to using the original control
inputs vcmd and ωcmd as the input-features directly and learning
only the linear model parameters (e.g.,wv andσ2

v) online (BLR).
This is the special case when the forward and inverse input-
feature models are identity and only depend on the original con-
trol input. Second, we compare to using a learned input-feature
model pair but not adapting the linear model parameters online

(DNN). Third, we compare to using both a learned input-feature
model pair and adapting the linear model parameters online
(BLR-DNN). Finally, we evaluate our online model selection
approach by including both BLR and BLR-DNN as candidates
and switching to the best model online using (17) with a uniform
prior (MM).

A. Closed Loop Experiments

In this section, we demonstrate the effectiveness of the pro-
posed approach in closed loop. We use the same network as in
the previous section and conduct our tests over an 82 m course
in a paved parking area. The high friction of the paved surface
introduced a larger difference between BLR and BLR-DNN than
driving offroad on dirt or over snowy terrain.

1) Tracking Performance Comparison: Fig. 5 shows the dis-
tribution of lateral error, step cost, and the cumulative cost when
controlling the vehicle using BLR, BLR-DNN, MM, and DNN.
All cases when the controller uses a model that incorporates
a learned feature show a reduction in these metrics compared
to BLR indicating that the learned feature captures more of
the robot dynamics than using the control input directly. Fur-
thermore, BLR-DNN out-performs DNN in all metrics. This
indicates that learning the feature weights online translates into
better closed-loop performance. One interesting point is that
MM achieved lower lateral error and step cost than BLR-DNN
but achieved similar cumulative cost. This is likely due to
our model switching implementation, which assumes that the
acceleration and jerk are zero when the model switches which
causes the vehicle to slow down. At this lower speed, the vehicle
is able to track the path more closely which reduces the lateral
error and step cost, but it takes longer to complete the path which
increases the cumulative cost.

2) Closed Loop Model Performance Comparison: In this
section, we compare the prediction performance of BLR and
BLR-DNN for the closed-loop experiment to gain insight into
why their performance differed. The results are based on data
from runs when the controller was using the corresponding
method. We focus on the robots speed dynamics, but the results
for turn rate show a similar trend.

Model prediction accuracy will be measured using Multi-step
RMSE (M-RMSE) and the accuracy of the predicted uncertainty
will be measured using the multi-step RMS Z-score (M-RMSZ)
over the prediction horizon. For the speed v, the M-RMSE at
sampling time k is calculated by comparing the predicted mean
at each timestep i along the horizon v̄k,i to the measured mean
at the corresponding sample time v̄k+i,0:

M-RMSEk =

√
1

H

∑H

i=1
(v̄k,i − v̄k+i,0)2. (26)

M-RMSZ is calculated the same way but each term in the sum
is normalized by the predicted variance σ2

v k,i.
Fig. 6 shows that the M-RMSE and M-RMSZ for speed

was substantially lower for BLR-DNN than for BLR. This
discrepancy highlights the importance of using a good feature for
online learning in closed loop: large model errors induce tracking
errors, which can result in larger control actions, which can
compound the model errors further as more complex dynamics
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Fig. 5. This figure shows performance metrics for a closed-loop experiment demonstrating the effect of each component of the proposed algorithm. The robot
traversed an 82 m path over a paved parking area. Each point along the horizontal axis represents a traversal of the path. All traversals where the controller leveraged
a model using the learned input-feature out-performed BLR. Online adaptation (BLR-DNN) increased performance in all metrics compared to using a fixed model
(DNN). The mixture model (MM) outperforms all models except for BLR-DNN, where it achieves a similar cumulative cost, for reasons explained in Section V-A.

Fig. 6. This figure shows the model prediction accuracy using the parameters
estimated online when BLR and BLR-DNN are used in closed loop in a paved
parking lot. Results for each method over three runs (the same runs shown
in Fig. 5) are super-imposed. This shows that, in the parking lot environment,
BLR-DNN clearly out-performs BLR in model prediction accuracy, uncertainty
estimation, in addition to closed loop performance as shown in Fig. 5.

are excited and any time delays have a larger impact. While
the controller using BLR does complete the course, the large
M-RMSZ indicates that the uncertainty bounds are overconfi-
dent for several sections of the run. This means the vehicle may
not always be able to complete the run without violating the
path tracking error bounds if the it is close to the path tracking
constraints at the same time that the model is overconfident.

3) Online Model Selection: Fig. 7 shows the estimated prob-
ability of each model calculated using (17) during one run from
the results shown in Fig. 5. BLR-DNN is estimated as the
most likely model for most of the run. This is consistent with
our the results in Fig. 5 where BLR-DNN had better tracking
performance, and Fig. 6, where it had better prediction accuracy.

To prevent rapid switching between models when two models
have similar probability, we require that the most likely model
be at least 10% more likely than the one used in the controller
before switching. This results in the dead-band shown in Fig. 7.
When the estimated probability of both models is similar, each
model explains the recent dynamics similarly well so using either
should result in similar performance.

Fig. 7. This figure shows the estimated probability of each model in MM
during one run of the closed loop experiments shown in Fig. 5. The probability
of each model is estimated every 2 s which is why the estimated probability
has the appearance of a square wave with varying width. We avoid chatter by
requiring that the model only switches when the most likely model is at least
10% more likely than the currently active model. For two models, this leads to
the ‘dead zone,’ shaded in gray, where no mode switches will occur even if the
most likely model changes.

VI. DISCUSSION

An ongoing challenge in learning control is choosing the
dependence of the unknown dynamics (i.e., the dependence of
the input-feature model pair). Initially, it may be tempting to
include many past states and rely on the function approximator
to ignore irrelevant ones given enough data. We found that
including past states as inputs to the input-feature model pair
model induced large oscillations in closed loop even when output
of SMPC ξ̇f,∗ was smooth. In contrast, the simpler model used
in the experiments above did not have this problem. A detailed
study of feature selection for learning inverse models for closed
loop control is beyond the scope of this paper.

While we assumed that the error induced by the approximate
inverse input-feature model was negligible (justified empiri-
cally), further investigations into the impact of this error on the
closed-loop system are planned for future work. In addition,
investigating how to incorporate constraints on the original
control input would enable this approach to be applied to systems
that operate close to their input constraints.

VII. CONCLUSION

In summary, we presented a control approach specifically tai-
lored for SMPC that leverages the combination of (i) an expres-
sive input-feature model pair learned offline with (ii) Bayesian
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linear regression to adapt to changes online and (iii) online model
selection to leverage multiple possible input-feature model pairs.
Our formulation allows learned input features to be used as
a drop-in replacement for the control input in SMPC making
it easy to apply to existing controllers. Through a series of
experiments on a ground robot, we showed that the proposed
approach significantly improved closed-loop performance over
using the control input directly at minimal computational cost.
We hope that the reader finds this an interesting method for
control of systems with partially unknown dynamics that may
be deployed in a wide range of operating conditions.
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