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Learn Fast, Forget Slow: Safe Predictive Learning
Control for Systems With Unknown and Changing

Dynamics Performing Repetitive Tasks
Christopher D. McKinnon and Angela P. Schoellig

Abstract—We present a control method for improved repetitive
path following for a ground vehicle that is geared toward long-
term operation, where the operating conditions can change over
time and are initially unknown. We use weighted Bayesian linear
regression (wBLR) to model the unknown dynamics, and show
how this simple model is more accurate in both its estimate of the
mean behavior and model uncertainty than Gaussian process re-
gression and generalizes to novel operating conditions with little
or no tuning. In addition, wBLR allows us to use fast adaptation
and long-term learning in one unified framework to adapt quickly
to new operating conditions and learn repetitive model errors over
time. This comes with the added benefit of lower computational
cost, longer look-ahead, and easier optimization when the model is
used in a stochastic model-predictive controller (MPC). In order
to fully capitalize on the long prediction horizons that are possible
with this new approach, we use Tube MPC to reduce the growth of
predicted uncertainty. We demonstrate the effectiveness of our ap-
proach in the experiment on a 900-kg ground robot showing results
over 3.0 km of driving with both physical and artificial changes to
the robot’s dynamics. All of our experiments are conducted using
a stereo camera for localization.

Index Terms—Learning and adaptive systems, model learning
for control, robot safety, field robots.

I. INTRODUCTION

THIS letter presents a new probabilistic method for mod-
elling robot dynamics geared towards stochastic Model

Predictive Control (MPC) and repetitive path following tasks.
The goal of our approach is to enable a robot to operate in chal-
lenging and changing environments with minimal expert input
and prior knowledge of the operating conditions. Our study is
motivated by our previous work with Gaussian Processes (GPs)
on this topic [1] and an interest in deploying robots in a wide
range of operating conditions. Our method requires the unknown
part of the dynamics to be linear in a set of model parameters.
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Safe control methods have emerged as a way to guarantee
that safety constraints (e.g. a bound on maximum path tracking
error) are kept in the face of model errors. Having an accurate
estimate of model error is of critical importance to the valid-
ity of these safety guarantees. In order to derive models for
complex systems or systems operating in challenging operating
conditions, researchers increasingly rely on tools from machine
learning. In particular, probabilistic models are used since they
provide a measure of model uncertainty which can naturally be
used to derive an upper bound on model error. Two common
methods for doing this are GP regression [1]–[3] and various
forms of local linear regression [4]–[6].

In our previous work [1], we used GPs to learn the robot dy-
namics in a number of different operating conditions by lever-
aging experience gathered over multiple traverses of a path.
However, we found that they have a number of limitations that
make them difficult to apply in a wide range of operating condi-
tions. First, they are computationally expensive, which limits the
number of training points that can be used in the model for con-
trol [1]. This limits the region of the input space over which the
GP is accurate. Second, using maximum likelihood optimiza-
tion to identify hyperparameters offline did not always result in
good closed loop performance. For this reason, we used a fixed
set of hyperparameters which limited the range of operating
conditions where the learning was effective. Third, given fixed
hyperparameters, the GP assumes that the unknown dynamics
are globally homoscedastic even though we only fit the model
locally along the path. This further limits the effectiveness of a
GP-based approach.

In this letter, we propose a new approach to address these lim-
itations: we use weighted Bayesian Linear Regression (wBLR)
to model part of the robot dynamics locally along the path (see
Fig. 1). A wBLR model is computationally inexpensive to fit
and evaluate. This enables us to use more previous experience
to learn repetitive model errors and current experience to adapt
quickly to novel operating conditions. We leverage the fact that
we are doing a repetitive path following task and a predictive
control strategy to efficiently partition past data for fitting our
local model. Our approach does not otherwise depend on hyper-
parameters which, in addition to its relatively simple parametric
form, makes it very data efficient and thus able to adapt quickly
and reliably to new operating conditions. Finally, in a special
case, wBLR can be designed so that it preserves convexity of the
optimization problem solved as part of the MPC-based control
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Fig. 1. Block diagram showing the proposed model learning method in closed-
loop with a safe controller (red dashed box). The system dynamics can change
from one run to another and over the course of a run. We use weighted Bayesian
Linear Regression (wBLR) to learn the actuator dynamics of the plant. This
approach, which enables fast adaptation and long-term learning, is shown to
be highly effective in experiment. We encourage the reader to watch our video
showing the experiments and datasets used in this letter: http://tiny.cc/fast-slow-
learn.

strategy. As a result, improvements in the model translate well
into improvements in control. In this letter, we also show how
the model can be combined with Tube MPC to double the look-
ahead horizon of our previous approach to three seconds.

II. RELATED WORK

This work considers the problem of model learning for repet-
itive path following and a stochastic MPC. Recent work on this
subject can be broadly grouped into three categories depending
on how they group data to construct a model for robot dynamics.

First, single mode learning control. This class of methods
learns a single model for the robot dynamics. This means that
all data gathered by the robot can be grouped into one model and
used to train any model parameters and validate them to avoid
overfitting. This class of methods has shown impressive results
control of ground robots [2], [7], quadrotors [6], manipulators
[5] and humanoid robots [8]. This style of approach can learn
new dynamics quickly, but if the robot dynamics can change
due to a factor that is not included in the model (e.g. snow or
wet ground changing the dynamics of ground robot) this class
of methods only has the capacity to learn the robot dynamics in
one such operating condition. It must either ‘forget’ all previ-
ous experience and adapt to the new operating condition from
scratch or risk unsafe and sub-optimal behaviour due to model
inaccuracy.

To address this, multi-modal learning methods learn a set of
models to account for the dynamics in all operating conditions.
The number of models in this set may be fixed or grow as new
conditions are encountered during robot operation. This class
of methods can still leverage all data accumulated in each op-
erating condition to fit and validate complex models. This class
of methods has shown impressive results in motion planning
to avoid dynamic obstacles [9], repetitive path following [1],
and legged robot locomotion [10] among others [11]–[13]. The
main drawback of these methods is that they either assume the
number of operating conditions is fixed, which presents similar
limitations to the single mode methods, or, in the case of [1]
which was performing repetitive path following, take one full
traverse of the path to adapt to new operating conditions rather

than adapting to new operating conditions over the course of a
run. Adapting quickly to new operating conditions as they arise
remains a challenge.

To bridge this gap, recent methods such as [14], [15] include
both a complex model trained on lots of data with a simple
online adaptation term to that can be updated quickly to adapt
to new, previously unseen tasks. The simplicity of this online
learning term enables fast adaptation to new conditions with-
out worrying about overfitting or gathering sufficient data to do
a complex model identification and validation. The long-term
learning components, however, remain fixed and it is not clear
how to update the long-term learning models efficiently. For
example, [15] used a neural network trained on several hours
of data and then fixed as the long-term learning component and
linear regression updated recursively based on recent measure-
ments to construct a ‘fast adaptation’ term that also captured the
uncertainty in the robot dynamics. In this work, we propose a
solution that couples a relatively simple model structure that can
be adapted quickly to novel operating conditions with the ability
to leverage lots of data gathered over many traverses of the path
in various operating conditions. We use local models to achieve
high performance with this relatively simple model form, and
data weighting to incorporate the most relevant past data to im-
prove from repeated traverses in similar operating conditions.
This combines the long-term and fast adaptation components in
one, unified, probabilistic framework.

In light of the current approaches and their limitations, the
contributions of the letter are (i) to present a model learning
framework that supports fast adaptation, long-term learning,
and is tailored to predictive control; (ii) to incorporate that model
(and its model uncertainty estimate) in a stochastic predictive
control scheme; and (iii) to demonstrate the advantage of fast
adaptation and long-term learning in path tracking experiments
over challenging terrain.

III. PROBLEM STATEMENT

The goal of this work is to learn a probabilistic model for
the dynamics of a ground robot performing a repetitive task,
and show how it can be integrated with a state-of-the-art path
following controller for high performance control while main-
taining a quantitative measure of safety. The robot may be sub-
jected to changes in its dynamics due to factors such as payload,
terrain, or tyre pressure. We assume that these factors cannot be
measured directly and all possible disturbances are not known
ahead of time. A good algorithm should scale to long-term op-
eration, take advantage of repeated runs in the same operating
conditions, and adapt quickly to new operating conditions. The
model must include a reasonable estimate of model uncertainty
that acts as an upper bound on model error at all times.

We consider systems with dynamics of the form:

sk+1 = sk + dt

known
︷ ︸︸ ︷

f(sk , ξk ), (1)

ξk+1 = g0(ξk ,uk )
︸ ︷︷ ︸

known

+dt gk (xk )
︸ ︷︷ ︸

unknown

, (2)
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where the state of the system s evolves according to known
dynamics f(·) that depend on s and the state of the actuators ξ.
We assume that our control input u affects the actuator dynam-
ics which consist of a known part g0(·) and an unknown and
potentially changing part gk (·) that we wish to learn. The un-
known dynamics depend on a feature vector x that may be, for
example, composed of ξ and u or nonlinear functions of these
depending on prior knowledge about the system. The subscript
refers to the timestep and dt is the duration of a timestep.

The system is constrained by state and input constraints. Let
zk = [sT

k , ξT
k ]T . Then:

zk ∈ S,uk ∈ U . (3)

We assume a Gaussian belief over the state at each time
step and enforce constraints probabilistically using a chance-
constrained formulation so that the probability of violating state
and input constraints is kept below an acceptable threshold.
Since enforcing these constraints jointly can lead to undesirable,
conservative behaviour, we enforce them individually, see [2]
for a detailed explanation.

IV. METHODOLOGY

In this section, we present our approach for long-term, safe
learning control with fast adaptation. Our approach makes ex-
tensive use of wBLR to model the system dynamics. We assume
a known nonlinear model for the plant with unknown actuator
dynamics that are linear in a set of model parameters. We use
wBLR to determine the model parameters and a measure of
run similarity to determine the data weights. This allows us to
compute the posterior for the model parameters in closed form,
avoiding iterative approaches such as [5], which also optimizes
the data weights. We then formulate the control problem as a
Tube MPC problem following work in [2], [16] but using a
modified ancillary controller.

A. Weighted Bayesian Linear Regression

In this section, we give a brief overview of wBLR, which is
used to learn the actuator dynamics, gk (·). It is an extension
of Bayesian linear regression (BLR), as presented in [17], and
a modification of [5], where we assume a data weighting is
obtained in a separate step.

We consider each dimension of gk (·) separately. For this
section, we will refer to a single dimension of gk (·) as g(·).
For a given xk the corresponding sample for g(xk ), denoted as
gk , may be calculated as gk = (ξk+1 − g0(ξk ,uk ))/dt, where
ξk+1 and g0(·) are the relevant dimensions of ξk+1 and g0(·),
respectively.

Suppose we are given a weighted dataset Dl =
{xi , gi , li}n

i=1 with scalar weights li ∈ [0, 1] that determine
the importance of each data point. If li = 0, the point has no
influence on the regression, and if li = 1, the point is fully in-
cluded. In a simple scenario, all weights can be set to 1, in which
case we recover regular BLR. We assume that the dynamics of
interest depend on a vector of model parameters w and are of
the form

g(x) = wT x + η, (4)

where η ∼ N (0, σ2). The goal of wBLR is to determine the
distribution for w and σ2 given Dl .

We start by assuming that each data point is independent and
weight the contribution of each point as follows:

p(g |X,w, σ2) =
n

∏

i=1

N (gi |wT xi, σ
2)li , (5)

where g is a vector of stacked gi, and X is a matrix with rows xT
i .

The intuition is one point raised to li = 2 would have the same
contribution as two identical points and two identical points
with li = 0.5 would have the same contribution as one data
point. To avoid over-confident estimates, we restrict li ∈ [0, 1].
With this likelihood, the conjugate prior is a Normal Inverse
Gamma (NIG) distribution [17] which gives us the following
priors for w and σ2 :

p(w|σ2) ∼ N (w |w0 , σ
2V0), (6)

p(σ2) ∼ IG(σ2 | a0 , b0), (7)

where w0 is the prior mean for the weights, V0 is a prior
inverse sum of squares of x, and a0 and b0 are the parameters
of the Inverse Gamma distribution, which are proportional to
the effective number of data points in the prior and a0 times the
prior output variance.

The likelihood, (5), can be manipulated into a NIG distribu-
tion over w, σ2 so that (6) and (7) form a conjugate prior and
the posterior joint distribution over w and σ2 is:

p(w, σ2 |Dl) = NIG(w, σ2 |wN ,VN , aN , bN ) (8)

� N (w |wN , σ2VN )IG(σ2 | aN , bN ), (9)

where,

wN = VN (V−1
0 w0 + XT Lg), (10)

VN = (V−1
0 + XT LX)−1 , (11)

aN = a0 + tr(L)/2, (12)

bN = b0 +
1
2
(wT

0 V−1
0 w0 + gT Lg − wT

N V−1
N wN ), (13)

where tr(·) is the trace operator and L is a diagonal matrix of
the data weights li . The posterior marginals are then:

p(σ2 |Dl) = IG(σ2 | aN , bN ), (14)

p(w|Dl) = T (w |wN ,
bN

aN
VN , 2aN ) (15)

where T is a Student t distribution. This gives us all of the
components we need to make predictions of the state at future
timesteps. It is important to note that while the uncertainty in
σ2 decreases as more data is added, the mean value for σ2 can
increase or decrease to reflect the data. The model uncertainty
is then passed to the controller. This is in contrast to a GP (with
fixed hyperparameters) where the uncertainty only decreases to a
value determined by the hyperparameters as data is added. While
it is possible to update the hyperparameters for a GP online,
this is a computationally expensive operation that scales poorly
with the size of the dataset and validating hyperparameters on a
sufficiently large dataset is important to avoid overfitting.
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1) Recursive Updates: When dealing with streaming data
such as the data generated by a robot driving, it can be useful to
continually update the model with recent data in order to adapt
quickly to new scenarios. To do this while ensuring the model
stays flexible enough to adapt to sudden changes, we recursively
update the prior parameters while keeping the strength of the
prior fixed at a pre-determined value n0 . The value of n0 deter-
mines how many effective data points we attribute to the prior.
A large value for n0 results in smoother estimates for the w
and σ2 while a smaller value for n0 allows them to vary more
quickly. If we start with fewer than n0 points in the prior, e.g.
a0 < n0/2, we update the prior using (10)–(13) with the weight
for the new point set to one, and set the posterior parameters to
the prior for the next timestep. Once a0 reaches n0/2, we use
(10)–(13) with the weight for the new point set to one and then
use the following re-weighting to keep n0 constant:

V0∗ =
n0 + 1

n0
VN , w0∗ = wN , (16)

a0∗ =
n0

n0 + 1
aN , b0∗ =

n0

n0 + 1
bN . (17)

The parameters (·)0∗ are the re-weighted parameters which be-
come the new prior. This is equivalent to assigning the prior
and the new point a weight of n0/(n0 + 1) and carrying out a
weighted update using (10)-(13). Compared to GPs, this gives
us more control on how fast the model adapts. For a GP, a new
point must either displace an existing one if the model has fixed
size or increase the model size, which increases the computa-
tional cost of the model and will make it less flexible over time
as more points are added. For wBLR, the influence of old data
decreases after each re-weighting. The rate at which this hap-
pens depends on n0 , which is a parameter of our choosing and
does not affect the computational cost of the model.

2) Preserving Convexity for MPC: MPC usually uses a
gradient-based solver to compute the optimal control sequence
efficiently. It is therefore desirable to maintain properties such
as convexity in the optimization problem. Suppose that the MPC
optimization problem is convex to begin with (e.g. the objec-
tive and inequality constraints are convex and f(·) and g0(·)
are affine). Then, if gk (·) is affine in xk , the new optimization
problem will be convex for any choice of w. See [18, Sec. 4.2].

B. Data Management

The purpose of our method is to construct the best possible
model of the system dynamics for MPC. MPC uses the dy-
namics over the upcoming section of the path to compute the
control input. Referring to Fig. 2, we use data from the recent
section path to determine the weights that indicate which runs
are most similar to the current run. Given these weights, we
use data over the upcoming section of path (determined by the
MPC look-ahead horizon) to construct a predictive model for
the robot dynamics using wBLR. We use two mechanisms to
adapt quickly to new scenarios and take advantage of repeated
traverses in similar conditions.

1) Fast Adaptation: In order to adapt quickly to new sce-
narios, we use the most recent data pair {gi,xi} generated by
the robot to update the model at every timestep. We use the

Fig. 2. The predicted trajectory (shaded blue) is shown superimposed over the
reference path in parallel with the storage structure for data from previous runs
(green circles) that is indexed by run and location along the path. Data along
the recent section of the path (circles with dotted outlines) is used to estimate
the similarity between the current run and each previous run. This similarity is
used to weight data from the upcoming section of the path (circles with solid
outlines) and construct the predictive model used in MPC. We also use recent
data from the current run to recursively update the model and adapt quickly to
novel operating conditions and non-repetitive changes. The size of the regions
of the path considered upcoming and recent may be considered hyperparameters
that are linked to the MPC problem.

recursive update explained in the previous section. These pa-
rameters are used as the prior at each timestep. In our previous
work [1], the model reverted to a conservative form when the
current dynamics did not match the dynamics in any previous
run. While this preserved safety, it took one traverse of the path
before the robot could adapt to new conditions. The approach
presented in this letter enables the robot to adapt to new condi-
tions as they arise, which is demonstrated in Section VI-C.

2) Long-Term Learning: To improve controller performance
in the face of repetitive changes, we leverage data from previous
runs in similar operating conditions. We consider data from all
previous runs because the model update is efficient and the cost
to evaluate the model does not depend on the number of points
used to construct it. Let D−

j be data from previous run j over
the recent section of the path (see Fig. 2) and m̂−

j be a model
constructed from D−

j . Let (·)i,j refer to point i in run j and let
n be the current run.

a) Outlier rejection: First, we check whether using data from
each previous run is likely to result in model errors that violate
the assumptions of the safe controller. Namely that a given
percentile of model uncertainty is a reasonable upper bound
for model error. For each previous run, we use m̂−

j to generate
predictions for the mean and variance corresponding to each
xi,n in recent data from the current run. We then compute the Z-
score for each prediction given the associated measurement gi,n

and compare this to the Z-score associated with the percentile
of model error used as an upper bound in MPC (e.g. a Z-score of
2 for the 95th percentile). If the proportion of points outside of
this threshold is higher than would be expected by chance (using
the binomial test), we reject the run from further consideration.
See [1] for details.

b) Weighted model update: Now that we have identified runs
that will produce a model with valid confidence intervals (for
safety), we weight data from each run according to its similarity
to the current run (for performance). We compute the posterior
probability of model m̂−

j using:

p(m̂−
j |D−

n ) ∝ p(D−
n |m̂−

j )p(m̂−
j ). (18)
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The first term on the right is the likelihood of recent data given
model m̂−

j . The second term on the right is the prior, which we
assume to be equal for all runs; however, it could be informed
by other sources such as computer vision, a weather report,
or user input. Similar to our previous work [1], we reject any
run that has lower probability than the prior of generating D−

n .
This is to ensure that experience added is likely to improve the
performance beyond what could be achieved with no additional
experience.

To update the parameters of the predictive model, we col-
lect data from each previous run over the upcoming sec-
tion of the path and weight each point in run j by li,j =
p(D−

n |m̂−
j )/p(D−

n |m̂−
j ∗), i = 1..n+

j where n+
j is the number of

points in run j over the upcoming section of the path and j∗

is the run with maximum posterior probability. This satisfies
li,j ∈ [0, 1] and means that the effective number of points can
increase with each additional run.

With these weights, we use (10)–(13) to compute the pos-
terior parameters of the predictive model. This update (based
on data from previous runs) is considered to be location spe-
cific and therefore discarded after computing the control; that
is, the recursively updated prior becomes the prior for the next
timestep.

C. Path Following MPC Controller Design

This section outlines our MPC formulation including the path
parametrization, cost function, ancillary control design, and un-
certainty propagation. We use a Model Predictive Contouring
approach, based on [16], which expresses position error as lag
error (parallel to the path) and contouring error (perpendicular
to the path) and uses a virtual input to drive reference states
along the path.

1) Uncertainty Propagation: We assume a Gaussian belief
over the state at each time step and nonlinear dynamics for the
plant. This allows us to use the Extended Kalman Filter (EKF)
prediction equations to propagate our belief of the state into the
future given a series of inputs [2]. We include uncertainty in the
full state z = [sT , ξT ]T , the actuator model parameters w, and
the actuator model offset η. Let h(·) be the combined dynamics
model (1) and (2) and A be the Jacobian of h(·) with respect to
the stacked full state and parameters, A = [Az,Aw ]. The mean
z̄k and covariance Σzz

k can be updated using:

z̄k+1 = h(z̄k,uk ), (19)

Σzz
k+1 = APkAT + Qk , (20)

Pk =
[

Σzz
k 0
0 Σww

k

]

, (21)

where Σww
k is a block-diagonal matrix containing the model

weight covariance matrix from (15) for each dimension of gk (·),
Qk is the process noise covariance, and uk comes from MPC.
The only non-zero components in Qk are the diagonal elements
corresponding to uncertainty in the output of the actuators for
which we use the posterior mean of the variance from (14).
In this framework, we can include uncertainty in the evolution
of the model parameters w by modelling their dynamics as a

random walk. In this work, we consider them to be fixed at the
posterior estimate over the lookahead horizon.

The predicted uncertainty can be used to compute a confi-
dence set around the mean prediction that the true system is
guaranteed to lie within with high probability.

2) Ancillary State Feedback Controller: The method for un-
certainty propagation in Section IV-C1 but does not take into
account the fact that the controller can take corrective actions
to reduce the predicted uncertainty [2]. The result is that the
predicted uncertainty can grow quickly and without bound re-
sulting in conservative control actions [2]. A common approach
to account for feedback when predicting uncertainty is to use
Tube MPC [19] and use an ancillary controller in the predictive
model that drives the state towards the predicted mean [2].

In contrast to other approaches for tube MPC for non-linear
systems, we make use of the fact that our actuator dynamics are
linear to design linear ancillary controllers for these states. This
keeps the uncertainty in these states bounded, which limits the
uncertainty growth in other states over the prediction horizon.
Section V-B shows how we apply this to a unicycle-type robot.

3) Constraint Tightening: Since our predictive model has
uncertainty, we must tighten the constraints on the state and
input to make sure the true system respects the true constraints
(with high probability), and that the ancillary control policy
remains feasible for our choice of the inputs. Our treatment of
the constraint tightening follows [2]. For contouring error ec ,
our chance constraints are:

p(ec
k ≤ ec,max) ≥ 1 − εc (22)

⇔ ec
k + rc

√

(t⊥k )T Σzz
k t⊥k ≤ ec,max, (23)

where rc is the quantile of the Gaussian CDF corresponding to
the small probability of violating the contouring constraint εc

(e.g. 2.0 for εc = 0.05) [2], and t⊥k is a unit vector perpendicular
to the path at time k. Other constraints on the state may be
treated analogously.

Analogous treatment of the input constraints yields:

p(u[i]
k < u[i],max) ≤ 1 − εu [ i ] (24)

⇔ u
[i]
k + ru [ i ]

Ku [ i ]

√

(σe
k )2 ≤ u[i],max , (25)

where u[i] is the ith of u, Ku [ i ] is an associated ancillary gain
which acts on an error of our choosing, e, and σe is the stan-
dard deviation associated with that error. Here, we can see that
while the ancillary controller reduces the prediction uncertainty
it will also reduce the control input available for controlling the
nominal state.

The feedback gain can be chosen as an infinite horizon LQR
controller with the same cost function as MPC [2], [7] or in-
cluded in the optimization problem [20], but we found that a
wide range of gains worked for our system so left the gain as a
tuning parameter.

D. Optimal Control Problem

At each timestep, we wish to solve for the optimal states
and inputs subject to a set of safety constraints derived
from the model uncertainty, path tracking error and actuator
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Fig. 3. Clearpath Grizzly in the loaded configuration traversing a gravel
mound at a target speed of 2.0 m/s with the proposed algorithm.

constraints. The decision variable is νH = [u0 , z1 , ...uN −1 ,
zN ]T . This leads to the following optimization problem:

minimize
ν̄H

J(ν̄H ) (26)

subject to z̄k+i+1 = h(z̄k+i ,uk+i ,xk+i), i = 0..N − 1,
(27)

p(zk+i+1 ∈ S) ≥ 1 − εz , i = 0..N − 1, (28)

p(ui ∈ U) ≥ 1 − εu , i = 0..N − 1, (29)

where ε(·) is a vector of small, acceptable probabilities of vio-
lating each state and input constraint, which must be solved at
every timestep and J(·) is a quadratic cost that penalizes posi-
tion, heading, and velocity error, and includes a smoothing term
to avoid high frequency inputs. We use the mean of each random
variable (̄·) to approximate the expected cost and enforce the
dynamics constraints.

V. APPLICATION TO A GROUND ROBOT

This section outlines how to apply our method to the unicycle
ground robot pictured in Fig. 3.

A. Robot Model

Let s = [x, y, θ]T , the 2D position and heading of the
robot, ξ = [v, ω]T , the speed and turn rate of the robot, and
u = [vcmd, ωcmd ]T , the commanded speed and turn rate of the
robot. We assume that the dynamics of s are well approximated
by a unicycle

⎡

⎣

xk+1
yk+1
θk+1

⎤

⎦

︸ ︷︷ ︸

sk + 1

=

⎡

⎣

xk

yk

θk

⎤

⎦

︸ ︷︷ ︸

sk

+dt

⎡

⎣

vk cos θk

vk sin θk

ωk

⎤

⎦

︸ ︷︷ ︸

f (·)

, (30)

which is of the form (1). For wBLR, we will model the dynamics
of ξ as

[

vk+1
ωk+1

]

︸ ︷︷ ︸

ξk + 1

=
[

vk

ωk

]

︸ ︷︷ ︸

g0 (·)

+dt

[

[vcmd
k , vk ]wv

k + ηv
k

[ωcmd
k , ωk ]wω

k + ηω
k

]

︸ ︷︷ ︸

gk (·)

, (31)

which is of the form (2).

B. Ancillary Control Design for the Unicycle With First Order
Actuator Dynamics

The ancillary controller is meant to reduce uncertainty growth
over the prediction horizon. For the unicycle, lateral uncertainty
growth (which is constrained) depends on heading uncertainty
and speed. Keeping uncertainty in these states low therefore
keeps the lateral uncertainty low reducing the amount that the
constraints are tightened (see (23)). With a linear feedback con-
troller on the heading and speed error, the speed and turn rate
dynamics become:

[

vk+1
ωk+1

]

=
[

vk

ωk

]

+ dt

[

[vcmd
k + Kvev

k , vk ]T wv

[ωcmd
k + Kθe

θ
k , ωk ]T wω

]

(32)

where e
(·)
k = (·)k − (̄·)k is the difference between the state (·)k

and the predicted mean at time step k. These controllers keep
the system close to the predicted speed and heading.

VI. EXPERIMENTS

Experiments were conducted on a 900 kg Clearpath Griz-
zly skid-steer ground robot shown in Fig. 3. First, we compare
the predictive performance of a GP to our proposed method
on a dataset with varied payload and terrain type. Second, we
demonstrate the effectiveness of each component of our algo-
rithm in closed loop. Finally, we demonstrate the path tracking
performance of our algorithm at high speed on a 175 m off-road
course.

A. Implementation

Our algorithm was implemented in C++ on an Intel i7
2.70 GHz 8 core processor with 16 GB of RAM. Our con-
troller relies on a vision-based system, Visual Teach and Repeat
[21], for localization, which runs on the same laptop. The con-
troller runs at 10 Hz with a three second look-ahead discretized
by 30 points. The optimization problem (26)-(29) is solved as
a sequential quadratic program and re-linearized three times,
taking an average of 70 ms to compute the control. The model
updates (Sections IV-B1 and IV-B2) are executed at every time
step.

We consider the last three seconds of data (30 samples) from
the live run for D−

n . The penalties on lag, contouring, heading,
speed, and turn rate error are 50, 200, 200, 2, and 2 respectively.
The penalties on commanded speed, turn rate, and reference
speed from their references are 1, 1, and 50 respectively. The
penalties on rate of change of commands in the same order are
10, 15, and 5. The maximum lateral error is 2 m, rc is 1, and
the ancillary controller gains are both −5. The prior strength,
n0 , was set to 100. For the high speed experiment, we increased
the penalty on commanded turning acceleration from 15 to 20
to achieve smoother performance on the rough terrain.

B. Model Predictive Performance Comparison

In order to evaluate the suitability of the proposed method for
predictive control, we evaluate the predictive performance of
the proposed method (Sections IV-B1 and IV-B2) to a context-
aware GP (c.f. [1], except we learn the actuator dynamics and
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Fig. 4. A comparison of M-RMSE and M-RMSZ for the rotational dynamics
with the vehicle in four different configurations for two context-aware GP-based
methods and the proposed method. The error bars indicate the 25th and 75th
percentiles and the marker indicates the median. The 65 m path traversed sand,
gravel, and concrete. Runs 1-4 are in the configuration, with 6 gravel
bags in the rear of the Grizzly (see Fig. 3), runs 6–8 are with the vehicle in
the configuration (no modification), runs 9–12 are with the vehicle in
the configuration, where it is loaded and the turn rate
commands are multiplied by 0.7, runs 13–16 are in the Loaded & Oversteer
configuration, where the vehicle is loaded and the turn rate commands are
multiplied by 1.2. The black arrows indicate the first time the vehicle is driven
in a new operating condition. The red circle indicates where the GP-based
methods were over-confident, frequently producing M-RMSZ values above 2.0.

not an additive model error) with fixed hyperparameters (GP-
Fixed-Rec) and with hyperparmeters optimized using MLE and
a sliding window of the last 100 datapoints (GP-MLE-Rec). We
consider the rotational dynamics because they differ the most
between configurations.

We compare the model predictions given the inputs that were
actually applied to the vehicle over the MPC prediction horizon
to the actual state of the vehicle recorded at the corresponding
times. To measure the accuracy of the prediction of the mean,
we use the Multi-Step RMS Error (M-RMSE) over this horizon.
To measure the accuracy of the model uncertainty estimate, we
use the Multi-Step RMS Z-score (M-RMSZ) over this horizon:

M − RMSZk =

√

√

√

√
1
H

H−1
∑

q=0

(

ωk+q+1 − ω̄(xk+q )
σω (xk+q )

)2

, (33)

where ω̄(xk ) is the predicted mean value of ωk given the pre-
dicted xk and H is the number of timesteps in the prediction
horizon. To generate the predictions, we use the controls inputs
that were actually applied to the vehicle. An accurate model un-
certainty estimate is important to ensure that the probability of
violating the chance constraints formulated in Section IV-C3 is
kept at an acceptable level, specified by εz and εu . We consider
an M-RMSZ between -0.5 and 1.5 to be acceptable. If this value
exceeds 2.0, the model uncertainty estimate is overconfident
which could lead to violation of the chance constraints.

Fig. 4 compares the proposed method to GP-Fixed-Rec
and GP-MLE-Rec. The proposed method consistently achieves
lower M-RMSE, especially during run 1 before the GP-based
methods have data, and the first time the system encounters a

Fig. 5. This figure shows the closed-loop performance of the controller when
we introduce a large, repetitive disturbance at vertex 100 by multiplying the
turn rate commands by 0.5 after this point. This introduces a large, repeatable
disturbance such as one might expect if the vehicle was traversing a patch of
ice. The solid line indicates the median lateral tracking error over eight runs
and the shaded region indicates the 50th and 75th percentiles. The proposed
method with both long-term and fast adaptation learning achieves the lowest
error and fastest convergence. No learning is when the controller uses a fixed
wBLR model to compute the controls.

new configuration as indicated by the black arrows. This is the
proposed method is able to incorporate relevant data from the
current run using fast adaptation. While online hyperparame-
ter optimization generally improves the M-RMSE, it causes the
GP overfit in the most challenging scenario, Loaded & Over-
steer, which can be inferred by the M-RMSZ value exceeding
2.0 during runs 14 and 16. In contrast, the proposed method is
much more consistent and the M-RMSZ stays between 0.5 and
1.5, indicating the model has a reasonable estimate of model
uncertainty.

C. Closed Loop Tracking Performance Comparison

To demonstrate the impact of each component of our method
in closed-loop and show that it can adapt to repetitive model
errors, we drive the vehicle around two laps of a circular course
and apply an artificial disturbance by multiplying the turn rate
commands by 0.5 at the start of the second lap (vertex 100 in
Fig. 5). Physically, this may be similar to the vehicle getting a
flat tyre or losing power in one motor. We compare the tracking
performance of each component of our algorithm over eight
repeats of the path. For this experiment, the desired speed was
2 m/s.

Fig. 5 shows that all methods achieve similar performance
before the disturbance is applied because the model for all meth-
ods was a good representation of the vehicle dynamics over this
portion of the path. After this point, the non-learning controller
incurs a large lateral error because the model is no longer ac-
curate. Long-term learning (Section IV-B2) similarly incurs a
large path tracking error on the first run (see Fig. 6) since there
are no previous runs with experience. However, after the first
run, it improves greatly but then converges slowly because it
is constantly working against a static prior (the same model
used for the non-learning comparison), that is incorrect after the
disturbance is applied. When fast adaptation (Section IV-B1)
is enabled, the controller incurs a large tracking error at the
moment the disturbance is applied but adapts quickly to the
new robot dynamics to achieve low error as expected. When
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Fig. 6. Figure showing the 25th, 50th, and 75th percentiles of lateral error
after the large, repetitive disturbance described in Section VI-C was applied.
This figure shows that the proposed algorithm was able to quickly adapt to the
disturbance and that the combination of fast adaptation (Section IV-B1) and
long-term learning (Section IV-B2) achieves the best performance. No learning
is when the controller uses a fixed, prior model to compute the controls. The
horizontal position of each point is offset slightly for clarity.

Fig. 7. This figure shows the path taken by the vehicle on five traverses of
a 175 m course. The direction of travel is indicated by the black arrows. The
maximum path tracking error is 0.7 m when the controller cuts a corner (dashed
blue circle). The vehicle was in the Nominal configuration.

both fast adaptation and long-term learning are enabled, the fast
adaptation keeps the prior close to the true dynamics such that
the long-term learning is able to reduce the transient error by
leveraging data from the upcoming section of the path. This
combination achieves the lowest path tracking error and the
fastest convergence (see Fig. 6).

D. High Speed Tracking Performance

Finally, we evaluated the performance of our controller on a
175 m off-road course with tight turns and fast straights. The
desired speed was 3 m/s and the controller achieved an average
speed of 1.6 m/s with a top speed of 2.7 m/s and a RMS lateral
error of 0.25 m. This is a 60% improvement over our previous
work, where the controller achieved an average speed around
1.0 m/s on pavement [1].

VII. CONCLUSIONS

In this letter, we have proposed a new method for long-term,
safe learning control based on local, weighted BLR. This method
is computationally inexpensive which enables fast model up-
dates and allows us to leverage large amounts of data gathered
over previous traverses of a path. This enables both fast adapta-
tion to new scenarios and high-accuracy tracking in the presence

of repetitive model errors. The model parameters can be deter-
mined reliably online which enables our method to be applied in
a wide range of operating conditions with little to no tuning. We
have demonstrated the effectiveness of the proposed approach
in a range of challenging, off-road experiments. We encourage
the reader to watch our video at http://tiny.cc/fast-slow-learn
showing the experiments and datasets used in this letter.
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