
Context-aware Cost Shaping to Reduce the Impact of Model Error in
Receding Horizon Control

Christopher D. McKinnon and Angela P. Schoellig

Abstract— This paper presents a method to enable a robot
using stochastic Model Predictive Control (MPC) to achieve
high performance on a repetitive path-following task. In par-
ticular, we consider the case where the accuracy of the model for
robot dynamics varies significantly over the path–motivated by
the fact that the models used in MPC must be computationally
efficient, which limits their expressive power. Our approach is
based on correcting the cost predicted using a simple learned
dynamics model over the MPC horizon. This discourages the
controller from taking actions that lead to higher cost than
would have been predicted using the dynamics model. In
addition, stochastic MPC provides a quantitative measure of
safety by limiting the probability of violating state and input
constraints over the prediction horizon. Our approach is unique
in that it combines both online model learning and cost learning
over the prediction horizon and is geared towards operating a
robot in changing conditions. We demonstrate our algorithm
in simulation and experiment on a ground robot that uses a
stereo camera for localization.

I. INTRODUCTION AND RELATED WORK

Model Predictive Control (MPC) has been demonstrated
as an effective tool for tasks such as path-following. In
particular, repetitive path-following is relevant for many
applications including package delivery, patrol, and transit.
The main challenge is that robot dynamics can change,
e.g., due to weather or added payload, and are often not
known exactly. Errors in the model for the robot dynamics
(dynamics model) affect the cost computed in MPC and
hence tracking performance. We present a method to take
into account errors in predicting the cost over the MPC
horizon and hence improve tracking performance; especially
when the accuracy of the dynamics model varies over the
path both spatially and temporally.

The most common way to improve the performance of
Model Predictive Control (MPC) is to improve the dynamics
model. Researchers in this area continue to demonstrate
new and improved methods for learning robot dynamics.
Many of these methods are based on Gaussian process re-
gression [1]–[6], local linear regression [7]–[11], and neural
networks [12], [13]. All of these methods, however, limit
the expressive power of the model in some way to meet the
computational requirements of MPC, which requires solving
a (nonlinear) optimization problem at each sampling time.
For GP-based methods, the number of basis points is limited
and kernel hyperparameters are often fixed. Both neural
networks and local linear regression assume a fixed form for
the system dynamics in terms of a fixed feature or neural

The authors are with the Dynamic Systems Lab (www.dynsyslab.org) at
the University of Toronto Institute for Aerospace Studies (UTIAS), Canada.
email: chris.mckinnon@mail.utoronto.ca, schoellig@utias.utoronto.ca

network architecture. This can limit the performance of
these algorithms because the accuracy of the chosen function
approximation may vary–especially if the robot is deployed
in changing operating conditions. In addition, such models
are usually trained to predict for one time-step in contrast to
the long horizons used in MPC. Making accurate multi-step
predictions remains an active area of study [14], [15].

Alternatively to improving the model for robot dynam-
ics, the methods in [16]–[18] learn the value function–
the discounted sum of rewards from a given state to the
completion of the task–from data and leverage MPC for
efficient short-term trajectory optimization. In [16], [17], the
authors iteratively expand a set of sampled safe states–and
their associated value–so that an MPC-based controller can
minimize the total cost to complete the task by using a
model-based prediction over the MPC horizon and the value
of the sampled safe states for the cost of the final state in
the horizon. In [18], the authors learn the value function
using function approximation and showed how combining
it with receding horizon control could accelerate learning.
While estimating the value function using data does improve
performance, these methods still rely on a dynamics model
for making predictions over the MPC horizon. In contrast, we
correct the cost over the MPC horizon to account for varied
model accuracy. We also account for changes in operating
conditions by inferring which previous runs resulted in
similar cost prediction error to the current run.

In addition to learning just the value function, the authors
of [19] proposed a method to modify the cost function of
MPC over the prediction horizon and demonstrated it in sim-
ulation. The goal was to enable a short-horizon controller to
mimic the behaviour of a longer-horizon controller computed
offline using a better model for robot dynamics. In this case,
the long-horizon controller was still model-based. In contrast,
we correct the cost over the MPC horizon to account for cost
prediction errors based on past experience directly.

Our method is inspired by ideas from reward shaping,
whereby the reward function (which provides rewards for
incremental actions) is modified to encourage and discourage
behaviours that lead to high and low reward respectively
[20]. Reward shaping has been shown to be effective for
model-based learning in simple scenarios where safety is
not a major consideration [21] as well as for episodic tasks
[22] like repetitive path following. Our method builds on
these ideas to improve performance of a physical robot
in challenging outdoor conditions in addition to leveraging
stochastic MPC to account for model uncertainty. We use the
term cost learning to be consistent with the MPC literature

which considers a cost function rather than a reward function.
In this paper, we present a practical algorithm to im-

prove tracking performance for repetitive path following that
leverages the combination of model learning (to efficiently
make predictions of the cost associated with a sequence of
control actions) with cost learning (to account for systematic
changes in the accuracy of these predictions). Intuitively, this
is like how humans practice driving to understand how a car
handles, but drive at a reasonable speed where we understand
the cost/risk of our actions; our approach increases the cost
of taking actions where the model under-estimates the cost
of taking that action. Second, we show how this algorithm
can be integrated seamlessly with a state-of-the-art path-
following controller based on stochastic MPC which can
account for model uncertainty. Finally, we demonstrate the
proposed algorithm in both simulation and experiment and
provide a thorough analysis of the effect of the proposed
algorithm on several aspects of controller performance.

II. PROBLEM STATEMENT
We consider a ground robot performing a repetitive path

following task using stochastic MPC and a model learn-
ing algorithm to adapt to changes in dynamics. In reality,
the robot state s evolves according to dynamics htrue(·).
However, we only have access to an approximate dynamics
model h(·) that depends on s and control actions u and has
accuracy that varies over the length of the path. Let `(s,u)
be the non-negative scalar cost associated with applying u
in state s and Vf (s) be the non-negative scalar cost of the
final state in the horizon of length H . In addition, let s and
u be constrained to be within the sets S and U with a small
acceptable probability of violating these constraints εs and
εu. The resulting receding horizon control problem solved at
each sampling time k is then:

min
s̄,ū

Vf (s̄H) +

H−1∑
i=0

`(s̄k+i, ūk+i) (1)

s.t. sk+i+1 = h(sk+i,uk+i), i = 0...H − 1, (2)
p(sk+i+1 ∈ S) ≥ 1− εs, i = 0...H − 1, (3)

p(ui ∈ U) ≥ 1− εu, i = 0...H − 1, (4)
sk ∼ N (s̄k,Σ

ss
k), (5)

where the state sk is given with a mean s̄k and covariance
Σss
k . The decision variable is the mean of the state s̄ and the

input ū, which we also use for computing the cost (1).
The goal of our approach is to minimize the cost (1)

incurred in closed loop when htrue(·) 6= h(·) .

III. METHODOLOGY
In this section, we present our approach and how it

fits into a state-of-the-art Stochastic MPC formulation that
includes online model learning [7]. Our approach is based
on modelling the difference between the cost (1) over the
prediction horizon predicted using the approximate model
for robot dynamics (2) and the cost actually incurred over
the horizon. By parametrizing this difference in terms of a
variable that can be controlled, we enable the controller to

automatically adjust vehicle behaviour to reduce the impact
of model mismatch on minimizing the cost function (1)
in closed loop. We also use a measure of similarity to
previous traversals of the path to construct a local cost
correction model using the most relevant data. In this paper,
we calculate cost using the mean states and inputs. Our
approach would also apply if we used the expected value
of the cost because uncertainty predictions are also model-
based.

We denote scalars using lower-case characters and func-
tions are followed by round brackets. Vectors are lowercase
boldface characters and matrices are uppercase boldface
characters.

A. Cost Prediction Error

Let the sampling time k refer to each time a control is
computed and timestep i refer to a point along the prediction
horizon at a given sampling time. At each sampling time k,
we compute the optimal sequence {sk+i+1,uk+i}H−1

i=0 and
apply uk to the robot. After repeating this for H sampling
times, we have the actual states the robot visited and the
controls that were applied over the initial horizon at time k.
This gives us both the cost predicted at sampling time k for
the ith step in the horizon, `k,i, and the actual cost incurred
at sampling time k+ i, `k+i,0. We can then compute the cost
prediction error δ`k,i for sampling time k at timestep i:

`k+i,0︸ ︷︷ ︸
actual

= `k,i︸︷︷︸
predicted

+ δ`k,i︸︷︷︸
cost prediction error

. (6)

We assume that the distribution of δ` depends on a
quantity a which can be predicted using the model for
robot dynamics and how far the timestep is along the
horizon, i. This results in a dataset {δ`k,i,ak,i} for each
timestep i = 1...H − 1 in the horizon at each sampling time
k = 0...N −H − 1.

In general, a should be related to a state of the vehicle that
affects model accuracy and can be altered using the control
inputs. For ground robots, factors that are hard to model often
become more significant as speed increases which makes
speed a natural candidate. This choice will be platform-
dependent and require some expert knowledge to choose
effectively. More variables can be included at the expense
of data efficiency.

B. Data Management

Let a run be defined as a complete traversal of the path.
Since we are considering a repetitive path-following task, we
store data {δ`k,i,ak,i} indexed by location along the path
and run number. This automatically encodes factors such as
local terrain properties (for ground vehicles) and local path
geometry that influence the cost prediction error.

C. Model for Cost Prediction Error

The main properties of δ`k,i(·) that we wish to capture
are: (i) the dependence on a which may be nonlinear, (ii)
heteroscedasticity since the predictions of cost may be more
or less precise depending on the value of a, and (iii) a

Error in Predicted Cost vs. Speed

Speed [m/s]

C
os

t
Pr

ed
ic

tio
n

E
rr

or
,δ
`

0.0 1.0 2.0 3.0

0

20

40

60 Samples

Predicted 2σ Bounds
Predicted Mean

Fig. 1: Example of δ` plotted as a function of forward speed
taken from an experiment in snowy conditions. The black dots are
samples, the solid blue line is the estimated mean from a model
δ`(·), and the dotted lines are upper and lower 2σ bounds. In
this case, the variance of δ` changes substantially between 1.5 and
2.5 m/s which can be incoroporated into the cost function for MPC
by augmenting the cost with an upper percentile (e.g. 2σ) of the
cost rather than the mean to discourage actions that produce a high
variance in cost prediction error.

principled mechanism to weight data from previous runs
according to a measure of similarity to the current run. One
model that has these properties is the mixture of experts [23].
Specifically, we will consider a mixture of experts based on
Bayesian linear regression where each expert is fit to data
from one run c. Predictions for δ`k,i (dropping subscripts
for compactness) are made using:

p(δ`|a) =
∑
c

p(δ`|a, c)p(c|a), (7)

where each expert is:

p(δ`|a, c) = wT
c a + ηc, ηc ∼ N (0, σ2

c), (8)

and the gating function is a mixture of Gaussians:

p(c|a) ∝ p(a|c)p(c), (9)

where p(a|c) is a Gaussian describing the density of a for
run c and p(c) is the prior probability of observing data from
the same distribution as run c. Parameters wc and σ2

c are
updated continuously and so depend on k. Property (i) can
be achieved through the feature a (which can be a nonlinear
transformation of the state) and the mixing weights, (ii) is
achieved since each expert c can have a different variance,
σ2
c , and (iii) can be achieved through setting the prior p(c)

based on recent observations, which will be discussed in
the next section. To account for the fact that cost prediction
error varies over the prediction horizon (generally increasing
further into the future as prediction error accumulates), we
partition the horizon into multiple sections and fit a separate
mixture model to each grouping of i.

D. Cost-based Mode Inference

We assume that δ` is dependent on a and i, which
can be measured directly, and additional factors cannot
be measured directly which we will call the mode. Let
D−δ` =

{
δ`−j ,a

−
j

}n
j=0

be the n most recent measurements
of predicted cost error from the current run for a particular

section of the horizon. We will follow [7] and make the run
prior p(c) dependent on recent data so it becomes:

p(c|D−δ`) ∝ med
(
p(δ`−j |a

−
j , c)

)
j = 0...n (10)

where med(·) is the median. Here, we have departed from the
conventional assumption that data is i.i.d. (which would lead
to med(·) being replaced by a product). Our main motivation
was that this produced more consistent estimates of p(c|D−δ`)
in experiment.

E. Augmented MPC Cost Function

Now that we have a model for δ`(·) we can augment the
cost function used to compute the optimal control sequence
in (1). This results in the following cost function for MPC:

Vf (sH) +

H−1∑
i=0

`(sk+i,uk+i) + δ`u(ak+i) (11)

where δ`u is an upper percentile of p(δ`|a). See Fig. 1 for
a visualization of what the cost function may look like and
how using different percentiles change the additional cost.
Our main contribution in this paper is to learn δ`(·) and
demonstrate the effectiveness of our approach on a robot in
changing conditions.

F. Model Learning

Here, we give a brief summary of the approach for learning
robot dynamics used in this paper. For a detailed description,
see [7]. We consider (2) to be of the form:

sk+1 = sk + dtgk(sk) + ηk, ηk ∼ N (0,Ση
k), (12)

where gk(·) is partially known ahead of time and the
timestep dt is fixed and known. Each component gk(·)
of gk(·) that is unknown is learned independently using
Bayesian linear regression (BLR):

gk(sk) = wT
k sk + ηk, (13)

where the joint distribution for wk and σ2
k is a Normal-

Inverse-Gamma distribution. Parameters wk and σ2
k are de-

termined given observations of gk and sk. The prior for wk

and σ2
k is updated at each sampling time using data from

the current run; the posterior is computed using data from
previous runs weighted by the similarity of the robots recent
dynamics to the robots dynamics in each previous run over
the recent section of the path.

IV. EXPERIMENTAL SETUP

This section outlines how we apply our method to the
Clearpath Grizzly shown in Fig. 2. See http://tiny.
cc/cost-model-learning for a video of our experi-
ments.

http://tiny.cc/cost-model-learning
http://tiny.cc/cost-model-learning

Fig. 2: The Clearpath Grizzly in nominal (left) and loaded config-
urations (right). The mass of the bags of gravel was 133 kg.

A. Robot Model

Let s = [x, y, θ, v, ω]T , be the 2D position, head-
ing, forward speed and turn rate of the robot, and u =
[vcmd, ωcmd]T be the commanded forward speed and turn
rate of the robot. We model the dynamics of s, h(·), as a
unicycle with first order dynamics for the forward speed and
the turn rate:

xk+1

yk+1

θk+1

vk+1

ωk+1

 =


xk
yk
θk
vk
ωk

+ dt


vk cos θk
vk sin θk
ωk

[vcmdk , vk]wv
k + ηvk

[ωcmdk , ωk]wω
k + ηωk

 . (14)

where ηvk ∼ N (0, σ2
v,k) and ηωk ∼ N (0, σ2

ω,k). We learn wv
k,

σ2
v,k, wω

k , and σ2
ω,k using the method covered in Sec. III-F.

B. Implementation

Our algorithm was implemented in C++ on an Intel i7 2.70
GHz 8 core processor with 16 GB of RAM. Our controller
relies on a vision-based system, Visual Teach and Repeat
[24], for localization, which runs on the same laptop. The
controller runs at 10 Hz with a three second look-ahead
discretized by 30 points. The optimization problem (1)-(4)
is solved as a sequential quadratic program and re-linearized
three times, taking an average of 45 ms. We use a quadratic
penalty for `(·) where the weights on tangential, lateral,
heading, speed, and turn rate error are 100, 200, 100, 2,
and 2 respectively. The weights on deviation of commanded
speed, turn rate, and reference speed from their references
are 1, 1, and 40 respectively. The weights on rate of change
of commands in the same order are 10, 15, and 5.

The proposed cost error model is updated at 5 Hz in a
separate thread from the controller. This keeps the most
computationally expensive step of the proposed approach,
fitting the model, separate from the control loop. For all
experiments, we use a = v2 because we expect similar cost
prediction error driving forwards and backwards. We parti-
tion the horizon into two segments for all of our experiments.

V. EXPERIMENTS

To demonstrate the effectiveness of the proposed algorithm
in experiment, we tested our algorithm on a Clearpath
Grizzly driving in various outdoor environments. For all
figures showing a distribution of a quantity, we show the
25th, 50th, and 75th percentiles.

Cost Prediction Error

x [m]

y
[m

]

Cost Prediction Error
0 2000 4000

-10 0 10

-4

0

4

Sharp Turn

Bumpy Terrain

Start/Finish

20

30
40

50 60

70
10

Fig. 3: Sum of cost prediction error over the horizon at each
sampling time superimposed for 6 runs. Distance along the path in
meters is marked in red. For reference, the actual cost over the hori-
zon ranges from 300 to 8000 depending on the section of the path.
The cost prediction error is consistently large over a bumpy section
of the path and around a sharp turn near the end of the path. The
vehicle has limited suspension so driving over the bumpy section of
the path produces significant disturbances that are hard to model.
See our video: http://tiny.cc/cost-model-learning.

A. Cost Learning vs. Model Learning

In this experiment, we compare the effectiveness of model
learning and cost learning separately to the combination of
both. Cost learning alone means that the vehicle uses a
fixed model for the robot dynamics that is fit using previous
data but learns δ`(·). Model learning alone means that the
controller uses the online model learning algorithm presented
in [7] and δ`(·) = 0. The combination means that both
the model and cost are learned online over the course of
the run. For these experiments, we use the mean value of
δ`(·) to augment the MPC cost function (11). We drove the
vehicle 6 times around a 73 m course (shown in Fig. 3).
The two main sources of model error in this case are a
bumpy section of the path, which causes significant but non-
repeatable disturbances at high speed, and a sharp turn, which
causes significant side-slip (not in the model) and skidding.
The vehicle was in the nominal configuration (see Fig. 2) for
these experiments.

To measure the effect of each component of the proposed
algorithm, we first look at differences in the control cost
along the path. In this experiment, the main effect of adding
cost learning is for the vehicle to slow down over the section
of the path with bumps and sharp turns. Fig. 4a shows that
the distribution of ` over each run is significantly lower when
using cost learning compared to model learning. Similarly,
Fig. 4b shows a lower cumulative cost to traverse the path
with cost learning compared to model learning. In both cases,
the combination of cost learning and model learning conver-
gences to low cost in the fewest runs. In this experiment, we
used a good initial guess for the dynamics model–(14) with
parameters identified using data from similar conditions–so
cost learning alone achieved good results. For a different
initial guess, the best performance could be arbitrarily bad.

To gain insight into why, we investigate the effect of cost
learning on model accuracy. Intuitively, adding δ`(·) should
discourage the system from taking actions that result in high
model error since this leads to high cost prediction error.

http://tiny.cc/cost-model-learning

`

Run Number

Distribution of ` by Run

1 2 3 4 5 6
0

50

100

150
Model Learning
Cost Learning
Model + Cost Learning

(a) The distribution of ` for each run. The combination of cost
and model learning converges to the lowest ` in the fewest
runs.

Run Number
1 2 3 4 5 6

C
um

ul
at

iv
e

C
os

t

Cumulative Cost by Run

20,000

30,000

40,000

Model Learning
Cost Learning
Model + Cost Learning

(b) Cumulative cost to traverse the path by run. The combi-
nation of cost learning and model achieves the lowest cost in
the fewest run.

Fig. 4: A comparison of the cumulative cost and ` with cost
learning, model learning and cost learning + model learning
on the course shown in Fig. 3. Cost learning reduces the cost to
traverse the path, both in the average cost and cumulative cost, after
just three runs. When combined with model learning, it converges
after just one run. Model learning on its own is not sufficient to
achieve the same performance making little improvement in the
average cost and no improvement in the cumulative cost.

We measure prediction accuracy of the mean states over the
MPC horizon using Multi-step RMSE (M-RMSE) and of the
uncertainty using multi-step RMS Z-score (M-RMSZ). For
the speed v, the M-RMSE at sampling time k is calculated
by comparing the predicted mean at each timestep i along
the horizon v̄k,i to the measured mean at the corresponding
sample time v̄k+i,0:

M-RMSEk =

√√√√ 1

H

H∑
i=1

(v̄k,i − v̄k+i,0)2, (15)

and M-RMSZ is calculated the same way but each term in the
sum is normalized by the predicted variance σ2

v k,i. Ideally,
M-RMSE would be low and M-RMSZ would be around one.

Figure 5 shows the M-RMSE and RMSZ for speed over
the course of 6 runs with model learning vs. model and
cost learning. The combination of cost and model learning
reduces the average M-RMSE for speed and turn rate by
50% and 46% respectively and reduces the number of times
that the M-RMSZ jumps significantly above one.

While using a richer model may improve prediction ac-
curacy, cost correction provides a means of adapting the
vehicle’s behaviour in cases where the dynamics model
accuracy varies along the path which is useful for driving
in challenging off-road conditions.

B. Cost-based Mode Inference

In the previous section, we showed that cost learning
reduces the cost of traversing a path when the dynamics were

0

1

2

Distance Along the Path [m]
0 10 20 30 40 50 60 70

M
-R

M
SZ

M
-R

M
SE

[m
/s

]

0.0

0.2

0.4

Model Learning
Model + Cost Learning

Speed Model Accuracy

Fig. 5: A comparison of the multi-step RMS Error (M-RMSE) and
Z-score (M-RMSZ) when using only model learning and cost
learning + model learning on the course shown in Fig. 3. The
addition of cost learning improves prediction accuracy (lower M-
RMSE) and uncertainty estimates (M-RMSZ closer to 1.0).

the same between runs. For the experiments in this section,
we changed the robot dynamics between runs by adding or
removing a payload of gravel bags (see Fig. 2). The path was
similar to the one shown in Fig. 3. For these experiments, we
used a fixed dynamics model and only vary whether or not
mode inference (Sec III-D) is enabled to isolate the effect
of this component of the algorithm. When mode inference
is not enabled, p(c|D−δ`) is uniform.

First, we investigate whether the mode inference recom-
mends runs where the vehicle was in a similar configuration.
Figure 6a shows the predicted cost error for 15 traversals
of the path coloured by vehicle configuration. Here, we see
that adding payload increased δ` between 40 and 60 m when
the vehicle was turning sharply. The proposed algorithm
correctly infers that δ` is the most similar to runs when the
vehicle is in the same configuration as the live run, especially
between 45 and 65 m (e.g. see Fig. 6b for the estimated
probability of each run during run 10 when the vehicle
was in the nominal configuration). There is a slight delay
because the algorithm uses a sliding window of previous
experiences to estimate p(c|D−δ`). Finally, Fig. 6c shows that
the algorithm consistently selects the majority of experiences
from a run where the vehicle was in a similar configuration
with the exception of run 6, which is the first run in the
nominal configuration. Runs in a different configuration from
the live run receive high p(c|D−δ`) some fraction of the time,
however Fig. 6a and 6b show that this is over sections of
the path when δ` is similar between configurations so this
would have little impact on the model δ`(·).

Second, we show that including mode inference makes a
difference to the control performance over the section of the
path where the cost prediction error is different between the
two configurations (between 40 and 60 m along the path).
Figure 7a shows that the distribution of ` incurred over
the path is lower when mode inference is enabled after the
algorithm has one run in each configuration. Figure 7b shows
that the cumulative cost to traverse the path from 40-60 m
is also reduced when mode inference is enabled after the
vehicle has completed one run in each configuration.

Distance Along the Path [m]
0 10 20 30 40 50 60

0

1000

2000
C

os
t

Pr
ed

ic
tio

n
E

rr
or

Cost Prediction Error
Nominal
Loaded

(a) Distribution of the sum of δ` over the
prediction horizon at each sampling time
along the path for 15 runs coloured by
vehicle configuration.

Distance Along the Path [m]
0 10 20 30 40 50 60 700.0

0.2

0.4

p
(c
|D

− δ
`
)

Loaded
Nominal

Distribution Over Runs (Vehicle Nominal)

(b) Estimated p(c|D−
δ`) for each previous

run when the vehicle was in the nominal
configuration, during run 10. Each line is
coloured by the actual vehicle configura-
tion during that previous run.

Run Number

Loaded Nominal Loaded
Most Similar Previous Run By Configuration

Fr
ac

tio
n

of
Sa

m
pl

e
Ti

m
es

2 4 6 8 10 12 14
0.0

1.0

30% Nominal

70% Loaded

Vehicle
Config.

(c) For each run, the fraction of the
time the previous run with the maximum
p(c|D−

δ`) was from each configuration.

Fig. 6: The vehicle was driven for 15 runs alternating between the loaded and nominal configuration. The sum of cost prediction error
along the horizon at each sampling time, depicted in (a), shows that the cost prediction error differs significantly between 40 and 60 m
along the path, which corresponds to a sharp turn. Over this section of the path, (b) shows that during run 10, when the vehicle was in
the nominal configuration, mode inference correctly identifies that runs in the nominal configuration are more similar since those runs are
assigned a higher p(c|D−

δ`). Finally, (c) shows that the run with the highest p(c|D−
δ`) consistently came from a run with the vehicle in the

same configuration as the live run with the exception of run 6 when the vehicle has no previous experience in the nominal configuration.
Mixing experience from different configurations is acceptable when the cost prediction error is similar for both configurations since the
resulting model δ`(·) will therefore also be similar.

Mode Inference
All Data

Distribution of ` by Run

`

Run Number
2 4 6 8 10 12 14

0

50

100

150

Loaded Nominal Loaded

(a) The distribution of ` incurred over each traverse of the path
with and without mode inference enabled. After run 6, when
the vehicle has experience from both configurations, adding
mode inference consistently lowers the step cost throughout
the run.

C
um

ul
at

iv
e

C
os

t

Cumulative Cost by Run

Run Number
2 4 6 8 10 12 14

4000

6000

8000

Loaded

Nominal

Loaded

Mode Inference
All Data

(b) The cumulative cost for the vehicle to go from 40-60 m.
Including mode inference for learning the cost prediction error
consistently improves performance after the algorithm has
experience in each configuration.

Fig. 7: A comparison of the distribution of ` and the cumulative
cost to traverse the path shown with mode inference compared
to using all previous data to construct δ`(·). Adding experience
recommendation consistently reduces the cost after run 6, when the
vehicle has experience from both configurations.

C. State Dependent Measurement Noise in Simulation

In addition to model error, measurement noise can also
contribute to cost prediction error since the measured state
provides the initial condition for rolling out the sequence of
control actions over the prediction horizon. Figure 8 shows
how the proposed algorithm reduces the cost to traverse the
path when we added zero-mean Gaussian noise with variance
proportional to v2 over a straight section of the path. The

Distance Along the Path [m]

Step Cost with Measurement Noise

0 100 200 300

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6

0

Noise Added Here
100

200

`

(a) The cost ` along the path for
each run when cost learning is
enabled.

Distance Along the Path [m]

Speed with Measurement Noise

Sp
ee

d
[m

/s
]

Run 1
Run 2
Run 3
Run 4
Run 5
Run 6

0 100 200 300

Noise

1.0

2.0

3.0

Added Here

(b) The vehicle’s forward speed
with each run when cost learn-
ing is enabled.

Fig. 8: Results of enabling the cost learning in simulation with
speed dependent noise. The system learns to drive slowly over the
section of path with speed dependent noise to reduce the associated
cost.
model for robot dynamics was otherwise perfect. We used
the upper 2σ bound on the cost prediction error to augment
the cost function to account for the random nature of the
cost induced by the noise. The algorithm learns that there is
a large additional cost associated with driving quickly over
this section of the path so reduces the speed (Fig. 8b) and,
consequently, the cost (Fig. 8a).

VI. CONCLUSION

In this paper, we proposed a new method combining cost
and model learning for a ground robot performing a repetitive
path-following task. We demonstrated in simulation and
experiment that the combination of model and cost learning
out-performed either component separately. While model
learning is effective if the form of the dynamics is known or
there is sufficient data to train a complex model, cost learning
is useful when the dependence of model accuracy is known
but the form of the dynamics is not or data is scarce. By
combining both, we can improve performance when form
of the dynamics is known (model learning) and avoid states
that induce higher cost than predicted (cost learning). We
encourage the reader to watch our video at http://tiny.
cc/cost-model-learning showing the experiments
conducted in this paper.

http://tiny.cc/cost-model-learning
http://tiny.cc/cost-model-learning

REFERENCES

[1] C. D. McKinnon and A. P. Schoellig, “Learning Multi-Modal Models
for Robot Dynamics with a Mixture of Gaussian Process Experts,” in
Proc. of the Intl. Conf. on Robotics and Automation (ICRA), 2017, pp.
322–328.

[2] L. Hewing, A. Liniger, and M. Zeilinger, “Cautious NMPC with
gaussian process dynamics for autonomous miniature race cars,” in
Proc. of the European Control Conf. (ECC), 2018, pp. 1341–1348.

[3] C. D. McKinnon and A. P. Schoellig, “Experience-Based Model
Selection to Enable Long-Term, Safe Control for Repetitive Tasks
Under Changing Conditions,” in Proc. of the Intl. Conf. on Intelligent
Robots and Systems (IROS), 2018, pp. 2977–2984.

[4] F. Meier and S. Schaal, “Drifting Gaussian Processes with Varying
Neighborhood Sizes for Online Model Learning,” in Proc. of the Intl.
Conf. on Robotics and Automation (ICRA), 2016, pp. 264–269.

[5] B. Niekerk, A. Damianou, and B. Rosman, “Online Constrained
Model-based Reinforcement Learning,” in Conf. on Uncertainty in
Artificial Intelligence (UAI), 2017.

[6] J. Kabzan, L. Hewing, A. Liniger, and M. Zeilinger, “Learning-Based
Model Predictive Control for Autonomous Racing,” Robotics and
Automation Letters, vol. 4, no. 4, pp. 3363–3370, 2019.

[7] C. D. McKinnon and A. P. Schoellig, “Learn Fast, Forget Slow: Safe
Predictive Learning Control for Systems with Unknown and Changing
Dynamics Performing Repetitive Tasks,” Robotics and Automation
Letters, 2019.

[8] L. Jamone, B. Damas, and J. Santos-Victor, “Incremental Learning of
Context-dependent Dynamic Internal Models for Robot Control,” in
Intl. Symp. on Intelligent Control (ISIC), 2014, pp. 1336–1341.

[9] V. Desaraju, A. Spitzer, and N. Michael, “Experience-driven Predictive
Control with Robust Constraint Satisfaction under Time-Varying State
Uncertainty,” in Proc. of the Robotics: Science and Systems Conf.
(RSS), 2017.

[10] J. Ting, A. D’Souza, S. Vijayakumar, and S. Schaal, “A Bayesian
Approach to Empirical Local Linearization for Robotics,” in Proc. of
the Intl. Conf. on Robotics and Automation (ICRA), 2008, pp. 2860–
2865.

[11] C. D. McKinnon and A. P. Schoellig, “Learning Probabilistic Models
for Safe Predictive Control in Unknown Environments,” in Proc. of
the European. Conf. Control (ECC), 2019, in press.

[12] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information Theoretic MPC for Model-Based
Reinforcement Learning,” in Proc. of the International on Robotics
and Automation (ICRA), 2017, pp. 1714–1721.

[13] N. Mohajerin and S. Waslander, “Multi-Step Prediction of Dynamic
Systems with Recurrent Neural Networks,” Transactions on Neural
Networks and Learning Systems, pp. 1–14, 2019.

[14] A. Venkatraman, B. Boots, M. Hebert, and J. Bagnell, “Data as
Demonstrator with Applications to System Identification,” in ALR
Workshop, NIPS, 2014.

[15] A. Doerr, C. Daniel, D. Nguyen-Tuong, A. Marco, S. Schaal, T. Marc,
and S. Trimpe, “Optimizing Long-term Predictions for Model-based
Policy Search,” in Proc. of the Conf. on Robot Learning (CoRL), 2017,
pp. 227–238.

[16] U. Rosolia and F. Borrelli, “Learning Model Predictive Control for It-
erative Tasks. A Data-driven Control Framework,” Automatic Control,
vol. 63, no. 7, pp. 1883–1896, 2017.

[17] U. Rosolia, X. Zhang, and F. Borrelli, “Robust Learning Model
Predictive Control for Iterative Tasks: Learning from Experience,” in
Proc. of the Conf. on Decision and Control (CDC), 2017, pp. 1157–
1162.

[18] K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch,
“Plan Online, Learn Offline: Efficient Learning and Exploration via
Model-based Control,” arXiv preprint arXiv:1811.01848, 2018.

[19] A. Tamar, G. Thomas, T. Zhang, S. Levine, and P. Abbeel, “Learning
from the Hindsight PlanEpisodic MPC Improvement,” in Proc of the
Intl. Conf. on Robotics and Automation (ICRA), 2017, pp. 336–343.

[20] A. Ng, D. Harada, and S. Russell, “Policy Invariance Under Reward
Transformations: Theory and Application to Reward Shaping,” in Proc
of the Intl. Conf on Machine Learning (ICML), vol. 99, 1999, pp. 278–
287.

[21] J. Asmuth, M. Littman, and R. Zinkov, “Potential-based Shaping in
Model-based Reinforcement Learning,” in AAAI, 2008, pp. 604–609.

[22] M. Grześ, “Reward Shaping in Episodic Reinforcement Learning,” in
Proc of the Conf. on Autonomous Agents and MultiAgent Systems,
2017, pp. 565–573.

[23] K. Murphy, Machine Learning: A Probabilistic Perspective. MIT
Press, 2012.

[24] M. Paton, F. Pomerleau, K. MacTavish, C. Ostafew, and T. Barfoot,
“Expanding the Limits of Vision-based Localization for Long-term
Route-following Autonomy,” Journal of Field Robotics (JFR), vol. 34,
no. 1, pp. 98–122, 2017.

	INTRODUCTION AND RELATED WORK
	PROBLEM STATEMENT
	METHODOLOGY
	Cost Prediction Error
	Data Management
	Model for Cost Prediction Error
	Cost-based Mode Inference
	Augmented MPC Cost Function
	Model Learning

	EXPERIMENTAL SETUP
	Robot Model
	Implementation

	EXPERIMENTS
	Cost Learning vs. Model Learning
	Cost-based Mode Inference
	State Dependent Measurement Noise in Simulation

	Conclusion
	References

