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Abstract— For decades, robots have been essential allies
alongside humans in controlled industrial environments like
heavy manufacturing facilities. However, without the guidance
of a trusted human operator to shepherd a robot safely through
a wide range of conditions, they have been barred from the
complex, ever changing environments that we live in from day
to day. Safe learning control has emerged as a promising way to
start bridging algorithms based on first principles to complex
real-world scenarios by using data to adapt, and improve
performance over time. Safe learning methods rely on a good
estimate of the robot dynamics and of the bounds on modelling
error in order to be effective. Current methods focus on either
a single adaptive model, or a fixed, known set of models for the
robot dynamics. This limits them to static or slowly changing
environments. This paper presents a method using Gaussian
Processes in a Dirichlet Process mixture model to learn an
increasing number of non-linear models for the robot dynamics.
We show that this approach enables a robot to re-use past
experience from an arbitrary number of previously visited
operating conditions, and to automatically learn a new model
when a new and distinct operating condition is encountered.
This approach improves the robustness of existing Gaussian
Process-based models to large changes in dynamics that do not
have to be specified ahead of time.

I. INTRODUCTION

At the core of most control algorithms in robotics is a
model that captures the relationship between the state, the
input, and the dynamics of a robotic system. The model can
be used to optimize a reward function and to ensure that the
system achieves its goals in a safe and reliable way [1], [2].
If the model for the system is partially unknown, the reward
function can incorporate an element to encourage exploration
of the system dynamics [3], [4]. This establishes a better
mapping between the state, input, and dynamics, such that
the controller can later exploit well-known, high-reward
actions [3]. An accurate assessment of the risk associated
with taking a control action, especially if it has not been
taken before, is of key importance during the exploration
process [5], [6]. Using this assessment to ensure safety is
known as safe learning.

Safe learning methods generally incorporate an approxi-
mate initial guess for the system dynamics with some bounds
on the modelling error incurred in the approximation [7], [8].
A learning term then refines the initial guess over time using
experience data to better approximate the true dynamics. The
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Fig. 1. Block diagram showing the proposed multimodal model learning in
closed loop with a safe controller. The robotic system dynamics consist of P
distinct modes depending on the operating conditions (blue). Our algorithm
(green) learns a multimodal model for the system dynamics, and selects
the correct model based on recent measurements at run time. The diagonal
arrow indicates that a recent history of data is used. The proposed model
learning scheme is designed for a safe controller such as the one presented
in [7].

goal is to guarantee that the system does not violate safety
constraints (e.g., limits on the control input or path tracking
error) while achieving the control objective (e.g., following
a path) and while at the same time improving the model of
system and, consequently, its task performance over time.
Most learning algorithms learn a single model for system
dynamics or use multiple models that are trained ahead of
time based on appropriate training data from operating the
robot in all relevant conditions. This presents a challenge
for robots that are deployed into a wide range of operating
conditions which may not all be known ahead of time.

This paper presents a method to model the dynamics of
robotic systems where the dynamics may be subject to large
changes that depend on discrete latent variables (see Fig. 1).
These latent variables reflects a discrete set of operating
conditions or physical configurations (dynamic modes) of
the robot that change the dynamics. Examples are weather or
terrain conditions, or payload configurations. The proposed
method uses a Dirichlet Process (DP) to represent the dy-
namic modes of the system in a way that does not require the
number of modes to be specified ahead of time, and Gaussian
Process (GP) experts to learn the dynamics of the robot in
each mode while making only mild, prior assumptions on
the robots dynamics in each mode. The GP experts naturally
express the uncertainty in the dynamics in regions of the
state-action space depending on whether they have been
visited before. The DP allows the model to return to a safe
mode when the current set of models does not explain current
measurements until a new model is established. The result is
a mixture model that learns a new model when the current
set of models is insufficient to explain current measurements



and returns to an existing model when possible. We do
not ‘forget’ previous experiences in different modes when
learning new ones, which is a significant advantage over
previous methods.

II. RELATED WORK

Learning control has received a great amount of attention
in recent years, most notably in the case of single-mode
learning control. This is the broad class of learning meth-
ods that assumes the true (but initially unknown) mapping
between the state, xk, and the input uk, and the next state,
xk+1, is one-to-one, or at least normally distributed accord-
ing to some underlying process, xk+1 ∼ N (f(xk,uk),σ).
Recent developments have contributed safety guarantees [8]
and demonstrated impressive results in improved path fol-
lowing [9].

Multimodal safe control and path planning has also re-
ceived a growing amount of attention. Applications include
safely gliding a parafoil under a variety of wind condi-
tions [10] and planning safe paths among uncertain agents
such as pedestrians or automobiles [11]. The assumption and
challenge in these cases is that the environment or obstacles
in the environment have hidden states that cannot be directly
measured. Similar to our method, the algorithms try to infer
this hidden state based on available observations and use this
for safe planning. An additional feature of our approach is
that we attempt to build this model online.

Recent results in single-mode, safe learning control have
taken great steps to improve performance while maintaining
bounds on modelling error and therefore safety. Approaches
by [7], [9], [12]–[14] use GPs as corrective terms for
approximate prior models and update them over time as more
experience is gathered.

One model that exhibits especially good real-time per-
formance and has been demonstrated in several real-world
examples is presented in [7]. This approach continually
reconstructs the GP disturbance model based on a fixed
number of data points, to ensure the process model can be
evaluated in constant time even if new experience is added.
Storing the data in first-in-first-out bins of fixed size allows
the algorithm to update the data used in the GP in real
time. If the mode changes, the model un-learns the existing
mode by over-writing all of that data and re-learns the new
mode. During this process, it suffers from the same problems
related to hyper-parameters as mentioned above including
either requiring over-conservative bounds to accommodate
multiple modes, or have bounds that are realistic for a single-
mode, but are unsafe while the model transitions between
modes and is using data from more than one mode. Our
method aims to overcome these limitations by learning a
separate model for each distinct mode.

In addition to the single-mode, safe learning controllers,
multimodal algorithms exist which identify a number of
dynamic modes ahead of time using labelled or unlabelled
training data and switch to the most likely model during
operation [10], [11], [15], [16]. This allows them to maintain
persistent knowledge of a robots dynamics across a wide

range of operating conditions. Inferring the correct mode
from measurements during operation allows them to maintain
a high level of performance and robustness even when the
mode is not directly observed. The method proposed in [17]
for linear systems even infers the number of modes at
training time. These approaches do, however, require that the
number of modes and/or training data from each mode be
available ahead of time, which can be a challenging task in
robotics. In contrast, our method does not require the number
of modes or training data from each mode to be available
ahead of time. Rather, it learns new modes as they arise
during operation.

One method that does allow multimodal models to be
learned during operation is [18] which learns an infinite
mixture of linear experts. This mixture expands as the system
experiences new dynamics. However, linear experts can only
represent nonlinear dynamics locally and therefore require
multiple mode switches over a larger region of the state space
even if the true underlying mode does not change. We aim to
use GPs for experts which can represent nonlinear dynamics
globally and therefore only require a mode switch when the
underlying mode changes if the modes are learned correctly.
This is an advantage for predictive controllers which rely on
predicting the robots dynamics far from the current state.

The proposed work is based on combining GPs and the
Dirichlet Process (DP), which is used in Bayesian non-
parametric clustering models. GPs have been combined with
DPs before to obtain a powerful regression tool [19]. For
their GP mixture, the posterior is the distribution correspond-
ing to every possible assignment of data points to experts;
therefore the likelihood is a sum over (exponentially many)
assignments which must be evaluated by sampling. This was
an offline method and not designed to be tractable in real-
time for a robotics application. In our approach we assume
that points come from only one mode at a time so each
point belongs to only one expert. Inferring the mode allows
us to assign an experience to a single GP which avoids the
computationally expensive sampling. The computational cost
of our method scales linearly with the number of experts
compared to a single GP.

In light of the current approaches and their limitations,
the goal of this paper is to present a method for adapting to
multiple dynamic modes with guarantees on safety using a
realistic and computationally efficient representation of the
system dynamics (including predictive uncertainty). The aim
is to design a learning algorithm that, while initially equipped
for “everywhere mediocrity”, learns the specific set of skills
necessary to achieve excellence in the relevant operating
conditions.

III. PROBLEM STATEMENT

The goal of this work is to learn a dynamic model from
data that can predict the future states for a non-linear,
switching dynamic system where the number of modes
and dynamics in each mode are not known ahead of time.
The algorithm should learn new models when new modes
are encountered, and improve existing models when modes



are re-visited. The model should also include a reasonable
estimate of model uncertainty that acts as an upper bound
on model error at all times.

Further assumptions can be summarized as follows:
• The mapping (uk,xk) → xk+1 is one-to-one for a

given mode.
• The mode is constant over a short time horizon.
• The number of modes and the mapping (uk,xk) →

xk+1 for each mode is not known ahead of time.
A short time horizon could be similar to the horizon consid-
ered for Model Predictive Control (MPC).

The system can be modelled by some nominal dynam-
ics, f(xk,uk), with additive, initially unknown dynamics,
gc(ak), that are specific to a mode, c, and depend on features
ak:

xk+1 = f(xk,uk) + gc(ak). (1)

The unknown dynamics are assumed to be a deterministic
function with additive, zero-mean, Gaussian noise,

gc(ak) = gc0(ak) + ηc, (2)

where ηc ∼ N (0,Σc
n), and Σc

n is the measurement noise
covariance.

IV. METHODOLOGY
In this section, we present our approach to modelling

systems with multimodal dynamics using a combination of
GPs and DPs.

A. Dirichlet-Gaussian Process Mixture Model (DPGPMM)

The goal is to learn the unknown dynamics, gc(a), for
each dynamic mode from data, and automatically detect the
relevant mode or create a new model if necessary. To do this,
we propose is a Dirichlet Process Gaussian Process Mixture
Model (DPGPMM). The DP is used to learn the number
of dynamic modes and the GP is used to model the error
between the dynamics of the real system and the prior model
in each mode. There are four key properties of the model
that make it ideally suited for safe learning the dynamics of
multimodal systems:

1) The ability to handle an increasing number modes
(DP);

2) The definition of a ‘safe mode’ when no data is
available or there is a poor fit (DP & GP);

3) The quantitative bounds for the model error (GP); and
4) The possibility to improve the model over time (GP).

B. Gaussian Process (GP) Disturbance Model

We model the disturbance, g(·), as a GP based on past
observations. We drop the (·)c for notational convenience,
as we learn a GP for each mode separately. Since there
are many good references on GPs [20], here we provide
only a high-level sketch. The learned model depends on
previously gathered experiences which are assembled from
measurements of the state denoted by x̂ and the u using (1),
so that

ĝ(ak−1) = x̂k − f(x̂k−1,uk−1). (3)

The resulting pair, {ak−1, ĝ(ak−1)}, forms an individual
experience. For simplicity, we model each dimension of
the disturbance using a separate GP. Below we derive the
equations for a single dimension of g(·) denoted by g(·).

A GP is a distribution over functions given past experi-
ences, Dn = {ĝ(ai),ai}ni=1, and kernel hyper-parameters.

We assume the experiences are noisy observations of the
true function g(ak); this is, ĝ(ak) = g(ak) +ηη where ηη ∼
N (0, σ2

η). The posterior distribution is characterized by a
mean and variance which can be queried at any point a∗
using

µn(a∗) = kn(a∗)K−1
n ĝn, (4)

σ2
n(a∗) = κ(a∗,a∗)− kn(a∗)K−1

n kn(a∗)T , (5)

where ĝn = [ĝ(a1), ..., ĝ(an)]T is the vector of ob-
served function values, the covariance matrix Kn ∈
Rn×n has entries [Kn(ai,aj)] = κ(ai,aj) + σ2

ηδij ,
where δij is the Kronecker delta, and the vector kn(a∗) =
[κ(a∗,a1), ..., κ(a∗,an)] contains the covariances between
the new test point a∗ and the observed data points Dn. For
this work, we use the squared exponential kernel,

κ(ai,aj) = σ2
f exp

(
−1

2
(ai − aj)

TL−2(ai − aj)

)
(6)

because of its success in modelling robot dynamics [2],
[6], [7], [9], [13]. The hyper-parameters are the diagonal
matrix, L, of length-scales which are inversely related to
the importance of each element of a, and the process noise
variance, σ2

f , which is the variance of the prior family of
functions represented by g(·).

As training data is added to a particular GP, uncertainty is
reduced and the posterior distribution of the GP specializes to
a particular family of functions which represents the system
dynamics in a particular mode. The DP is then used as
a distribution over these families of functions where each
family, represented by a GP, is the system dynamics in a
particular mode.

C. Dirichlet Process (DP)

For the DPGPMM, the DP acts as a distribution over
modes, which assumes the number of modes is infinite. In
reality, however, only a small number of modes will actually
have data. Suppose there are C modes and let c = (1, .., C)
be the vector of indicator variables for the modes. The
conditional probability of each mode c when integrating over
all possible modes is then

p(c = j|c, α) =
nj

N − 1 + α
for existing modes (7)

p(c = C + 1|c, α) =
α

N − 1 + α
for new modes (8)

where j ∈ {1, ..., C} and nj is the number of points
in expert j, N is the total number of data points in all
the experts, and α is a parameter of the DP called the
concentration parameter, which controls the prior probability
of new modes [19]. We have used c as a shorthand to indicate
the existing mixture model, which includes the GP associated



with each mode and hence the number of points in that GP.
The important properties of the DP are that modes with

more experiences are more likely, and the model always
includes an element for a new mode, which is the GP with
no data, or the GP prior. The GP prior, g∗(a) ∼ N (0, σ2

f ),
has the largest variance (σ2

f using (5)), which results in the
most conservative bounds on the disturbance and thus acts
as a ‘safe’ mode.

D. Mode Inference

During deployment, the goal is to find the best esti-
mate of the current and future model error given all past
experiences. We use a recent history of p experiences,
D− = {ĝ(ai),ai}ki=k−p, to infer the mode at the current
time-step, k, and use the most likely mode to predict the
model error at future time-steps. We assume the mode is
constant over short time periods; so all samples in D− should
come from the same mode. The posterior probability of the
jth mode is

p(c = j|D−, c) ∝ p(D−|c = j)p(c = j|c, α). (9)

where p(c = j|c, α) is the prior probability of mode
j calculated using (7) or (8), and p(D−|c = j) is the
probability of recent experiences under mode c = j. The
probability of recent measurements under mode j is

p(D−|c = j) =

k∏
i=(k−p)

p(ĝ(ai)|µcjn (ai), σ
cj
n (ai)), (10)

where µ
cj
n and

(
σ
cj
n

)2
are the mean and variance of the

GP representing mode j. A new cluster is created when the
probability of c = C + 1 is larger than any expert given
recent data. Since it is computationally expensive to create a
new GP model, which involves inverting an nj ×nj matrix,
we remain in the safe mode until the model returns to an
existing mode. While in the existing mode, the system uses
experience gathered while it was in the safe mode to create
a new GP model. This approach assumes that the system
does not transition between two unknown modes before
transitioning back to an existing mode. This was inspired
by [21] which is about managing experiences for visual
navigation in visually changing outdoor environments.

V. GROUND ROBOT MODEL

We demonstrate our multimodal learning approach in
experiment on a ground robot, namely the Clearpath Husky
(see Fig. 2). This section outlines the choice of a-priori
model.

We use a similar a-priori model to [9], which uses a
unicycle model, but we include a term for translation along
the body y-axis and use first-order dynamics with a time
delay for ẋb and θ̇. The translational velocity expressed in
the body frame is (ẋbk, ẏ

b
k) and the rotational velocity is θ̇k.

The addition of the y-component in velocity is to include a
learning term to account primarily for offsets between the
pivot point and the origin of the body frame. The proposed

model isxk+1

yk+1

θk+1

 =

xkyk
θk

+ ∆t

cos θk − sin θk 0
sin θk cos θk 0

0 0 1

ẋbkẏbk
θ̇k

 (11)

where ẋbk+1

ẏbk+1

θ̇k+1

 = h(ck, ·) (12)

where h(ck, ·) is the true nonlinear process model for mode c
at time-step k that we wish to approximate.

Experiments have shown that the translational and rota-
tional dynamics can be reasonably well approximated by a
first order system with time-delay, so we use a first order
prior model and a learning term to model the dynamics of
the real system,

h(ck, ·) ≈


ẋbk + ∆t

(
1
T1

(uk−d − ẋbk)
)

0

θ̇k + ∆t
(

1
T2

(wk−d − θ̇k)
)
+

 gcu(ak)
gcv(ak)
gcw(ak))


(13)

where T1 and T2 are the time constants for the translational
and rotational dynamics, d is the number of time-steps of
the delay, and a is the disturbance dependency, which will
be defined in Sec. VI-B.

VI. EXPERIMENTS

A. Experimental Setup

Experiments were conducted on a 50 kg Clearpath Husky
skid-steer ground robot shown in Fig. 2. Weights and tyre
pressure were varied to produce five dynamic modes while
the vehicle was driven manually on a polished concrete
surface. The no mass configuration was with no mass and
high tyre pressure. The centred configuration was with a
25 lb weight on the front bumper and a 35 lb weight on the
rear bumper. The offset configuration was tested with a 35 lb
weight on the rear bumper and a 25 lb weight on an arm
extended beyond the body (depicted in Fig. 2). The centred
and offset configurations were tested with high and low tyre
pressure. Four trials were conducted in each configuration,
where the vehicle was driven manually for a total of 1347 s.
The motion of the vehicle was captured using a Vicon motion
capture system at 200 Hz, and commands were sent to the
vehicle at 10 Hz. Below, we focus on the rotational dynamics
since the added mass did not have any significant effect on
translation.

B. Experiences

The learned model depends on observations of prediction
error, ĝ(ak), from (3), gathered during previous trials. Ex-
periences are calculated using the a-priori model (12), (13),
and measurements of the translational and angular velocity in
the body frame, (ẋbk, ẏ

b
k, θ̇k). We down-sample measurements

from the motion capture system taking the most recent pose



Fig. 2. The Clearpath Husky robot with additional weights used for
experiments. The configuration shown changes the mass and pivot point
of the vehicle which drastically changes its rotational dynamics. Different
loading configurations result in different dynamics. Our approach detects
which dynamic mode is currently active and learns a new model when
the existing library of dynamic models is insufficient to explain current
measurements.

measurement for each time-step where a new command was
applied.

Choosing the correct dependence for the disturbance is an
important and challenging design task. In our experiments,
a = (ẋbk, ẏ

b
k, θ̇

b
k, wk, wk−1, wk−2). This choice for a assumes

that all disturbances act in the body frame. This assumption
was made based on the intuition that disturbances come from
varied interaction between the wheels and the surface; since
the wheels are fixed in the body frame, the unmodelled
dynamics should be as well. Including several inputs was
motivated by an obvious time delay in the vehicles behaviour
of two to three time-steps. Using this approach, the model
can learn systematic time delays in the dynamics in the range
from one to three time-steps.

C. Tuning Parameters

Hyper-parameters for the GP were trained using data from
the configuration with no mass and fixed thereafter. For this
work, we used version 1.0.9 of the GPy package [22]. The
maximum number of points in a GP was fixed to 1000.
The concentration parameter of the DP, α, was set to 1.
This means that with no other indicative measurements, an
existing mode is far more likely than a new mode. The prior
function variance, σ2

f = 0.252, was chosen as an upper
bound on the expected disturbances. The noise variance,
σ2
η = 0.052, was chosen as the upper bound on measurement

noise, and the kernel length-scales, with diagonal elements
diag(L) = (1.48, 685, 0.18, 800, 0.69, 0.64) were optimized
using training data collected with no mass on the Husky. The
large length-scales for ẏbk and wk indicates that the GP has
learned these elements are not important.

D. Mode Inference Given Fixed Models

First, we demonstrate the mode inference given a fixed
number of models trained using known modes. Four runs of
about 90 s were conducted in each mode and one was used
for training. The confusion matrix [23] in Table I shows
that classification errors occur primarily between the modes
in the first three columns, where the center of mass of the

centred centred,
low

no
mass

offset offset,
low

safe

centred 0.49 0.06 0.34 0.02 0.03 0.06

centred, low 0.21 0.43 0.27 0.00 0.01 0.08

no mass 0.42 0.20 0.26 0.01 0.01 0.10
offset 0.01 0.01 0.01 0.88 0.02 0.07
offset, low 0.00 0.02 0.04 0.08 0.78 0.08

TABLE I
THE CONFUSION MATRIX FOR MODE CLASSIFICATION BASED ON

MODELS TRAINED USING THE TRUE LABELS. COLOURED BOXES

INDICATE MODES WITH SIMILAR DYNAMICS.

Husky is roughly over the center of the wheels. This suggests
that these modes have similar dynamics which matches our
observations and means that experience from one of these
modes may be relevant to another. In addition, a classification
error in these cases would be of little consequence since the
predictions made using any of these models will be similar.

E. Model Learning Example

Figure 3 demonstrates how the algorithm learns new
models safely and efficiently when confronted with novel
configurations. The model was initialized with data from the
no mass configuration; that is, initially it has no experience
related to the offset configuration. The mode identification
used the most recent 2 s of data to identify the current mode.
When it started moving at 9 s and encountered measurements
from the offset configuration, it reverted to the safe mode.
During this time, the learning term, gcw(ak), is approximately
a zero-mean Gaussian with a large variance, which keeps
the measurements within 3σ (shaded in red) of the mean
(red line). At 18 s, it switches to the learned mode and
constantly detects the new mode except when the vehicle
is stationary again at 45 s. At this point, all modes predict
that vehicle remains stationary so the DP is dominant and
the mode with the largest number of points, the initial model
trained for no mass, is selected. The model remains in this
configuration until 141 s, since the no mass configuration is
very similar to the centred configuration. At 141 s when the
Husky is commanded to rotate again, the model switches
back to the previously learned model for offset, leveraging
previous experiences. This demonstrates how the proposed
approach safely learns a new model and makes efficient use
of experiences by constantly improving existing models.

F. Model Prediction Performance

The method presented in this paper is aimed at improving
performance and safety of safe learning controllers such as
the one presented in [7]. This safe controller relies on an
accurate prediction of the mean state and modelling error
bounds over a short time horizon given the current state and
a series of inputs, see Fig. 1. In our experiments, the Husky
ground robot was manually driven. This gives us a series of
states and inputs. To measure the accuracy of the prediction
of the mean state by our multimodal model, we use Root
Mean Square Error (RMSE) between the prediction made
using our model given a state and a series of subsequent
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inputs, and the measured state at these subsequent time-steps.
To measure the accuracy of the error bound prediction, we
will use the RMS Z-score (RMSZ) of the prediction at the
future time-steps.

The RMSZ for a short window of p time-steps is defined
as

RMSZk =

√√√√1

p

k+p∑
i=k+1

(θ̇truei − µck
θ̇

(ai))2

σck
θ̇

(ai)2
(14)

where µck
θ̇

(ai) and σck
θ̇

(ai) are the mean and standard
deviation of the GP of mode ck evaluated at ai. The
true measurements of angular velocity, θ̇truei , are used for
comparison. The most likely model at time-step k, ck, is
chosen based on the p most recent points using (9). Values
smaller than one indicate the estimate is overly conservative,
values close to one indicate a perfect estimate, and values
larger than one indicate the method is over-confident.

Figure 4 shows a comparison of the RMS error over 16 tri-
als using three different approaches. First, we use a single
GP initialized with data from the no mass configuration.
Second, we train a supervised mixture of GPs using perfectly
labelled data from all configurations (one for no mass, one
for centred, one for offset, and one for offset with low
tyre pressure) and manually label which mode is active at
run time. This model also acts as a measure of the limit
of accuracy of the GP with fixed hyper-parameters and
perfect mode inference. Third, the proposed DPGPMM is
initialized with one GP trained using data from the no mass
configuration and learns the remaining modes during the
experiment. The algorithm for updating GPs to maintain a
constant size is based on continually choosing a random

Subset Of Data (SOD) associated with the model. This was
chosen for simplicity and good performance relative to other
SOD methods [20].

The results in Fig. 4 show how the proposed method
quickly approaches the performance of the mixture model
trained with perfectly labelled data, and retains this per-
formance regardless of mode switches. The GP mixture
trained using labelled data represents a baseline for ‘good’
performance using a GP model with fixed hyper-parameters.

The single GP can learn to approximate one set of dynam-
ics after a long period of time, but must un-learn and re-learn
dynamics each time it encounters a new mode resulting in
consistently higher RMSE and RMSZ.

Using a supervised GP mixture model in practice is diffi-
cult because it requires perfect training data to be available
ahead of time. This is not always possible. Moreover, such a
model does not adapt to slight changes between modes (e.g.,
caused by tyre pressure) while the proposed method does.

VII. DISCUSSION

Choosing a good a-priori model, (11)-(13) with gc∗(ak) =
0, and hyper-parameters are essential for the success of any
method. For the purpose of this paper, a good prior model
should result in model errors, ĝ(a) (3), that can be well
approximated by a GP. For the squared exponential kernel,
this means the error should be smooth, which is why we
chose a first-order prior model as opposed to an instantaneous
prior as in [9]. The length-scale hyper-parameters then dictate
how smooth the function is expected to be. Since we assumed
that training data would not be available from all modes,
we chose hyper-parameters based on a configuration with
no mass on the Husky. Since the Husky rotates at almost
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Fig. 4. This plot shows the median of the RMS error and weighted
RMS error for an entire runof consecutively changing configurations. For
comparison, we show the proposed method (red), a single GP that is
initialized with data from the no mass configuration (green), and an ideal
mixture model with static GPs trained on labelled training data for each
mode (blue). The red circle shows where the proposed method was initially
uncertain about the dynamics of the robot in the offset configuration which
resulted in higher uncertainty which reduces the RMSZ despite having a
higher RMSE. This is a good indication of safe performance. For runs
8-10, the Husky was in either a centred or no mass configuration. After
three repeated runs with the same configuration, the single GP adapts to the
dynamics in this mode. On subsequent runs, however, it has unlearned the
dynamics in the offset configuration which results in dramatically increased
RMSE and RMSZ while the proposed method remains close to the ideal
model.

twice the rate in an offset configuration, these length scales
were no longer as accurate. This results in higher error
while the vehicle is in the offset configuration. This could
be addressed by separately optimizing the hyper-parameters
for each model when enough data is gathered; however, that
was beyond the scope of this work.

VIII. CONCLUSIONS
This paper has presented a method using Gaussian Pro-

cesses as experts in a Dirichlet Process mixture model to
learn an increasing number of non-linear models for robot
dynamics that are affected by different, discrete operating
conditions. We have demonstrated in experiment how this
approach stores and re-uses past experience from a robot’s
deployment in an arbitrary number of previous operating
conditions, and automatically learns a new model when a
new and distinct operating condition is encountered. The pro-
posed method demonstrates significant improvements over
single GP models, and approaches the performance of a
supervised method. We hope the reader will find this an
interesting option for safe control of multimodal systems
where the dynamics in each mode cannot be specified ahead
of time.
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